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IDENTIFICATION AND SELECTION PROCEDURES BASED ON
TESTS

By KLAUS J. MIESCKE
University of Mainz

Let X,,- - -, X, be independent randoin variables with distributions
91, -+, O defined on a common range space (X, §). At the beginning it is
assumed that the Q; are known but not the pairing with the X;, and the goal is
to identify the X; which comes from Q.

First it is shown that every procedure based on a total ordering in % can be
viewed as being based on (the p-value of) a test for deciding between H,, : {01}
versus Hy : {Qy, - - -, Q). Then the class of procedures based on tests is
studied in detail. It is demonstrated how typical properties of tests ¢ (powerful-
ness, unbiasedness, consistency etc.) transfer to the corresponding procedures
S,- The next step is to get free of the assumption that Q,, - - - , 9, are known,
thereby passing over from identification to selection procedures.

Throughout this paper the objective is to compare procedures (not to estab-
lish specified ones), and as one main result it is shown that the asymptotic
relative efficiency (Pitman) of one test ¢ with respect to a second test y and of
S, with respect to S, are identical. '

1. Introduction. Let X, - - - , X, be independent random variables defined on
a probability space (2, &) carrying a probability measure P, and Q,,- - -, Q,
denote the probability distributions of X, - - - , X, induced on their range space,
(X, §), say. At first it is assumed that all the Q, are known, but not the pairing
with the X;, and our goal is to identify the X; (for simplicity we assume that there is
only one) which comes from Q,. Because we are interested only in identification
procedures which are invariant under permutations of the observables
Xy« -+, X, we assume without loss of generality that X; has distribution Q,
i=1---,k

In this section we shall see that every procedure based on a total ordering in %
can be viewed as being based on (the p-value of) a test for deciding between
Hy : {Q,} versus H, : {Qy, - - -, Q). Thus it seems justified to study the class of
procedures based on tests in more detail. This is done in Section 2. In Section 3 an
attempt is made to get free of the assumption that the Q, are known, thereby
passing over from identification to selection procedures. It will be shown how
typical properties of tests ¢ (especially optimality) transfer to the corresponding
selection procedures S,- Especially in Section 4 it turns out that the asymptotic
relative efficiency (Pitman) of one test ¢ w.r.t. a second test y and of Sy W.I.t. S,
are identical. Similar results for A.R.E. (Bahadur) can be found in Gaynor (1976),
where, instead of tests, estimators are under concern. Reconsidering subset selec-

Received August 1976; revised December 1977.

AMS 1970 subject classifications. Primary 62F07; secondary 62F05, 62F20, 62G99.

Key words and phrases. Identification procedures based on tests, selection procedures based on tests,
asymptotic relative efficiency (Pitman).

207

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

®
www.jstor.org



208 KLAUS J. MIESCKE

tion procedures from our point of view, one arrives at results which eventually will
be published elsewhere.

The emphasis of this paper lies in comparison of procedures, using techniques
and results which can be found in classical (Neyman and Pearson) testing theory.
To begin with, let “{,” be an order relation in X with following properties:

(@) For x,y € X exactly one of the relations x <;y, x >,y or x =,y holds.

(b) For x,y,z € X x <,y <,z implies x <;z. Both x <;y,y <,z and x <y,
y <;z imply x <;z.

(c) Forx € X{y € X|y =,x} and {y € K|y <;x} belong to §, and F(x) =
O0{y €X|y <sx},x €X,i=1,- - -, k, are measurable mappings from (X, §)
to ([0, 1], ®,), B, denoting the Borel sets in [0, 1].

DEerFINITION 1. The procedure S, which selects i € {1,- - -, k} if X; >.X,
J # i, and splits ties (if any) at random, is called the identification procedure based
on 113 <s”‘

REMARK 1. In applications the X, typically are samples from k specified
populations, and “<,” is given by x <y iff s(x) < s(»), x,y € %X, wheres : X —»
R is a suitable real-valued statistic.

For example, s may be the sample mean, variance or generalized variance in case
of given normal populations, when the problem is to identify the population with
the largest corresponding parameter. Most of the procedures proposed elsewhere fit
into this framework. However, one important exception should be pointed out
clearly: nonparametric procedures based on joint ranks (see Lee and Dudewicz
(1974) for an overview) are not based on order relations satisfying (a)-(c).

Now if “<f,” is the order relation given by x <f, y iff F|(x) < F;(»), x,y € %X,
then it has properties (a)-(c). We will show in the sequel, that Sy, is as good as S,
w.r.t. probability of correct selection, and that S, is equivalent to selecting for the
largest p-value of a test ¢ for Hy: {Q,} versus H, : {Q,, - - -, O}, given in the
proof of Theorem 1.

REMARK 2. Introducing random variables U,,- - -, U,, independently uni-
formly distributed in [0, 1] and independent of X, - - - , X}, and defining x* =
(x, u) <g(y,v) = y*iff x <y or x =, u <o, (x,u), (y,0) € X*=%X xX[0, 1],
the X* = (X,, U) are clearly nonatomic: P{X} =,.x*}=0, x* € X*, i=
1,+ - -, k. Thus because of P{X* =.X*} =0, i #j, S, represents a nonrando-
mized version of S, in a suitable enlarged sample space.

Though we could assume now, without loss of generality, that the X, are
nonatomic, we prefer to remain in the previous case. The reason is that tests
usually are defined on %X and it is more convenient to formulate our results in the
familiar language of classical (Neyman and Pearson) testing theory.

LeMMA 1. For all x € X we have
(1.1) P{Xl >sx, F](Xl) = Fl(x)} = 0.



IDENTIFICATION AND SELECTION PROCEDURES 209

If X, is nonatomic w.r.t. “=_", then (1.1) remains valid if >; is replaced by <;, and
therefore F\(X,) is nonatomic, too.

PrOOF. Let A(x) = {y € X|y >x, Fi(y) = Fi(x)}, x € %X.

0i(4(x))* > 20, X 0,(A(x) x A(x) N {(», 2)|y <sz})
= 2{ 4x) Q1(4(x) N {z]z >5p})dQ\(»)
= 2{ 4(x) 0,(4(x) N {le >5x})d0(y)
= 2/ 4x) Qi(A(x))dQ,(y) = 20,(A(x))’, x €%,

and therefore Q,(4(x)) =0 for each x € X. If X, is nonatomic, we start with
B(x) = (y € K|y <ox, Fi(») = F,(x)}, and get Q,(B())* > 20, X O,(B(x) X
B(x) N {(y, 2)|y >sz}). Proceeding analogously we finally get Q,(B(x)) =0 for
each x € X.

LemMMA 2. If S, and Sg, split ties according to the same randomization scheme,
then

(12) P({S, = 1)\ {S;, =1})=0.

Proor. Let A denote symmetric differences and j € {2,- - -, k}. By {F (X))
> Fi(X)} C {X, >X;} C {F|(X)) > Fi(Xj)} and Lemma 1 we have P({X,
> X;}A{Fy(X;) > Fi(X))}) =0, which together with {X, =X} C {F\(X) =
Fy(X;)} implies (1.2).

REMARK 3. It may happen that P{X, <.X,, Fi(X,) = F|(X;)} > 0 and there-
fore P({Sg, = 1}\ {S; = 1}) > 0 occurs. But if the X; are nonatomic w.r.t. “=",
then Lemma 1 guarantees P({S; = 1}A{Sy =1}) = 0.

REMARK 4. In concrete situations—i.e., situations where Q,, - - - , Q, are given
explicitly—one usually looks for a suitable statistic s, such that Fi(x) = P{X,
<sx} > P{X; <;x} = F(x),x € %X, i > 2, holds (cf. Remark 1), and then takes
S, resp. Sy, as a reasonable procedure.

The main idea of this paper is as follows: let X be an (auxiliary) random variable
defined on (R, %) and Q be its distribution induced on the range space (X, §), and
consider the testing problem H,: Q = Q, versus H, : Q € {Q,, - - -, O }. If for
each a € [0, 1] ¢, is a “good” test at the level a, then the following procedure S,
seems to be reasonable: “select j € {1, - - -, k}, if X is the last of X, - - -, X,
which becomes significant under {@, }, (o, 1; When a increases from 0 to 1, and split
ties (if any) at random”.

DEFINITION 2. A test ¢ is a family {@,},ep0 1y Of measurable mappings
9, : (%, )= (0, 1], B,), a €0, 1]. It is called monotone (m.), if for each x € X
¢,(x) is monotone nondecreasing in a € [0, 1], and it is called standardized w.r.t.
Q1(.(Q0), if Eq,(X)) = a, a €10, 1].

REMARK 5. If @ is an m.s. (Q,)-test for any H,, versus H,, X a random variable
and U independently of X uniformly distributed in [0, 1], then the usual way of
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reaching decisions is to reject H, iff U < ¢, (X), a € [0, 1] being the predetermined
level. This suggests defining the p-value of a test in the following manner:

DEFINITION 3. Let ¢ be a monotone test. The function p,, : X X [0, 1]—[0, 1]
given by p.(x, u) = inf{a|u < @,(x)}, x € X, u €[0, 1], is called the p-value of
(x, u) w.r.t. . If @ is nonrandomized (i.e., if ¢, : (X, §) —» {0, 1}, « € [0, 1]) this
reduces to p,, : % — [0, 1] with p(x) = inf{a|g,(x) = 1}, x € X.

Now we come back to X,, -, X, and let U, - - -, U, be independent
uniformly in [0, 1] distributed random variables, independent of X, - - - , X, too.

DEFINITION 4. Let @ be a monotone test. The procedure S, which selects
i €{1,- -, k}if p(X,, U) > p(X;, U), i #j, and splits ties (if any) at random,
is called the identification procedure based on test .

Now we state the main result of this section, using procedure S,. (cf. Remark 2)
for convenience.

THEOREM 1. There exists an m.s. (Q,)-test  with
(13) P({Se(X), Uy, - -+, X, U) = YN [S(X,, Uy, - -+, X, U) = 1}) = 0.
Proor. Let for a €10, 1] y,(x) = 1 if x & support (Q,) and if x € support (Q)),
Y (x) =1 iff Fi(x) <c(a),
=k(a)  Fy(x) = ¢(a)
=0 Fy(x) > c(a)

where Ey, (X)) = P{F\(X,) <c(a)} + k(a)P{Fy(X)) = c(a)} = a and k(a) =1
if P{Fy(X})= c(a)} =0. Clearly ¢ = {{,},ep0,1; is an m.s. (Q,)-test. Since for
u € [0, 1] and x € support (Q,) we have

P\p(x, u) = P{FI(XI) < Fl(x)} + uP{Fl(Xl) = Fl(x)}’

{S:,,(X,, U, -, X, U) = 1}
= U1;(2,...,k){F1(X1)
= F(X,), U, > U,i € I, F\(X,) > F(X),j & I}
= {Sp (X, Uy, - -, X, U) = 1},

which together with Lemma 2 implies (1.3). In view of this result we restrict our
further considerations to identification procedures based on m.s. (Q))-tests.

2. Identification procedures based on tests. In this section we still maintain the
assumptions, stated at the beginning of Section 1. But the objects of interest now
are tests and no longer total orderings: the general class of all tests defined on X
including the randomized ones.
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Now each m.s. (Q,)-test ¢ can be modified to ¢ such that
2.1) ¢,(x) is right-continuous in « € [0, 1] forall x e %, and
2.2) P(x)=1a €0, 1], if x does not belong to support (Q,).

In order to arrive at a concise formula in (2.7), we choose support (Q,) = {x|fi(x)
> 0}, where f| is the Radon-Nikodym derivative of @, wrt. 0 = Q, + - - - + Q,,
which clearly dominates the Q,. (By this we avoid the existence of Q,-atoms, i > 2,
in support (Q,), which are not Q;-atoms simultaneously.). On the other hand, it
should be pointed out that the more important formula (2.6) holds true for every
choice of support (Q,).

Since ¢ still is m.s. (Q;) and @,(x) < §,(x), a €[0, 1], x € %X, holds, and
therefore identification procedure S; based on ¢ is as-good as S, based on ¢
(which we shall see very soon), we restrict our further attention to tests satisfying
(2.1) and (2.2). Besides we remark that test y appearing in Theorem 1 has these
properties already, if support (Q,) is chosen properly.

Important for the following is the fact that for every m.-test ¢ satisfying (2.1) we
have for every random variable X

(2.3) P{pq,(X, U) < a} = Eg,(X), a €[0,1],
if U is independently of X uniformly distributed in [0, 1]. This follows from the
monotonicity and (2.1), since then for all x € %X, u, a €0, 1], Po(%, u) <ais

equivalent to u < @,(x).
Still having in view X, Uy, - - -, X,, U, as defined in Section 1, we first state

LEmMMA 3. For every m.s. (Q))-test  andi € {1,- - - , k},
2.4 Eo, (X)) is a continuous function of a € [0, 1], and

@5  Ep(X)=1
ProOF. Let G, = {x € X|g,_(x) < @, (x)}, a €[0, 1]. Since ¢ is s. (Q)), we
have for each a € [0, 1]

E(9+ (X)) — @, (X)) = Eg,. (X)) — Ep,_(X,) =0,

and thus by monotonicity of ¢ Q,(G,) = 0 holds. By standard arguments taking
Q=0+ - +0 O(G, Nnsupport(Q,)) = 0 and finally Q,(G, N support(Q,))
=0,i=1,---,k, follow, if support (Q,) is chosen as indicated above. Since by
(22) we have fori=1,-- -,k

E(pa+(‘Xi) - E(pa—(A,i) < Qi(Ga N Support(Ql)) = 0’
(2.4) is proved. And since ¢ is s. (Q,), (2.5) follows by (2.2).

In view of the next theorem it should be pointed out that (2.3), together with
(2.4), says that for every m.s. (Q))-test ¢ and i € {1, - -, k}p,(X;, U) has a
continuous distribution and especially that p,(X;, U;) is uniformly distributed in
[0, 1]. (Thus beyond Uy, - - -, Uy no further randomization is needed for S,.)
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Now we state our main result, which shows that for m.s. {Q,)-tests ¢ the
distribution of S, depends on ¢ only through its power function, and this in a
simple and impressive manner:

THEOREM 2. For each m.s. (Q))-test @

9) P(S, = 1) = Iy Bp(X)da
and for i > 2
2.7) P(S, = i} = [o allj_p, ;i E@u(X;)dEp,(X)),

Where integration is w.r.t. a.
Proor. Leti € {1, - -, k}. By (2.3) and Lemma 3 we have
P{SQ)(X]’ Up 5 X U = i} = P{p(p(Xi’ U) >Pqp(Xj’ Uj)’j ¢i}’
as we pointed out above. The right hand side equals to
18 P{po(X;, U) < @) #ilpy(X,, U) = a} P{p,(X, U)) € du)
= [0 ey joui P{ 2y(X, U) <a}P{py(X,, U) E da)
= fo a1, o B0u(X;)dE@, (X)),
which in turn is equal to the right hand side of (2.6) for i = 1 and of (2.7) for
i€(2,---,k}).
The following statements are immediate consequences of Theorem 2:
(I) Sufficiency. If T : (X, §) - (%X, §’) is a sufficient statistic for
Q- -, O then we can confine ourselves to procedures based on tests which
depend on x € X only through T(x).

(II) Power relations. 1f ¢ and ¢ are m.s. (Q))-tests with Ey, (X)) < Eg,(X)), a
€ 1[0, 1], > 2, then

(2.8) P{s, =1} <P(s,=1}.

In plain words: the better the test the better the identification procedure. And
besides we remark that (in indifference zone formulations) maximin-tests induce
maximin-procedures.

(IIT) Unbiasedness. 1f ¢ is a m.s. (Q,)-test which is unbiased (i.e., Eg, (X)) >
a, a €[0, 1], j > 2), then S, is unbiased:

(2.9) P{S,=1}>k™".

Unfortunately the converse statement does not hold true! Thus the important
question (cf. Section 3) remains open, whether each unbiased procedure based on a
total ordering can be equalled or beaten (w.r.t. probability of correct identification)
by a procedure based on an unbiased test.

(IV) Monotonicity. 1If ¢ is an m.s. (Q))-test and i,j € {1, - -, k},

(2.10) Eg,(X,) < Eq,(X)), a €[0, 1]
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implies
(2.11) P{S,=j} <P{S, =i},
(cf. Gupta and Nagel (1971)). Though the proof is straightforward, we will sketch it
briefly, because on page 133 of Lee and Dudewicz (1974), this (in another context)
was stated as an open problem: we start with P{S_ = j}, integrate it by parts and
apply (2.10). Then we proceed with the outcoming result analogously and finally
arrive at P{ S, = i} as an upper bound.

(V) Consistency. Let X, - - , X, neN={(1,2,---} be independent
random variables defined on (R, ¥) with range space (%X, §) and distributions

oM, .-, 0 neN,let Uy, - - -, U, be as before and let ™ for each n € N
be an m.s. (Q))-test. If {¢},cy is consistent for H; in the usual sense, then
(2.12) lim, ., P{S,m(X{", Uy, -+ -, X, U) =1} = 1.

(VI) Other topics. Finally let us mention that other typical properties of tests
such as invariance, local and asymptotic most powerfulness in view of Theorem 2
can be treated analogously. In Section 4 Pitman’s asymptotic relative efficiency will
be studied in detail.

3. Selection procedures based on tests. In this section an attempt is made to get
rid of the assumption that Q,, - -, Q, are known, thereby passing over from
identification to selection procedures. For the rest of this paper, let {Qy}s <o
8 C R (or § C R™ when nuisance parameters are involved), be a given family of
distributions with densities {f;}5cp W.I.t. a o-finite measure u defined on (%X, §).
For Q,, - - -, O, the distributions of X, - - - , X, we assume that Q;, = Q, holds
for certain unknown &; € 8, i =1, - - , k, and our goal is now to select the (for
simplicity) unique population with the largest parameter max{®,, - - -+ , %} = 3,
say. (The smallest parameter problem can be treated analogously). Without loss of
generality we assume that 3, = 4, holds, and for simplicity we use now the symbol
s. (#) instead of s. (Qy).

DEFINITION 5. Let @ be a monotone test. Then S, as defined in Definition 4,
now is called the selection procedure based on test ¢. Such a procedure is called
uniformly best, if its probability of correct selection maximizes the probabilities of
correct selection of all procedures based on monotone tests in all possible parame-
ter situations.

In analogy to development of testing theory a first step is to look at families
{f3} 5 co With monotone likelihood ratios, thereby arriving at a well-known result
(cf. Lehmann (1966)):

COROLLARY 1. Let T : X — R be a (sufficient) statistic and for 3, < &, ¥,, &,
€0 CR, f,(x)/fs(x) be a nondecreasing function of T(x), x € X. Then the
procedure which selects the population with the largest T-value, and splits ties (if any)
at random, is uniformly best.

PrOOF. Let us first assume that &, >, - - - , & are fixed. If ¢ is any mono-
tone test, S, is based on the order relation generated by its p-value p,, which is
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defined on % * = %X X [0, 1]. (Note that beyond U, - - - , U, an additional rando-
mization scheme may be necessary to establish S,). Let Qf = Q, X W,, W, being
the uniform distribution on [0, 1], i =1, - -, k. Then in view of Theorem 1
(applied to the new setup (X*, 0),i = 1, - - -, k) we can assume that y is an m.s.
(Q3 )-test, defined on X *.

The U.M.P. level a test for H, : & = &, versus H, : & < @, on the other hand is
given by

Polx, u) = 1
. <
=v( iff T(x) S (),

=0
x € %, u €0, 1] and Eq(X,) = a, a € [0, 1], which clearly does not depend on
the values ¥ € [0, 1]. By Theorem 2 we get

(3.1) P{S, =1} <P{S,=1} forthefixed &, -, 3.
Now S, selects according to the largest T-value and therefore is independent of
Q55"+ » Q.- Thus (3.1) holds in all cases where #; > ,, - - - , ¥, and the proof

is completed.

REMARK 6. If X = R", n € N, it can be seen easily, that the optimal procedure
given in Corollary 1 is most economical in the sense that no other procedure based
on a monotone test can reach the same probability of correct selection with a
sample size smaller than ». This is because U.M.P. (likelihood ratio) tests are most
economical in an analogous sense. In the “indifference zone”-formulation a similar
result was derived by Hall (1959) without the assumption of invariance. But on the
other hand, location and scale parameters only are admitted there.

ExampLe 1. Let X; = (X;, - -, X)), i=1,---,k, where Xj i=1,---,k,
j=1,-++, n are independently normal distributed random variables with means
®, i=1,---,k and common known variance o> >0, and let )?, = (X,
+ - +X,)/n, i =__1, Ce k. Then the uniformly best procedure S(p selects
i€(l,---,k}iff X;>X, r+i. Since S, does not depend on 0%, it is even
uniformly best if we admit a two-dimensional parameter space where o2 acts as
nuisance parameter, and o needs neither to be known nor to be estimated.

In the “indifference zone”-formulation, Bechhofer (1954) has shown that this
procedure is optimal, too. On the other hand, S, is a special case of Gupta’s means
procedure (X; > X, — d, r i) for d = 0, which was proposed by Gupta (1956) in
the “subset selection”-formulation.

Unfortunately, in many situations U.M.P.-tests do not exist and only U.M.P.-un-
biased tests are available. Then we can only say that the corresponding “optimal”
procedure beats all others based on unbiased tests. Especially in view of (2.3) all
procedures are beaten which are based on orderings induced by statistics 7 : % —
R being stochastically nondecreasing in . Thus this class seems to be not too
narrow. And if the open question in (III) could be answered positively, this class
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could be replaced by the larger class consisting of all unbiased procedures based on
total orderings.

Typically such situations occur when two-sided testing problems or multiparame-
ter exponential families are involved. And in many situations—somewhat disap-
pointing—the reasonable procedure based on an U.M.P.-unbiased test may depend
on 3,. The following examples are given for illustration.

ExaMpLE 2. Let the X; be defined as in Example 1 but our goal is now to select
the population with the largest |3, &, say. For &, fixed the U.M.P.-unbiased s.
(8)-test ¢ for Hy: |#] = 9, versus H, : |#| < 9, rejects small values of |%| and
therefore leads to procedure S, which selects the population with the largest | X]|.
Since S, does not depend on 3y, it is uniformly best among all procedures based on
unbiased m.s. (Jy)-tests, ¥, € R (but it is not uniformly ‘best in general). In Rizvi
(1963) this procedure (beside others) is studied in detail.

ExamMPLE 3. Let the X; be as before with the only difference that the variances
o/ > 0 now depend on i € {1, - - - , k} and are unknown: If our goal is the same
as in Example 1 and if J, = max; §; is known, procedure S; based on the
U.M.P.-unbiased s. (¥)-test (for a suitable §) selects the population with the largest
t-statistic

1

(n(n = 0)2(X; = 96)(Skoi(X, - X)) .
Since S; depends on 9, we conclude that in case of unknown &, there is no
procedure that beats all others based on unbiased m.s. (9)-tests, #, € R. This is

true even in the case of known but different o,.z, i=1---,k.
If one replaces the unknown 4, by the estimator max; X, then S, reduces to the
procedure in Example 1. If one takes another (better) estimator, then one may be
led to a procedure which is no longer based on a monotone test (or total ordering).

ReMArRK 7. If in case of monotone likelihood ratios one wants to find a
confidence interval for ¢, = max; ¥, simultaneously with selecting, it seems natural
to take (for a fixed confidence coefficient 8 € [0, 1]) the confidence interval given
by the U.M.P.-unbiased two-sided s. (¥,)-test for a suitable 8 = [, 3*] with
Py <8, <I*. As can be seen immediately there exist a,(8), a,(B) € [0, 1] such
that for “CS” denoting correct selection and “CD” denoting correct decision (i.e.,
¥, being covered by the confidence interval)

(3.2) P{CS,CD} = [, &,® k., Ep,(X))da,

where g is the s. (#)-version of the best one-sided test.

ExAMPLE 4. Let the X; be as in Example 1 and our goal be now to find a
confidence interval of fixed length L simultaneously with selecting for P =
max; 9;. If one selects the population with the largest X; and takes {#||max; X, —
?#| < L/2} as the confidence interval, then (3.2) can be expressed as follows: let
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a(L)y=1- <I>(n%L /28), ® denoting the cdf of N(0, 1). Then (3.2) becomes
(3.3) P{CS,CD} = [, (" Ik, Ep,(X;)da,

where ¢ is now the s. (9,)-version of the Gauss-test. Formulas (3.2) and (3.3) may
serve as a basis for comparisons of competing procedures (by stepping through
interesting values of 9,). The problem of establishing procedures of this type in the
“indifference zone”-approach (i.e., finding least favorable configurations) under
assumption of M.L.R. is treated in Rizvi and Saxena (1974). Improvements of the
confidence interval (L remaining fixed), taking into account the bias of estimator
max; X, w.r.t. max, 9, are given in Dudewicz and Tong (1971) and in Alam, Saxena
and Tong (1973). They result in some modifications of the boundaries of the
integral in (3.3) in an obvious manner.

4. Asymptotic relative efficiency. For convenience we shall treat only the one-
sample case, for after this has been carried out it should be evident how to apply
the method to other cases.

Letforn € N, X®™ = (X, - - - , X) be samples, i.e., X, - - -, X be iid.
random variables with distributions 0%, ™ € § C R which for convenience is
indicated also by suffixes at the probabilities and expectations now. Let ¢ and
Y™, n €N, be consistent m.s. (3y)-tests for some ¥, € § with the following
properties:

4.1) For 9™ = 9, + qn~7 + o(n‘il),
1>0neEN0I<a<]l
lim, .., ¥ (X®) = 1 - &y, = 18,), 5, €R,
where u, = ®~'(1 — a). The same for ¢ with §, replaced by §,. Then the asymp-
totic relative efficiency (Pitman) of ¢ w.r.t. ¥ at 9, as is well known is given by
4.2) ARE. (¢,9) = (8,/5,)".
Now let for n €N X, - - -, X be independent samples with distributions
Qs % €0,i=1,---,k,and U, - - -, Uy as before.
DEFINITION 6. If there exists a mapping n* : N — N such that for all " =
@™, - - -, 8" with
(43) 9" = dyand & = & + yn~7 + o(n"2),
7, >0,/ € (2, ,k}andn €N
limn—mo P\')(n){Sq:(n)(Xl(n)’ Ul, DY X}cn)a Uk) = 1}
= lim, ., Poony{ Syiarimp(XT, Uy, - -+, X", U,) = 1)

and if for all n* : N — N satisfying (4.3) lim,_, , n*(n)/n = e, say, then we call e
the asymptotic relative efficiency of S, w.r.t. S, (A.R.E. (S, S,)) at &,
Now we can state the main result of this section:



IDENTIFICATION AND SELECTION PROCEDURES 217

- THEOREM 3. Let o™ and Y™, n € N, be consistent m.s. (9)-tests satisfying
(4.1). Then

(4.9) ARE.(S,, S,) = ARE. (¢, ¥).

Proor. Under the assumptions given above we have
(45)  1im,_ o, Pon{ Soem(XE, Uy, - -+, XE0, U) = 1}

= limn—mo f(l) j=2 Ez‘)(n)(pa )(X(”))da
= fo =2 [hmn—mo Ez‘)(n) (n)(X(n))]da
= /3 j=2[ - o(u, — Wi (p)]da.

For n* we can assume n*(n) = an + o(n), n € N, for some a € R, because other-
wise Ey, WX ™)) either tend to a for j = 2, - - -, k or to 1 and (4.3) cannot
be fulfilled since (p(") satisfies (4.1). Thus we have

(46)  lim, o Poon{ Syimeiap(X", U, - - -, X0, u) =1)
= f(]) Hj;z[l - fD(ua - a%nj%)]da,

and equality of (4.5 and (4.6) holds if and only if a =(§,/ 8¢)2. Thus
A.RE(S,, S = (5,/ 8¢)2 = A.R.E.(p, ¥).

In the “indifference zone”-approach similar results can be obtained: let P* €
(1/k, 1] be fixed, X{, - - - , X as before but let the distributions be restricted

now by
(A7) O =By B > B+ 50,
h, m € N’ {8(M)}MEN fixed’ .] = 2’ R k.

For a sequence of m.s. (dy)-tests @™, n €N, we define for each m €N
N(8%, P*, S,) to be the smallest integer N satisfying

(4.8) infy 59,4 80m; 52 P{qu(N)(Xl(N), U, -, XM, U) = 1} > P*.
If Ey,,@{P(X™) is nondecreasing in 1‘}(”) > 9y, n €N,j > 2, then (4.8) reduces to

(49) S8 Eopasem@(X§) | da > P,

Now if A.R.E(S,, S,lindifference zone) for such tests is defined in the usual
manner as the limit

lim,,_,,, N(8™, P*, S,)/N(8¢™, P*,S,)
subject to the condltlon that both S, and S, meet P* asymptotically, then

8™ = nm~2 + o(m~7) for somen > 0, m € N, 1f the N’s of ¢ and y are of order
m, and therefore we get A.R.E.(S,, S,|indifference zone) = A.R.E.(¢, ).
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ExaMpPLE 5. Let X, = (X,, - -,X,,),i=1,---,k, be independent samples
of size n € N of symmetric distributions in R with cumulative distribution func-
tions F(f)= F(t+ 4),t€R, , €0 CR,i=1,---,k, F being no further

specified. To find the population with the largest location parameter ¢, Ghosh
(1973) proposed a procedure which selects according to the largest Hodges-Leh-
mann estimator 1’5(X,.), derived from a one-sample sigited rank statistic A(X;). This
procedure is equivalent to S, based on the following m.s. (d)-test y:

“10) 4 (x) =1
ya) iff 0‘(x)§cF(a), x R,

=0
with E3 ¥,(X)) = a, a €0, 1].

This because by the location invariance of & procedure S, does not depend on
1#,. But it should be pointed out clearly, that ¢ in fact is a parametric test
depending on F. Now in Hodges and Lehmann (1963) it is shown that the
A.R.E.(Pitman) of two tests based on A, (of the type given above) equals the A.R.E.
(in the sense of reciprocal ratio of asymptotic variances) of the Hodges-Lehmann
estimators 3 derived from A, i = 1, 2. And by the asymptotic normahty of such
estimators the A.R.E.(Pitman) of tests y; and iy, based on 0 respective 1?2
according to (4.10) adopts the same value. (Since to the author’s knowledge this
class (4.10) of parametric location tests is nowhere proposed in literature till now,
this may be an interesting result.) Finally in view of our results given above we
conclude that A.R.E.(S,, S,|indifference zone) adopts this value, too. In Ghosh
(1973) this result can be found beside others.

ExampLE 6. To give an example for the two-sample case, let for n € N, X@"
=Y\, zZy, - -, Y, ZM), i =1, -,k, be independent samples of size n
from bivariate populatlons @, i=1,---,k, the parameter ¢, of interest being a
measure of association (i.e., rank correlation—or product moment correlation
coefficient) between the Y’s and the Z’s in population 7, i = 1,- - - , k.

For 4, = 0 and 8 = [0, 1] the two competing procedures S, based on Kendall’s
tau and S, based on the sample product moment correlation coefficient r in the
normal case have A.R.E.(S,, S,) = (3/7)% since the A.R.E. of the corresponding
tests of independence adopts this value (cf. Lehmann (1975), page 316). In
Govindarajulu and Gore (1971) this result was derived (beside others) by asymp-

‘totic considerations.
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