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OPTIMUM SIGNIFICANCE LEVELS FOR MULTISTAGE
COMPARISON PROCEDURES!

By E. L. LEHMANN AND JULIET POPPER SHAFFER
University of California, Berkeley

The framework for multistage comparison procedures in the present paper
is roughly that introduced by Duncan and treated more fully by Tukey. In the
present paper we consider the problem of finding the optimum allocation of
nominal significance levels for successive stages. The optimum procedure we
obtain when the number s of treatments is odd, and the compromise procedure
we propose for even s, essentially agree with a procedure suggested by Tukey.
The agreement is exact when s is even and close when s is odd. The results of
the present paper apply among others to the problem of distinguishing normal
distributions with known variances, multinomial distributions, Poisson distribu-
tions, and distributions in certain nonparametric settings. However, they do not
apply exactly to the comparison of normal distributions with a common
unknown variance. When the variances are completely unknown, the method
applies in principle but faces the difficulty that no exact test is then available
for testing the homogeneity of a set of means.

1. Introduction. The framework for multistage comparison procedures in the
present paper is roughly that introduced by Duncan [1, 2] and treated more fully
by Tukey [9, Part F]. It is also used in the recent paper by Einot and Gabriel [3]
which is concerned with comparing the power of several such procedures corre-
sponding to different allocation of nominal levels. In the present paper we shall
consider the problem of finding an optimum such allocation. Our formulation
differs slightly from that of Einot and Gabriel in the standardization used to insure
comparability of the different procedures. For this purpose, Einot and Gabriel fix
the probability of at least one false significance statement when all the treatments
are equal; instead, we prefer to use the maximum probability of at least one false
significance statement. These coincide in many but not in all cases (for example,
not in the Newman-Keuls allotment). Einot and Gabriel also compare the power of
Studentized range and F-statistics. Such a comparison is outside the scope of the
present paper, which is concerned only with the allocation of nominal significance
levels among the different stages.

The optimum procedure we obtain when the number s of treatments is odd, and
the compromise procedure we propose for even s, essentially agree with a proce-
dure suggested by Tukey. The agreement is exact when s is even and close when s
is odd. Tukey’s purpose, to obtain “constant standard significance level,” although
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having a different motivation, thus turns out to be close to that of maximizing

power.
The results of the present paper apply among others to the problem of dis-

tinguishing normal distributions with known variances, multinomial distributions,
Poisson distributions, and distributions in certain nonparametric settings. However,
they do not apply exactly to the comparison of normal distributions with a
common unknown variance (or to other situations in which estimation of a
common nuisance parameter destroys the independence of test statistics from
nonoverlapping sets of samples). When the variances are completely unknown, the
method applies in principle but faces the difficulty that no exact test is then
available for testing the homogeneity of a set of means. These complications are
discussed in part (i) of Section 7. .

The general formulation of multistage comparison procedures adopted by
Duncan [2], Tukey [9], Einot and Gabriel [3], and in the present paper runs into a
difficulty when the test statistics used are the (Studentized) sample ranges. The
resulting procedure may then not agree with the multiple range procedures as
commonly defined and used, unless some additional conditions are satisfied. This
difficulty is considered in part (iv) of Section 7.

2. Multistage procedures. Consider s independent random quantities X;, i =
1,- - -, s (they may, for example, be vector-valued) with distributions P; ranging
over sets %;. We shall be concerned with the problem of distinguishing among
functions g; defined over ¥, by means of a multistage procedure based on the X;.

A multistage procedure is defined through a series of rejection regions. The first
stage consists of a test of the hypothesis

(21) Iis :gl(Pl) == gs(Ps)
by means of a rejection region R, in the sample space of (X, ---,X,). If
(X, - -, X,) € R, the hypothesis H, is rejected or, as we shall say, the homo-
geneity of the set { g, - - -, g,} is rejected and the procedure goes on to stage 2 in
order to get more detail about the reasons for rejection. If (X, - - -, X,) falls into
the complement R, of R,, we shall employ the traditional terminology of hypothesis
testing and say that H, or the homogeneity of the set (g, - -, g,) is accepted.
This, of course, is not meant to imply that the data have convinced us of the
validity of (2.1) but only that they have not enabled us to reject (2.1). In that case
no further tests will be made.

The second stage consists of tests of the s hypotheses

(22) H_y;:8=""=8.1=8n="""=&

by means of rejection regions R,_,.;. If the (s — 1)-tuple
Xy, -, Xi_, Xy, - -, X)) falls into the complement of R, _,.; homogeneity
of theset {g,- -, &_1 &+1» " * »8&) is accepted and no subset will be tested. If
on the other hand (X, - - -, X;_|, X;,, - - -, X)) falls into R, _ . ;, homogeneity of
the set {g, - ,8_1, &+ " &) is rejected and one proceeds to the third

stage.
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This procedure is continued until nothing is left to be tested. As a shorthand
notation we shall sometimes write H, and R, instead of the more complete
H,, ... and R, , . ... when the additional subscripts are clear from the
context.

As an illustration we give in Figures 1(a) and 1(b) examples of possible outcomes
of such a procedure for the case s = 4 where homogeneity has been accepted for
the underlined sets and rejected for those not underlined.

1234
123 124 134 234
12 13 14 23 24 34
F1G. 1(a)
1234
123 24 134 24
27 4 o3 UM
FiG. 1(b)

Typically, the rejection regions are defined in terms of statistics 7 such as ranges
or xZ2-statistics in the case of normal means, Kruskal-Wallis and Smirnov statistics
in the nonparametric case, etc. These are computed for the variables in question
and provide measures of inhomogeneity. Then R; is the set for which
T,(X,, - -+, X,) > C;; R,_, ., is the set for which
T, Xy, Xi_, Xip1 - -+ X,) > C,_,,;; and 50 on. For the T’s and C’s we
shall frequently delete the subscripts behind the semi-colon as we did for the H’s
and R’s. In the most commonly used procedures, the statistics 7" are obtained from
a single functional (for example, the range) evaluated at the respective empirical
cumulative distribution functions, but this need not be the case and will not be
assumed here.

In the present paper we shall suppose that the statistics T,, T,_,, - - - are given
and we shall be concerned with the best choice of the critical values
C,C,_,, - - - . After some preparation in the next sections, a solution of this
problem will be obtained in Section 4.

It follows from the definition of stagewise procedures given above that they have
the following properties.

(i) Rejection of homogeneity for any set of g’s implies rejection of homogeneity
for all sets containing it.
(i) Acceptance of homogeneity for any set of g’s implies acceptance of homo-
geneity for any set contained in it.
(i) Homogeneity of the set {g,---,g} can be rejected only when
X, -+, X, falls into Ry.

i

A procedure satisfying properties (i) and (ii) has been termed coherent by
Gabriel.
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3. Separability. We require another property of multistage procedures which is
not implied by the definition. (For the normal location case this essentially reduces
to condition (X) proposed by Tukey in Chapter 30 of [9]).

Suppose the g’s fall into ¢ distinct groups of sizes v,, v, - - - , v, respectively
Cv; = 5), say
(3.1) g, = =88 .= =8

. ’
Cl+02

where (ij, iy, - - -, i) is a permutation of (1,---,s). We shall say that the
configuration (3.1) is separable by a given multistage procedure if there exists a
sequence of distributions (P{™, - - -, P™) with P € &P, and satisfying (3.1)
such that any hypothesis

(3'2) gjl = = gj’

with subscripts from at least two of the ¢ distinct subsets of (3.1) is rejected with

probability tending to 1 as m — 0. If every configuration (3.1) is separable by a
given multistage procedure, we call the procedure separating.

ExamPLE 1. Let X; = (X}, - - -, X,,) with the X, ; independently normally dis-
tributed with mean 4, and known common variance o°. Let g(P,) = 6, and let X,
denote the mean of the ith sample. If each of the statistics T}, T,_,, - - - is for
example the range of the X,’s in question, or the sum of the squared deviations of
the X,’s from their mean, the procedure is clearly separating since such a T tends in
probability to infinity if the difference between at least two of the involved 8’s
tends to infinity.

ExamPLE 2. Let X; = (X;;,- - -, X,,) with the X, independently distributed
according to unknown continuous distributions F;. Let g,(P,) = F, and suppose that
for testing the equality of, say, r of the F,, the associated rn variables X; ; are ranked
and the test is based on the Kruskal-Wallis statistic. For testing H: F, = - - - =
F,, this is given by

SR?—3(rn + 1),

1

12n m+ 1)\? 12
33) K=—"2" _ ) -
(33) ra(rn + 1) 2 m?(rn + 1)

where R, is the rank-sum of the ith sample in the ranking of the rn variables, and
R.=R;/n.

We shall now show that for any given critical values C,, - - -, C, this procedure
is separating for sufficiently large n, provided there exist distributions F? € %, (the
class of F’s corresponding to %;) such that

(34) P[X, <Xgz]=1  whenever i<},

where the X, and X), are distributed according to F?and Fjo respectively. It will be
an obvious consequence that the conclusion continues to hold if there exist
sequences F™ € ¥, for which (3.4) holds in the limit. In particular it therefore
holds for any location family given by F,(x) = F(x — 6,) with unrestricted 8’s.

E(R, -
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To prove this result consider a set of g’s containing at least one element each
from two of the subsets defined by (3.1). Suppose the lowest (according to the
ordering (3.4)) and next lowest subsets from which the set contains elements are the
ith and the jth, respectively, and that the set consists of a elements from the ith, b
from the jth and ¢ from the other (larger) subsets. Then we shall have a samples
which are smaller than all other observations, ¢ which are larger than all other
observations, and b in the middle.

The ranks are: in the bottom group 1,- - -, an; in the middle group an +
l,---,(a+ b)n; in the top group (a + b)n +1,- - -, (a + b + c)n. Since the
sum of the ranks in each of the three groups is fixed, 3 R? is minimized when the a
rank-sums in the bottom group are equal; the b in the middle group are equal; and
the ¢ in the top group are equal. An easy calculation shows that the resulting
minimum value of K is

(35) Ko(a,b,c)=3n*(a+b)a+c)b+c)/(a+b+c)[(a+b+c)n+1],

so that

(3.6) K > Ky(a, b,c)’

for all samples that are possible under the given configuration. Since K has a
limiting x2-distribution with @ + b + ¢ — 1 degrees of freedom under H as n — oo,
it follows that K exceeds the given critical value with probability 1 for sufficiently
large n.

To complete the proof, we must show that it is possible to choose n large enough
so that K(a, b, ¢) exceeds the critical value for all choices of a, b and ¢ that
correspond to possible subsets of the given configuration which contain at least two
distinct elements. Since the number of such choices is finite, the proof is complete.

ExaMpLE 3. In the situation of the preceding example, suppose that the test
statistic for testing (3.2) instead of K is Kiefer’s generalization [5] of the Smirnov
statistic

(37) K’ = nsup, I[F*(x) — F*(x)]’ = nsup, [EF(x) — rF*(x)]
where F* denotes the empirical cdf of the ith sample and where F* = 3/_,F*/r is
the empirical cdf of all rn observations.

Again the problem is to find a lower bound for K’ in the case that a samples fall
below and ¢ samples above all other observations, with the remaining b forming a
middle group. Let z be a point such that
P(X, <z)=P(X >z)=1 foral i=1,---,a

j=a+1l,---,a+b+ec

Then F*(z) = 1 and F¥(z) =Oforalli <aanda <j <a+ b+ c and F¥(z) =
a/(a + b + c). It follows that

(3.8) K’ > K{(a, b,c) = na(b + ¢)/ (a + b + ¢).



32 E. L. LEHMANN AND JULIET POPPER SHAFFER

Since K’ has a nondegenerate limit distribution, it follows as in Example 3 that K’
is separating for sufficiently large n, provided there exist distributions F? € %,
satisfying (3.4), or sequences F(™ € %, for which (3.4) holds in the limit.

The separating property of the procedure based on K’ holds also for (sequences
of) distributions other than those defined by (3.4). An obvious example is provided
by symmetric distributions, symmetric about a common point g, with different
scales.

ExaMpPLE 4. Let (X, ---,X,), i=1,---,s be s independent multinomial
vectors with distributions
(39
n! . d
P(Xyy = X0+ Xig = x;9) = mpi)f” © o Pidt (Z4oipia = 1)
The problem is that of distinguishing the vectors p; = (p;;, * * * , Pi)-

Consider first the binomial case d = 2. It is clear that two binomial distributions
can be distinguished with probability 1 if and only if one of the two binomial p’s is
zero and the other is one. It follows that when d = 2, s > 3, no procedure can be
separating.

It might appear at first sight that the arc sin transformation provides an
asymptotic way out, since it approximately transforms the binomial distributions
into normal distributions with known variance and hence into the situation of
Example 1. Notice, however, that Example 1 requires the normal means to tend to
— 00 or +o00; this corresponds to letting the p’s tend to 0 and 1, which is just
where the approximation breaks down.

An extension of the above argument shows that no procedure can be separating
in the more general multinomial situation (3.9) when s > 4. On the other hand, any
reasonable procedure will be found to be separating when s < d by letting p; = 1
fori=1,---,dand p,, = 0 otherwise.

ExAMPLE 5. Let X, be s independent Poisson variables with parameters E(X))
= A, and consider the problem of distinguishing among the A’s. Suppose the
procedure is based on exact tests of the hypotheses

N=cc =N
which are carried out conditionally given
A’il+... +Xi,=w'

To prove separability of a configuration of s A’s, let the distinct values A" tend
to infinity in such a way that the ratios A" /A all tend to limits 1. Consider
now testing the homogeneity of any subset of the given configuration which
contains at least two distinct values. As m — oo, the sum w’ of the associated

Poisson variables tends to co in probability. The conditional distribution of these
X’s given w’ is a multinomial distribution corresponding to w’ trials and with
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probabilities of which at least two tend to different limits. Then any standard test
of homogeneity will reject with probability tending to 1 as w’ — oo and this proves
that such a procedure is separating.

4. Significance levels. The choice of the critical values C, is typically made in
terms of the probability of rejecting homogeneity for the subset {g;, - -, 8.}
when in fact

4.1) g =" =&,:
The value of this probability depends also on the remaining g’s or P’s since an

earlier hypothesis may be accepted thereby depriving the hypothesis (4.1) of the
chance of being tested. A quantity of interest in this connection is

(42) o =Py oo [y, X,) € Re],

where R, may of course also depend on i, - - * , i, but where we shall assume that
the probability on the right hand side is the same for all (P;,- - -, P;) satisfying
4.1).

It follows from property (iii) of Section 2 that

(4.3) P[ rejecting homogeneity of { g, - -, g)] <a

for all (g, - - ,g) satisfying (4.1). Consider now the configuration (3.1) with
v, = kand v, = v; = - - - = 1, and suppose this configuration is separable by the
given procedure. Then there exists a sequence of distributions P, - - -, PM)
satisfying (4.1) and for which the left hand side of (4.3) will tend to a. It follows
that

(4.4) sup P rejecting homogeneity of { g, - -, 8,}] = &

where the sup is taken over all (P,, - - - , P,) satisfying (4.1). The relation (4.4) thus
holds in particular whenever the given procedure is separating. For the normal case
this result was already noted by Tukey in Chapter 30 of [6]. The levels o, are called
apparent significance levels by Tukey [9], k-mean significance levels by Duncan [2],
and nominal levels by Einot and Gabriel [3].

An aspect of a multiple comparison procedure which is of great interest is the
maximum probability of rejecting the homogeneity of at least one set of g’s which
are in fact equal, say

(4.5) ao = Sup a(Pl, oty PS)
where for a given s-tuple (P, - -+, Py)
(4.6) a(Py, - - -, P,) = P[atleast one false rejection |

and where the sup in (4.5) is taken over all possible distributions P; € P..

The relation of a, to the significance levels ay, - - -, @, can be seen from the
following result which underlies all that follows, and which for the normal case was
first stated informally by Tukey in Chapter 30 of [9].
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THEOREM 1. If the configuration of (g, * - , g,) is given by (3.1) and is separ-
able by the given procedure,
(4'7) sup a(Pl, ) Ps) =1- l—-[);=1(1 - av,)
where a, = 0 and where the supremum is taken over all s-tuples (g, - - - , &) which
satisfy (3.1).

The proof of this theorem is essentially the same as that given for Theorem 1 in
[7] and will therefore be omitted here. It follows from (4.7) that

(4.8) ag = sup,, ... o[ 1= I y(1 - a,)]

holds for all configurations provided the given procedure is separating. It may be
of interest to note that separability of the configuration is not only sufficient for
Theorem 1 but also necessary.

The remarkable feature of these results is the fact that the suprema in question
are independent of the statistics 7" defining the procedure, and depend only on the
values a,, - * + , a,. Our primary concern in this paper is the choice of these a’s.

In analogy with standard practice in hypothesis testing, we shall impose a bound
on one of the rejection probabilities, namely «,, thereby insuring comparability of
different procedures. We shall thus fix a value, say a and restrict attention to
procedures satisfying

(4.9) ay < ag.
Subject to this condition, we should like to maximize the “power” of the procedure,
that is, the probability of detecting existing inhomogeneities. Since we are assuming
the statistics T to be given and only the critical values C to be at our disposal, it is
clear that power is maximized by maximizing the a’s.

From (4.8) we see that the problem is that of maximizing a,, - - - , @, subject to

(410) T'_(1-a,)>1-afforallo,- - -, satisfying Z;_,0; = s.

Let us begin with a,. If the left hand side of (4.10) is to involve a,, we must have

t = 1, v, = s and the only restriction on a, is a; < ag, so that we shall maximize a,

by putting

(4.11) a, = ag.

Analogously, we see that we can also put

(4.12) a_, = af

without imposing any additional restrictions on a,, * -+ - , a,_,. This shows that for

s = 3, there exists a uniformly best choice of the a’s, namely a, = a; = af.
Consider next the case s = 4. The possible configurations are ¢t =1, v, = 4;
=2, {v, v} ={1,3}or {2,2};t=3,{v, 0,03} ={1, 1,2} and t = 4,0, = v,

= vy, = v, =1 and it is seen that a uniformly best choice of the o’s is given by

1
as=a,=af,,=1-(1 — af)>.
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This happy state of affairs however does not extend to higher values of s. For
s =5, for example, it is no longer possible simultaneously to maximize a, and aj.
The maximum value of a; is a but this requires a, = 0; alternatively the maxi-
mum value of a, is 1 — (1 — a(’,")% in which case a; cannot exceed 1 — (1 — ag‘)%.

When a uniformly best choice of the a’s does not exist, it is convenient to
introduce the following definition.

DEFINITION. A set (a,, - - -, «) for which «, satisfies (4.9) will be called
inadmissible if there exists another set (a}, - - - , a;) for which «; also satisfies (4.9)
and such that

413) o <qf for all i, with strict inequality

for at least some i.
This use of the term is analogous to that which is customary in the theory of
hypothesis testing.

THEOREM 2. Any admissible procedure which is separating satisfies
(4.14) a<ay; < <a,

PrOOF. If (4.14) does not hold, there exists k such that e, , < a,. For any such
k, consider the procedure in which a’; = o, for i #k + 1 and o;,, = a,. Then
clearly ay > ao. To show that a; < &g, we need only show that II}_;,(1 — a;) > 1

— a*,for all (v, - - -, 0,).

If none of the v’s is equal to k + 1, a, =a, foralli=1,-- -, and the result
holds. Otherwise, replace each v that is equal to ¥ + 1 by two v’s: one equal to k
and one equal to 1, and denote the resulting set by vj, - - -, v/. Then II;_ (1 — a;)

=1II_,(1 - a,) > 1 — af, and this completes the proof.

Having fixed ay = o, = a,_, at af, how should we choose the remaining a’s? In
order to have a reasonable chance of detecting existing inhomogeneities irrespec-
tive of their pattern we should like to have none of the a’s too small. In fact, at the
end of the section we shall propose a set of a-values which for s < 21 will keep «

less than .1 without letting any of a,, - - -, a, fall below .01. These considerations
suggest a minimax approach: namely subject to a, < af to maximize
min(ay, - * -, a). In view of Theorem 2, this is achieved by maximizing a,.

THEOREM 3. The maximum value of a, for a multistage procedure which is
separating and satisfies (4.9) is given by
(4.15) a=1-(1—a)/?"
where [A] as usual denotes the largest integer < A.

Proor. Instead of fixing « at af and maximizing a,, it is more convenient to

invert the problem and fix a, at, say, a and minimize a, The theorem will be
proved by showing that the resulting minimum value of aj is

(4.16) at=1-(1-a)*2
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Suppose first that s is even. Since «a, is fixed at a, it then follows from the fact
that the procedure has been assumed to be separating that the right hand side of
(4.7) can be made arbitrarily close to ag. This is seen by using the separability of
the configuration v, = -+ + + = v, 5 = 2.

When s is odd, we put an additional v equal to 1 and use separability of the
resulting configuration.

In either case it follows that

(4.17) SUPD,,---,D,[I -1 (1 - aq)] =supa(P,---,P,) > af.

To complete the proof, we must exhibit values of a,, - - - , a, for which the left
hand side of (4.17) equals af. To this end consider the procedure defined by
(4.18) == =a.

The right hand side of (4.7) then becomes 1 — (1 — )" where
(4.19) t' = number of v's > 1.

This quantity takes on its maximum value for ' = [s/2] and this completes the
proof.

Theorems 2 and 3 provide some guidance for the choice of the levels a,, - « - , a,
and a. If a, is fixed at a conventional level a independent of s, then as s increases,
so does a, (and hence a,_, and «,) to values which soon become intolerably high.
Conversely, if aj is fixed at a conventional level independent of s, the level a, soon
becomes so small that there is virtually no chance of detecting moderate differences
between pairs when they exist. It turns out however that for s < 21, one can let a,
vary from .01 to .05 while at the same time keeping a, between .05 and .10. The
remaining «’s, by Theorem 2, will then also lie between these limits.

While 10% is larger than is conventionally recommended for a single significance
test, it must be remembered that a is the maximum probability of at least one false
significance statement when many comparisons are being made. We believe that in
these circumstances such a higher level often can be tolerated, and therefore
propose the sets of levels of a, and a; shown in Table 1.

Having decided on «, and a,, how should one choose the remaining o’s? We
shall show in the next section that when s is odd there is a uniformly best choice

TABLE 1
a, = .05 a, = .03 a, = .02
s 2 3 4 5 6 7 8 9 10 11
a .05 .05 059 059 | 059 059 .078 078 096  .096

a; = .01

s 12 13 14 15 16 17 18 19 20 21
ay 059 059 068 .068 077 077 .086 .086 096 .096
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for a3, - - -, a,. The result is not quite as clear-cut when s is even. However, we
shall see that even in that case, admissibility determines rather narrow limits within
which a,, - - -, a, must lie.

S. Most powerful test when s is odd. We shall now prove the result indicated at
the end of the preceding section: that if s is odd and &, and &, have been fixed at «
and ag (given by (4.16)) respectively it is possible to maximize all the remaining a’s
simultaneously. Subject to the two restrictions, the resulting choice thus provides a
uniformly most powerful set of a’s.

To simplify the notation, instead of the probability a(P,, - - - , P,) of at least one
error, let us work with its complement
(5.1) y(Py, - - -, P)) = P(no error). _
If we then put
(52) n=1-gq
so that in particular
(53) n=v=1-a
it follows from (4.10) and (4.16) that
(5.9) My, > Yi/3 = y6=0/2,

THEOREM 4. Subject to (5.3) and (5.4), the minimum value of v; (i =3,- - - , 5)
is, for any odd s,

(5.5) Yi* = .Y[i/2],
and this value can be attained simultaneously for all i.

Proor. (i) Consider any procedure satisfying (5.3) and (5.4). First let i be odd
and consider the configuration in which v, = i and all the remaining v’s are equal
to 2. Then by (5.4)

Yy 5 yD/2
and hence
(5.6) Y >t

A completely- analogous argument shows that (5.6) also holds when i is even.
(ii) Consider now the procedure defined by

(5.7) Y =

This clearly satisfies (5.3) and it only remains to check that it also satisfies (5.4).
Since

Hti=le = 721-.[0,/2],
we only need to show that

([0/2] < (s = /2
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Now

v; when v, iseven

[v/2] =3
=1(v,— 1) when o, isodd
so that 3[v,/2] = (s — b)/2, where b is the number of odd v’s (including ones).
Since s is odd, b > 1 and this completes the proof.

The levels defined by (5.7) are close to the levels
(5.8) v=v"%, 1<i<s-—1

= y*/2, i=s—1,5s

proposed by Tukey in Chapter 31 of [9]; see also Ryan [8]. These levels are
admissible but, of course, do not satisfy (4.15). Other widely discussed sets of levels
have been proposed: y, = y'~! by Duncan, and y; = y by Newman and Keuls.
(See Einot and Gabriel [3] for references.) Neither of these sets is admissible

according to our definition. (Actually, the procedures of these authors are for
unknown o while our discussion assumes o to be known. See Section 6.)

6. Choice of aj, - - -, a,_; when s is even. When s is odd, there exists a
uniformly best choice of y;, - - -, v,_, satisfying
(6.1) Ty, > 7%/

where y, = v. The following theorem shows that this is not the case when s is even.
THEOREM 5. Let s be even and let the y’s satisfy (5.3) and (6.1).
(i) The values of s, + * , Y,_, are bounded below by

(6.2) v, > y'/? when i = even and when i = odd and 3 <i <s/2
>y*D/2  ywheni=odd and s/2<i<s-—1
(i) For any given i, there exists a set of y’s for which v, attains the lower bound
(6.2).
(iii) If s > 6, the lower bounds (6.2) cannot be attained simultaneously for all i.
Proor. (i) follows directly from (6.1) with the following values of the v’s:

i = even: v, = i, the other v’s = 2;
i = odd, 1<i<s/2; v, = v, = i, the otherv’s =2;
i = odd, s/2<i<s—1: v, =1, v, =i, theotherov’s=2.

(i) For the cases with y, = y*/2, this is seen by putting y, = y’/? for all , since
then
s/2

_y, = y25-o =y

which verifies (6.1).
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For the cases with y; = y*1/2, it is seen by putting

y, = y@+0/2
¥ = yU=D/2  forallodd j#i
y, = ¥//? for all even .

To verify (6.1) one need only note that at most one y can be equal to y¢*+Y/2 and
that the subscript of at least one other y must be odd.
(i) If s > 6,1 =2, v, =3, v, =5 — 3, then v, is odd and >s/2, and we have

H’i= IYq < ‘YS/z

if the vy, are set equal to their lower limits for all /, so that (6.1) is not satisfied.

It is seen from the proof of (iii) that one cannot lower any of the y, with i = odd
and 5/2 <i <s — 1 below y"/2 without increasing at least one of the y’s with
i =o0dd and <s/2 by the same (or a larger) factor above its minimum level.
Under these circumstances, a reasonable compromise seems to be to put

(6.3) Y, =y*=v"7? forall 1<i<s—1

=y  for i=s—1,s.

This rule, which was proposed by Tukey [9], is clearly admissible. As in the case of
odd s, the sets of levels proposed by Duncan and by Newman and Keuls are not
admissible.

The values (6.3) do not constitute the only admissible set of y’s, and the question
arises as to how far an admissible set can deviate from the compromise solution
(6.3). A partial answer is obtained by supplementing the lower bounds (6.2) by a
corresponding set of upper bounds for all admissible sets of y’s. Together, the two

sets of bounds can be summarized in the following theorem.

THEOREM 6. Let s be even and let the ¥’s satisfy (5.3) and (6.1). Then any
admissible set of y’s satisfies, for i =3, - - ,s

6.9 Y; = v¥ when i = even and >% -4

or i = odd and =—2{ r=s5—1

65 v*<vy < y,»*y"% =y},  when i=evenand < —4

or i = odd and <%

[T

and
(66) Y%, =YY<y, <y* when i= oddand % <i<s—1.

Before turning to the proof of this result, let us consider its implicatiqns. The
bounds show that an admissible y, can differ from y* by at most y/2 — y@+1/2 or
yU=1D/2 — yi/2 For i > 3, the largest possible value of |y, — v*| = |o; — o*| is thus
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y(1 — y?) which for all 0 <y <1 is <1(1 — y) =3a. For the values of «
proposed in Section 3 an admissible y; can therefore differ from y* by at most .01
for s = 8 and 10, and by at most .005 for any even s between 12 and 20.

The other point worth noting is that Theorem 2 is a consequence of Theorem 4
(for s = odd) and Theorem 6 (for s = even). In the former case this is obvious; in
the latter it follows from the fact that if the lower and upper bounds for v, are
denoted by v; and ¥;, then

Yier SV SV S Yiere

SKETCH OF PROOF OF THEOREM 6. To establish the upper bounds ¥; stated in
Theorem 6, a single method of proof suffices for all cases. Consider any set
(Y3 "5 ¥ * *,Y,) With y; > ¥, and satisfying (6.1); then the set in which v, is
replaced by ¥; also satisfies (6.1) and hence proves the first set inadmissible. We
shall not carry out this check but should perhaps explain the somewhat surprising
quantity (s/2) — 4 which appears in (6.4) and (6.5) when i is even. This stems from
the fact that if y; > y* for an even i, it follows from Theorem 5 that admissibility
requires a compensating odd j with y; < y*. Since the v’s must add up to s which is
even, at least one other v must be odd. If the only other odd v is equal to 1, the left
hand side of (6.1) is > y*/2 even when v, = y*. It thus requires an odd factor with
v > 3 to justify letting v, > v*. Hence i + j + 3 < s where j > s/2. Thus y; > v*
is possible only if i < s — _2s_ -3 =% —3,0ri < 5~ 4 as was to be proved.

7. Applications and further extensions.

(1) The normal case. The results of the preceding sections apply to the normal
location problem with known variances 2. Let us now consider the more im-
portant situation in which the variances are unknown.

(a) Suppose first that the unknown variances are assumed to be equal (or have
known ratios). If the usual procedure for estimating the unknown o is followed,
the relations between the a’s obtained in the preceding sections will no longer hold

exactly. In particular, if we define as, - - - , o, as before in terms of a = a,, the
quantity af given by (4.16) will continue to be a sharp upper bound for .
However, given the same value of a, = a,_; we can now raise a,, ..., a,_,

without raising a§ = «,. This follows from the fact that the s Studentized sample
means will now be positively dependent instead of independent as were the means
without Studentization (see [7]). The dependence, and hence the permissible in-
crease in ay, * - - , a,_, is, however, likely to be so small when o? is estimated with
at least moderate degrees of freedom, as to be of no practical importance. The
conclusions may therefore be expected to hold to a close approximation unless the
number of degrees of freedom is quite small.

(b) If a common variance is not assumed (as it often should not be), the
situation is somewhat different. No exact test of homogeneity is then available;
however a test proposed by Welch [10] seems to provide a highly satisfactory
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approximate test. (See Kohr and Games [6] for a comparison with several other
tests.) The values of a,, « + -, a, defined in Sections 4, 5 and 6 are then no longer
exact and in fact depend slightly on the true values of the variance ratios. However
if none of the sample sizes is too small, the approximation can be expected to be
close and to that degree the results of the paper continue to apply.

(c) Another problem of interest in the normal case with unknown variances is
the comparison of the variances instead of the means. The results of the paper
apply to this problem with any of the standard tests of homogeneity of variances.

(ii) Lowering a,. We saw earlier that subject to (4.10) the maximum value of a;
is given by (4.11) and that setting a, at that value puts no new restrictions on the
remaining «’s. However, some practitioners attach special importance to «,, the
probability of falsely rejecting the overall null hypothesis g, = --- = g, and
would prefer a smaller value for this probability. What are the consequences of
lowering a, from the value a; of Table 1 to a lower value such as .05 or even .01?
Theorem 1 shows that such a lowering, with values of a,, - - -, a,_; remaining
unchanged, will not affect any of the maximum probabilities (4.7), except when
g, = -+ = g, although it will lower the probabilities for all actual configurations
(3.1). The resulting procedure will of course no longer be admissible according to
our definition of this concept. In spite of this, one may wish to impose the
additional requirement that the probability of falsely rejecting the overall null
hypothesis not exceed the new lower value assigned to a,. In this case, if the
original procedure is admissible under the requirements (5.3) and (6.1), the proce-
dure obtained by lowering a, to this new value will clearly be admissible among the
procedures satisfying (5.3), (6.1) and the additional bound on «.

(iii) Deleting stages, Fisher’s LSD test. The following method, not covered by the
multistage procedures described in Section 2, although it is concerned with the
comparison of a set of normal means, is often referred to as Fisher’s least
significant difference test. It consists of first carrying out an F-test say, at level a,
of the hypothesis H;: g, = - - - = g; if H, is accepted, the procedure stops and
homogeneity of the set { g,, - - - , g} is accepted; in case of rejection, all (;3 pairs
{8, g} are compared at level a by means of ¢-tests. (If o? is known, the F- and
t-tests are replaced by the corresponding x? and normal tests.)

Let us now consider the more general set-up of Section 2 but restrict ourselves to
the following two stages. First, the overall test of H, is performed at level, say, a’. If
H; is accepted, the procedure stops and homogeniety of the full set { g, - - - , g} is
accepted. In case of rejection, all pairs are tested by means of the rejection regions
R,, each at level a. The probability of at least one false rejection is then given by
the formula

(7.1)  sup P[at least one false rejection |

4

=a if s1=""" =8
=1-I_(1 - a,) if(3.1)holdswith 7> 1,
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where the sup extends over all (g, ..., g ) satisfying the condition indicated on
the right hand side of (7.1) and where «, is given by

(72) o, = P[(X,, X;) € R, for at least one pair 1 <i <j <k].
Consider a fixed value of

(7.3) ay = max[a’; 1 - (1 — a),all configurations].

The most powerful choices of a and a’ are then clearly given by

(7.4) o = ap

and

(7.5) max[l - Io,(1 - av‘)] = a,

where the maximum is taken with respect to all configurations (v;, - - - , v,) with
oo =sandt> 1.

(iv) A subset option. The generalization (iii), required to cover the least signifi-
cant difference and related procedures, consisted in allowing the deletion of some
of the stages in the multistage procedure of Section 2.

The most commonly used multistage comparison procedures, the multiple range
tests as customarily described (discussed for example in [7]), also do not fall within
the framework of our analysis but for a different reason. To cover procedures of
this kind, let us consider a multistage procedure with the following added subset
option. When homogeneity of a set {P;,- -, P,} is rejected we permit the
additional conclusion that a subset of these P’s, selected on the basis of the data
from a specified family of subsets, is also rejected. If such a subset is rejected, all
parameter sets containing this subset are also rejected and will not be tested any
more. Actually, in what follows we shall apply this option only to the case that the
subsets are pairs. The procedures we shall discuss are somewhat less powerful than
those of Sections 5 and 6; however, they have the advantage that whenever
homogeneity of a set is rejected, at least one pair in this set will also be declared to
be inhomogeneous.

Let us assume that X; = (X;;, - - - , X,,) and that the rejection regions R, of
Section 2 are defined in terms of statistics 7, T,_,, - - - and critical values
C,, C,_,, - - - as described there but that now the 7’s and C’s depend only on the
size of the subset being tested, so that they do not require any additional subscripts.

If the procedure has not already stopped at an earlier stage, homogeneity of a
pair (X;, X)) is then rejected whenever

(7.6) Ty(X,, X)) > C,.

We shall restrict attention to procedures in which the remaining 7’s are defined by
(7.7 T(Xy, - -+, X)) = max[ Th(X, X)); 1 <i <j <k],

and then adopt the following rule: whenever homogeneity of a set {g;, - - - , g, } is

rejected because T,.(X;, - - - , X, ) is too large, then homogeneity of the pair of g’s



OPTIMUM MULTISTAGE SIGNIFICANCE LEVELS 43

corresponding to the two X’s for which T5(X;, X ) is maximum, is also rejected.
A well-known example of a procedure of this kind in the normal case is that
based on the range: that is, in which

(78) TZ( i _1) = lX Xl

where X;. and X, denote the means of the ith and jth sample.
Another 111ustrat10n is provided if in the notation of the Smirnov example
(Example 3) of Section 4 we take

(7.9) Ty(X;, X;) = sup,|F¥(x) — F(x)l.

As a third example, suppose that for each i and j the 2n observations constituting
the ith and jth samples are ranked from 1 to 2n and that R, and R; denote the
average rank of the ith and jth sample in this ranking. Then we could take

(7.10) Ty(X;, X;) = |R. —R.|.

Consider finally the multinomial example of Section 3 with n, = n for all i. Here
we can take, for instance for T,(X;, X)) the usual x 2_statistic for comparing two
multinomial distributions. If » is sufficiently.large, C, can be obtained approxi-
mately from the x2-distribution with d — 1 degrees of freedom and the resulting
procedure satisfies the assumptions made above.

With this type of procedure, properties (i) and (ii) of Section 2 continue to hold;
however, property (iii) need no longer be valid, since it may now happen that
homogenelty of aset {g,- - -,g,) is rejected at an early stage in spite of the fact
that (X;, - - - , X, ) falls into Rk As shown in the case of multiple range tests in [7],
Theorem 1 need then no longer be true, and the analysis of the preceding sections
is no longer applicable.

Whether or not (iii), and hence Theorem 1, holds in the present situation
typically will depend on the critical values C. However, a sufficient condition for
them to hold is

(7.11) C,< - <C,

Under mild additional assumptions which are satisfied in all our examples, (7.11) is
also necessary. These statements follow from the argument given for the case of
range-based procedures in [7].

The values of the C’s of course depend on the a’s, and unfortunately it turns out
that for the a’s given by (5.3), (5.7) and (6.3) the C’s will not always satisfy (7.11).
There is then no guarantee that a, will have the prescribed value . To avoid this
difficulty we can proceed as follows. We can replace C; by

(7 12) C.’ = max(cz’ [N )
so that the resulting C/ will satisfy (7.11). We shall now consider the properties of

this approach. Note that for this discussion, we need not concern ourselves with the
subset option. We are only concerned with the relationships of the & and o
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defined by (7.12) and

(7.13)
o = P[T (X}, - - -, Xp) > G, a = P[T(Xy, - - -, Xp) > C¢]

where the probabilities are computed assuming g, = - - - = g,.

We shall begin by proving the following lemma.

LEMMA. Ifay,, - - -, o are any levels satisfying a, = a, oy < oy, for all k and if
a is equal to af given by (4.16), then the o, and oy, satisfy the following relationships:
(7.14) ay=a, o<a for k=3,---,s
and
(7.15) ay<aj< - <a <oy =,

ProoFr. The relations (7.14) follow from the facts that C; = C, and C; > C; for
k > 2. To prove (7.15) note that C/,; = max(C[, C,, )
If G < Cpyywehave ap = g, > o > o as desired. If C,,; < C;, we have

Gr1 = P[Tei(Xy, -+, Xiy) 2 G > P[T(Xy, - - -, Xp) > C/é] = o
and this shows that aj < aj,, for all k =2,---,s. That a < af is obvious.
Finally, it follows from (7.14) that aj < a, and hence from the proof of Theorem 3
that ag = ay.

Since the levels a;, satisfy the requirements
(7.16) a=o;, <o <ay=af

for all k, the procedure defined by the C/ is a possible procedure satisfying the
conditions imposed earlier. Is it admissible within the class satisfying the additional
restrictions (7.11)?

We shall now show that this is the case when s is odd. The proof breaks down
for even s, and we shall deal with this case in a more pragmatic manner.

THEOREM 7. Let s be odd. Then the procedure I1' obtained by applying (7.12) to
the procedure defined by (5.7) is admissible, and is in fact the unique admissible
procedure among all those satisfying (7.16) and (7.11).

Proor. Suppose that IT" is not the unique admissible procedure. Then we shall
show that there exists a procedure I1” with levels a” satisfying (7.16) and (7.11) and
such that

(7.17) ay > oy for some k.

This contradicts the consequence of Theorem 4 that there exists a unique admissi-
ble procedure satisfying (7.16), and hence proves that the a’-procedure is admissi-
ble.

To prove the existence of the required «/, note that if IT' is not the unique
admissible procedure “satisfying (7.11) and (7.16), there exists a procedure I1”
satisfying these conditions and such that a; < a for some k. If a = a,, then
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a, < ay as was to be proved. If a; < ay, then by (7.12) there exists j < k such that
G, = (. Since Gy < C; we have by (7.11)

C' <G/ <G =¢
and hence o/

' > a;, as was to be proved.

The above argument makes essential use of the uniqueness of the admissible
solution in the case that s is odd and no longer applies when s is even and > 8. As
an example of what may occur when s is even, we will consider the normal location
problem with known variance o2. Easy calculations (using Harter’s tables [4]) show
that for the even values s = 8, 10, - - -, 20, reversals of the C’s occur only in the
cases s =8, C¥ < C¢ and s = 12, C}, < C}, and possibly in the cases s = 10,
(C§, C¥); s = 14, (CE, CL) and s = 16, (C}s, C}y). In these latter three cases, the
C*s are equal to the two decimal places recorded in the tables. In each of these
cases (7.12) would require increasing C,_, to the value of C¥ ,, and no other
C-value could be decreased to compensate for this increase without violating (6.1).
Therefore, in this normal location problem, the C’-procedures are admissible, at
least for all s < 21.
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