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OPTIMAL DESIGNS FOR THE ELIMINATION OF MULTI-WAY
HETEROGENEITY

By CHING-SHUI CHENG
University of California, Berkeley

The purpose of this paper is to study optimal designs for the elimination of
multi-way heterogeneity. The C-matrix for the n-way heterogeneity setting
when n > 2 is derived. It turns out to be a natural extension of the known
formulas in the lower dimensional case. It is shown that under some regularity,
the search for optimal designs can be reduced to that in a lower-way setting.
Youden hyperrectangles are defined as higher dimensional generalizations of
balanced block designs and generalized Youden designs. When all the sides are
equal, they are called Youden hypercubes. It is shown that a Youden hyperrect-
angle is E-optimal and a Youden hypercube is A- and D-optimal. The latter is
quite interesting since it is not always true in two-way settings.

1. Introduction. The optimality of symmetric designs for the elimination of
heterogeneity has been substantially studied by Kiefer (1958, 1959, 1971, 1975) for
the one-way and two-way settings. In this series of important papers, he made clear
the role played by symmetry and developed some powerful methods for proving
optimality. Using his methods, we continue the investigation in the multi-way
situation.

In an n-way heterogeneity setting, we are given v varieties and an n-dimensional
hyperrectangle of size b, X b, X - - - X b,, where b, is the number of levels of the
ith factor. There are b,b, . .. b, cells in this hyperrectangle. We can coordinatize
them by the n-tuples of integers (i), iy, * - -, i,) with 1 < i; < b;. The usual additive
model (no interactions) specifies the expectation of an observation on variety i in
the cell (ji, - - - ,J,) to be a; + 4, B,®), where ; and B,* are the effects of
variety i and the j, th level of factor k, respectively. Also, we assume that all the
observations are uncorrelated with common variance. The usual restriction to one
observation per cell is unnecessary. Instead, suppose there are ¢ observations taken
in each cell, then a design is an allocation of the v variety labels 1, 2, - - - , v into
these cells with ¢ varieties (not necessarily all different) in each cell. We denote
such a setting by E(v; by, - - -, b,; t). If there exists a subset S of {1,2,- - -, n}
such that o|(Il,.,b)t, Vi € S, then we say that E(v; by, - - -, b,; #) is regular
relative to the factors in S. A setting is called completely regular if it is regular
relative to {1,2,- - -, n}.

For a specified design 4, let N, be the incidence matrix between the v varieties
and the b, levels of the ith factor, that is, the (s, u)th element of N, is the total
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number of times that variety s appears in the cells with u as the ith coordinate.

Also, let diag(a,,- - -,a,) be the diagonal matrix with diagonal elements
a,- -, a, and J; , be the k; X k, matrix with all entries equal to 1. We will
also write J;, = J, ,. Then for a design d, the coefficient matrix of the normal
equation for estimating (ay, - - =, a3 B, < - -, B5 - - - B, - -, BY s
(diag(l‘dl, Tty rdu) Ndl Ndz .......... Ndn
Ni (Hj;élbj)tlb, (Hj;/-l,2bj)t‘,b,, b, (Hj;el,nbj)t-]b,, b,
(11) | Na (Hj;&l,ij)tJbz‘b, ,
N‘;n (Hj?l:l, nlfi)t']b,,, bl ....... oo e (Hj;&nl?,)tlb"

where r,; is the number of replications of variety i.

If we are interested in the variety effects only, then the coefficient matrix of the
reduced normal equation for the variety effects is
(12) Cy = diag(ryy, - - -, 1)

- (Ndl’ ) Ndn)vE_(Ndl’ B Ndn)”
where E is the matrix obtained by deleting the first v rows and v columns of (1.1),
and E~ is a generalized inverse of E, i.e.,, £~ is a matrix such that EE "E = E.

This matrix C; is called the C-matrix or the information matrix of the design d. A
y-optimal design d* is one which minimizes a functional ¢ of C, over all possible
designs. The well-known A-, D- and E-criteria are defined in the same way as in
Kiefer (1975).

In his 1958 paper Kiefer generalized balanced incomplete block designs (BIBD)
and Youden squares to balanced block designs (BBD) and generalized Youden
designs (GYD), and proved that in the one-way heterogeneity setting, any BBD is
A-, D- and E-optimal over all block designs with the same parameter values. Later,
in Kiefer (1975), a striking result on the universal optimality of BBD’s was
established. In the same paper, it was also proved that in the 2-way heterogeneity
setting, a GYD is 4- and E-optimal, and except for the case v = 4, it is D-optimal.

We say that a design d is balanced in direction i, or, balanced relative to factor i
(I < i < n), if d reduces to a BBD when we consider the union of all the cells with
the same ith coordinate as a block. Then a natural higher dimensional generaliza-
tion of BBD and GYD is a design d* which is balanced in each of the » directions.
We call such a design a Youden hyperrectangle (YHR). If all b’s are equal, it is
called a Youden hypercube (YHC). We denote a Youden hyperrectangle in
E(v; by, - - -, b,; 1) by YHR (05 by, - -, b,; ). When b, =--- = b, =b, the
corresponding Youden hypercube is abbreviated as YHC (v; b"; 1).

The purpose of the present research is to extend the optimality of BBD’s and
GYD’s to Youden hyperrectangles. In order to investigate optimality, we have to
compute the C-matrix explicitly. This is done in Section 2. It turns out to be a
natural extension of the known formulas for n = 1 and 2. In Section 3 we begin
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with regular settings because they are easier to deal with. In Section 4, the
E-optimality of general (not necessarily regular) Youden hyperrectangles is estab-
lished. We consider A- and D-criteria in Section 5, where we are able to prove the
D- and A4-optimality of any Youden hypercube for n > 3. It is interesting to note
that Kiefer (1975) has proved that any YHC (4; b%; 1) is not D-optimal. This
peculiarity thus occurs only for n = 2.

Much of the material in this paper refers to Kiefer (1975). The reader is expected
to have a copy of that paper in hand while reading the current paper.

The construction of Youden hyperrectangles is treated in Cheng (1977).

2. Computation of the C-matrix. The derivation of the C-matrix involves
taking generalized inverses of some matrices with zero row and column sums.
Choosing appropriate generalized inverses can significantly simplify the computa-
tion. In the present case, we will use the generalized inverse which also has zero
row and column sums. The reason for this choice will become clear as we carry out
the computation.

Let m = II}_b;, then the matrix E defined in Section 1 can be written as:

bfllb. (ble)_lJb,,bz to (blbn)_l‘,b,,b,,
T L S A C
(b16,) ™y, 5, . . b,

We have the following

LEMMA 2.1.  For any positive integer b and any real number r + 0, r(I, — b~'J,)
and r~'(I, — b~1,) are generalized inverses of each other.

Proor. Follows from inspection or from the idempotence of I, — b~",. []

Thus, r~'(I, — b~",) is the generalized inverse of r(I, — b~ 'J,) with zero row
and column sums.

LEMMA 2.2. For any positive integers by, - - - , b, and t,
(22) ~ (mn)" diag(bydy, byly, = Tyt 0 budy = J,)
is a generalized inverse of the E matrix of (2.1).

Proor. This can be proved by induction. The case n = 1 is clear. Now, suppose
it is true for n — 1 with n > 1. Partition (2.1) as [ ’;, IB)]’ where D is b, X b,
then we have
B D —Q B'A” o~
where Q = D — B’A ™ B; e.g., see Searle (1971), page 27.

[A B}_=[A'+A‘BQ_B’A‘ —A‘BQ‘]
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By the induction hypothesis, (mr)~' diag(b,ly, byly, — Jp,* =+ » byl —
Jy,_ ) is a generalized inverse of 4.

Each of the matrices b,/, — J, has zero row and column sums, therefore
Jb,,, b,,(thb,, - th) = 0, Vh. It fOllOWS that

Q = mb; ', — mt(blbn)_l']b,,,bl[(mt)_lbllbl]mt(blbn)_l‘]b,,b,,
"zﬁ;lzmt(bhbn)_lJb",b,,[(mt)_l(thb,, - Jb,,)]mt(bhbn)_l‘,b,,, 5,
= mib; [ 1, — b, Y, .
Hence by Lemma 2.1, we can choose Q ~ to be (mt)“[b,,lb" — J,, ], which has

zero row and column sums. Then since each row of B has constant components, we
have BQ = = 0. Therefore

(2.3) A BQ B'A~=-A"BQ  =—-Q B'A™ =0.

& 31 &)
which is (2.2). ]

From Lemma 2.2 and (1.2), we immediately get the following.

Consequently,

THEOREM 2.1. For a design d in E(v; by, - * - , b,; 1),
C, = diag(rgy, - - -, ra) = (m1)"'b,N, N},
- (mt)_122=2thdh(lb,, - bh_IJb,,)Néh
= diag(ryp, -+ * » ") — (mt)_lz';!=lthd7!Nt;h

-1
+ (n - 1)(mt) [l‘dirdj]va,
where [r;74],x, is the v X v matrix whose (i, j)th entry is ryry;, and m = II;_b;.

Note that this is consistent with the well-known forms of C, when n =1 or 2.

Before we end this section, we would also like to write down the whole reduced
normal equation which is indispensable to the analysis of the design, although from
an optimum design theoretic point of view, we are only interested in the coefficient
matrix of this equation.

For each i with 1 < i < v, let T; be the sum of all the observations on variety i.
Similarly, for any 4 with 1 < A < n and any j with 1 < j < b, let B,,; be the sum
of all the observations in the II,..,b, cells with j as the hth coordinate. Write
Ty =Ty, - s Tg)s By = (Bapys - - - 5 By, p,)- Then it can be shown that the
reduced normal equation for the variety effects under a design 4 in
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E(v; by, - -+, b5 1) 1s
a
(24) Cy = T, - (mt)_lz';u=lththdh
av
8ald1
+(n=Dm) " - |,
gdrdo

where g, is the sum of all the b,b, . .. b, observations.
Again, this generalizes the known equations for » = 1 and 2. From this equation
it is easy to write down the ANOVA table for a Youden hyperrectangle.

3. Optimal designs in regular settings. Suppose we have a setting

E(v; by, - - -, b,; t) which is regular relative to a set S of n — k factors, say
S={k+1,---,n} with kK <n. If we ignore the n — k factors in S, then the
original setting is reduced to E(v; by, - - -, by; byyy - -+ b,t), 1.e., a k-way hetero-
geneity setting with b,,, - - - b, observations in each cell. A design in
E(v; by, - - -, b,; 1) can be automatically considered as a design in
E(v; by, -+« , b3 byyy -+ - b,t). We use C; to denote the C-matrix of d when the
factors in S are ignored. Then by Theorem 2.1,

(3.1) C,=Cf — (mt)_lz';u=k+lthdh(1b,, - bh—l']b,,)N(;h'

Each of the matrices Ny (1, — b, lJ,,h)N » is nonnegative definite. Therefore, if ¢
is a nonincreasing criterion in the sense that Y(C) < (D) whenever C — D is
nonnegative definite, then Y(C;) < ¢(C,) for any design d in E(v; b, - - - , b,; ?).

Let d* be a design which is balanced relative to the factors in S. Then by the
regularity assumption, N, = mt(vh,)~'J, ,, Vh =k + 1, - -, n. It follows that

(mt) ™' BN o (1, — b T, )Njep = 0, Vh >k,
C, = Cp and certainly (C,) = ¢(Cj). Furthermore, if d* is y-optimal when
considered as a design in E(v; by, -+, by; by - -+ b,t), then for any other

design d in E(v; by, - -+ , by; 1), $(Cp) = $(C2) <Y(CF) <Y(C).
In summary, we have the following

THEOREM 3.1. Let E(v; by, - - - , b,; t) be a setting which is regular relative to
S={k+1,---,n} with k <n. Also, assume d* is a design which is balanced
relative to the factors in S, and is Y-optimal with respect to a nonincreasing criterion
when considered as a design in E(v; by, -+, by; by - - - byt). Then d* is also
y-optimal in E(v; by, - - -, b,; ).
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The proof of Theorem 3.1 gives a neat argument showing that under regularity
the search for optimal designs can be reduced to that in a lower-way setting. Note
that A-, E- and D-criteria are nonincreasing. From a decision theoretic point of
view, we are only interested in nonincreasing criteria. (See Kiefer (1958)).

By the definition of Youden hyperrectangles and Theorem 2.1, the C-matrix of a
Youden hyperrectangle is completely symmetric, i.e., all the diagonal elements are
equal, and all the off-diagonal elements are equal. Combining Proposition 1 of
Kiefer (1975), the fact that a BBD is trace maximal, and our Theorem 3.1, we get

COROLLARY 3.1.1. If E(v; by,- - - ,b,; 1) is regular relative to n — 1 factors,
then any Youden hyperrectangle YHR(v; by, - - - , b,; t) is universally optimal, i.e., it
minimizes all functions ® : B, , — (— o0, + 0] satisfying

(a) @ is convex,
(b) @(bC) is nonincreasing in the scalar b > 0,
(¢) @ is invariant under each permutation of rows and (the same on) columns,

where B, o is the set of all v X v nonnegative definite matrices with zero row and
column sums.

This includes Kiefer’s (1975) result on the universal optimality of regular
generalized Youden designs as a special case.
An immediate application of Corollary 3.1.1 is the following

COROLLARY 3.1.2. If there exists a YHR(v; by, - - -, b,;.t) and v is a prime
number, then it is universally optimal.

Kishen (1949) defined a v-sided m-fold Latin hypercube of the rth order with
r < m, which is exactly a YHR in the completely regular setting

E(v’;v,‘ SR 1).
m

Accordingly, by Corollary 3.1.1, any Latin hypercube is universally optimal.
By Fisher’s inequality on balanced incomplete block designs, it is easily seen that

if there exists a YHR(v, by, - -+, b,; 1) and b, < v for some i, then v|(I[,.;5,)¢ and
hence E(v; by, - - -, b,; 1) is regular relative to the single factor i. In particular, if
b, = b, = - - - = b, then it is completely regular. Therefore, we have

COROLLARY 3.1.3. If there exists a YHC(v; b"; t) and b < v, then it is univer-
sally optimal.

Similarly,

COROLLARY 3.1.4. If there exists a design d* which is balanced in direction n and
b, < v, then for any nonincreasing criterion Y, d* is Y-optimal in E(v; by, - -+, b,; 1)
if it is y-optimal in E(v; b, - - - , b,_; b,t).

And
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COROLLARY 3.1.5. Assume E(v; by, - - -, b,; t) is regular relative to
(2,3, - -, n}. If there exists a design d* which is balanced relative to {2, - - - , n}
and is an MB GD PBBD of type | in the setting E(v; by; b, - - - b,t), then it is
optimal w.r.t. any generalized criterion of type 1 over all possible designs in
E(v; by, - - - t). If such a design exists, then any design which is optimal in
E(v; by, - - -, b,; t) wa.t. any particular type 1 criterion (not a generalized one)
should also be of this sort.

7,,9

There is an obvious type 2 analogue of Corollary 3.1.5. For the notions of type i
criteria and MB GD PBBD of type i, see Cheng (1978).
For example, the following design is optimal w.r.t. any generalized type 1
criterion in £4; 2, 4; 1):
1 2 3 4
3 4 2 1°

4, E-optlmallty of Youden hyperrectangles. Let 4d* be a YHR

(v; by, - - -, b,; 1). Then the C-matrix of d* is completely symmetric. As in page
340 of Kiefer (1975), we define

4.1) c(r) = maxgy.,, =, C4-

Then

(4.2) g(r) « mtc(r) = mtr — S"_ bh(r, b)) + (n — 1)r?,

where

(4.3) h(r, k) = min s, = ,}Z’fn,-z

=[r— kint(r/k)][1 + im(r/k)]z
+[k—-r+k in’((r/k)][im("/k)]2
= —k[int(r/k) > + (2r = K)[int(r/k)] + r.

In the above expression, int(r/ k) is the largest integer < r/k.
By the last expression of (4.3), we have h(r + 1, k) — h(r, k) = 1 + 2 int(r/ k).
Hence

(4.4) A(r) g(r +1)—g(r)=mt+(n—1)2r+1)
=351b[1 + 2int(r/b)].

Then by the same argument as in Section 3.2 of Kiefer (1975), a sufficient
condition for the E-optimality of a YHR(v; by, - - -, b,; ?) is that A(r) > O for
r < 7, where 7 = v~ 'mt.

By Corollary 3.14, if b, <v for some i, then d4* is E-optimal in
E(v; by, - - -, b,; t) if it is E-optimal in the corresponding (n — 1)-way heterogene-
ity setting with factor i ignored. Therefore, in our E-optimality proof, we may
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assume b, > vVi. Also, by Corollary 3.1.2, it suffices to consider the case v > 4.
Then from (4.4),
Ary>mt+(n—1)Q2r+1)—-37_\b, —
=mt—23_b,—2r+ (n—1).
If r <7, then r <7 — 1, and hence
A(r) >mt —Zi_b, =2mt/o+2+ (n—1)
> m/2 -3 b+n+ 1.

The last inequality is true because v > 4 and ¢ > 1.
Since b; > 4 Vi, we can write b; as 4 + ¢ with ¢ > 0. Then

m = 1II7_,b,

i=1
=1"_(4+¢)>4"+4"'3"_¢
So
A(r) >2- 41"+ 242 - 1) —4n+n+1

> 2(4""' - 3n/2)
>0 for n > 2.
Therefore, we conclude

THEOREM 4.1. If a Youden hyperrectangle in E(v; by, - - - , b,; t) exists, then it is
E-optimal.

5. D- and A-optimality of Youden hypercubes. In this section, we will prove
the D- and A-optimality of Youden hypercubes. Later, the difficulty for general
Youden hyperrectangles will be indicated.

Let d* be a YHC (v; b"; ¢) with n > 3. As before, in our optimality proof, we
may assume b > v, v} b" Y, and v is not a prime.

As in Kiefer (1975), we write [C, D] for an interval of successive integers. Let
N ={k:0<k<bblk),and M ={k€ N :k<b"/2}.1f C,D EN, C
< D, and no integer between C and D is in 9, we call [C, D] an elementary
interval. The elementary interval [C,, D] containing 7 = b" /v is called the basic
interval.

Then all the properties of g listed on page 344 of Kiefer (1975) can be
established, i.e., we have

(i) For each elementary interval [C, D], A(r) is linear in r and increasing for
C <r<D,ie,gisa convex quadratic on each elementary interval.
(if) g is increasing in each elementary interval [C, D] with D < D,
(iii) g is symmetric about b" /2.
@iv) If C,, C, € 9 with C, < C,, then A(C,) > A(C,) and A(C, — 1) > A(C,
- 1).

(v) g is nondecreasing on 9N and nonincreasing on the remainder of 9.
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Therefore, by the argument on page 345 of Kiefer (1975) and especially (3.17) on
that page, a YHC (v; b"; ¢t) is D-optimal if

(5.1) log g(r +1) — log g(r) is nonincreasing for Cy < r < D,,
ie., if
(5.2) gi(r)—g(r—Dg(r+1)>0 for C,<r <D,

Substituting g(r — 1) = g(r) — A(r — 1) and g(r + 1) = g(r) + A(r), this be-
comes
(5.3) Co<r<Dy=0<A(r)A(r — 1) + g(n[A(r = 1) — A(r)].

Let Ty(r) = A(NDA(r — 1) + g(H[A(r — 1) — A(r)]. Also, let B = C,/b, which is
int(r/b) when C, < r < D,. Then from (4.2) and (4.3), we can write g(r) = (n —
1)r? + Br + a on the interval [Cy, D, — 1] with

(5.49) a = nCZ + aC,,
and '
(5.5) B=m—0—2nC,

where # = b"t, and 6 = nb.
Since v|b"t and v}b" ', there is a prime number p such that p”|v. Conse-
quently, we have

(5.6) v>22">2n+2

The last inequality is true because n > 3.
On the interval [C, + 1, Dy — 1], we have

(5.7) To(r) = 2(n — 1)’ + 2(n — 1)Br — 2a(n — 1)
+B2—(n- 1>~

Consider the right side of (5.7) as a differentiable function of real r, then

(5.8) %I‘O(r) = 2n— 1)[2n — 1)r + B]
=2(n - 1)g'(r)
>0 for r with Cy<r<Dy—1, by ().
Therefore, a sufficient condition for (5.3) is
(5.9 To(Cy+ 1) > 0.
From (5.7) we get
(510)  Ty(Co+ 1) =Q2n+2)C3+[~4n+4+ 40— (2n + 2)7]C,

+(n=1+7-o0)
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Let
O(x)=Q2n+2)x*+[~4n+4+40 - 2n+r]x+(n— 1+ 7 — o).

With this notation, showing that Q(C,) > 0 establishes (5.9), and hence (5.3). We
do this by seeing that C, < 7/(2n + 2), that Q is decreasing on (— o0, 7/(2n + 2))
and that Q(7/(2n + 2)) > 0.

The first two facts follow easily from C, < 7, (5.6), and the linearity of Q’. For
the third,
(2n+2)0(7/(2n +2)) = 7" +[—4n+ 4 + 40 — (2n + Q7|7

+(n—1+7-0>Q2n+2)

=m’+4n(n—1—-o)r + (n—1—0)’(2n +2)
>a[7+4n(n—1-0)]

>b"+4n(n—1- o)

" — 4n%

n—1 _4n2

2n+2)""" - 4n?,

which is > 0 whenever n > 3.
This proves (5.9). Therefore we have

b
b

VvV V V

THEOREM 5.1. If n > 3, and there exists a YHC(v; b"; ), then it is D-optimal
and hence A-optimal.

This is a little bit surprising at the first look. Kiefer (1975) proved that any
YHC(4; b% 1) is not D-optimal. Why is n = 2 special? The crucial point is (5.6).
Our optimality proof strongly depends on the condition that v > 2n + 2. This is
not satisfied by v =4 and n = 2, but for n > 3, it is always true if there is a
nonregular YHC(v; b"; ¢).

The proof of Theorem 5.1 is similar to that of the D-optimality of generalized
Youden designs for v > 6 in Kiefer (1973).

For the general Youden hyperrectangles, if we imitate the above proof by
defining 9N = {k : 0 < k < mt, b;|k for some i}, then A(r) is not always nonde-
creasing on 9, and the proof breaks down. Finding new tools for the general
setting seems very difficult.

The setting considered in Kiefer (1975) was E(v; b,, b,; 1). One can also define
generalized Youden designs in the more general setting E(v; by, by; £). Then
Kiefer’s argument gives us the following

THEOREM 5.2. If there exists a GYD(v; by, by; 1), then it is A-optimal, and except
Jfor v = 4, it is D-optimal.

Therefore, by Theorem 3.1, we have
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THEOREM 5.3. If E(v; by, by, - - -, b,; 1) is regular relative to n — 2 factors, then
a YHR(v; by, - - -, b,; ) is A-optimal, and except for v = 4, it is D-optimal.

And finally,

THEOREM 5.4. If E(v; by, by, - - -, b,; 1) is regular relative to {k + 1, - -, n},
k>3,and by=by,="- -+ = b, then a YHR(v; by, - - - , b,; t) is A- and D-opti-
mal.
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