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OPTIMALITY OF CERTAIN ASYMMETRICAL EXPERIMENTAL
DESIGNS

By CHING-SHUI CHENG
University of California, Berkeley

The problem of finding an optimal design for the elimination of one-way
heterogeneity when a balanced block design does not exist is studied. A general
result on the optimality of certain asymmetrical designs is proved and applied
to the block design setting. It follows that if there is a group divisible partially
balanced block design (GD PBBD) with 2 groups and A, = A, + 1, then it is
optimal w.r.t. a very general class of criteria including all the commonly used
ones. On the other hand, if there is a GD PBBD with 2 groupsand A} = A, + 1,
then it is optimal w.r.t. another class of criteria. Uniqueness of optimal designs
and some other miscellaneous results are also obtained.

1. Introduction. In the usual one-way heterogeneity setting, for specified posi-
tive integers b (number of blocks), v (number of varieties), and k (block size), a
design is a k X b array of the variety labels 1,2, - - -, v, with blocks as columns.
The usual additive model specifies the expectation of an observation on variety i in
block j to be a; + f; (variety effect + block effect), and assumes that the kb
observations are uncorrelated with common variance . Then for a design d, the
vector of the kb observation expectations can be written in. the following form:

(L1) X0 =[x x9 1 3)

where a is the v-vector of variety effects, and 8 is the b-vector of block effects. This
is the setup of the linear model.

Usually, for a specified design d, we denote the number of replications of variety
i by ry, and the variety-block incidence matrix by N; = (ny;), s Where ny; is the
number of appearances of variety i in block j.

If we are interested in the estimation of linear combinations of variety effects
only, then it is well known that the coefficient matrix of the reduced normal
equation for variety effects is:

(1.2) C, = diag(ry,  * * , rg) — kK~ 'N,NJ,

where diag(r,,, - + + , rg) is the diagonal matrix with diagonal elements
a1 * * T4 We denote the (i,/)th entry of N,N; by A,. Then ¢y = r;6; —
k~'A,;, where 8, is the Kronecker symbol.

This matrix C,, called the C-matrix of the design d, is symmetric, nonnegative
definite, and has zero row sums. Therefore, the only possible estimable linear
combinations of the variety effects are the contrasts (i.e., the linear combinations
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Sv_,qa; with 2%_,¢; = 0). If we want to estimate all variety contrasts, then we are
led to consider connected designs only, i.e., those for which rank (C,) = v — L.
The theory of optimal experimental designs is concerned with the problem of
selecting a design which minimizes some functional ¢ of C, over all possible
designs. ¢ is called an optimality criterion.
The commonly used criteria are:

(1) D-optimality: ¢(C,) = 1152 pz' (or, equivalently, y*(C,) = —

2‘;;11 IOg H‘di)?
(2) A-optimality: Y(C,) = Z32 g
(3) E-optimality: Y(C,) = max,c;,_1 s > Where pgy, -+ -, iy ,_; are the ei-

genvalues of C, excluding one multiplicity of zero.

For a discussion of the statistical meanings of these criteria, see Kiefer (1958,
1959).

In Kiefer (1974), the following family of criteria was also introduced:

(4)  ®,-criterion: Y(Cy) = == /pgP 0 < p < oo.

Kiefer (1958) generalized the notion of balanced incomplete block designs
(BIBD) to balanced block designs (BBD), and proved that for fixed k, b, and v, if a
BBD exists, then it is D-, A-, and E-optimal over all block designs with the same
parameters. Later, in Kiefer (1975), a striking result on universal optimality of
BBD’s was established.

Balanced block designs exist only for some restricted class of parameter values v,
b, and k. When k < v, and a BIBD does not exist, Bose and Nair (1939) suggested
the use of partially balanced incomplete block designs (PBIBD) which we now
generalize to partially balanced block designs (PBBD) as follows:

Given v symbols 1,2, - - - , v, a relation satisfying the following conditions is
said to be an association scheme with m classes:

1. Any two symbols are either Ist, 2nd, . . . or mth associates. The relation of
association is symmetric, that is, if the symbol a is an sth associate of the symbol 8,
then B is also an sth associate of a.

2. Each symbol a has n, sth associates. The number 7, is independent of a.

3. If any two symbols a and S are sth associates, then the number of symbols
that are rth associates of a and uth associates of 3 is independent of the pair of sth
associates « and B (i.e., it depends only on s, ¢, and u).

If we are given an association scheme with m classes (m > 1) for the v varieties,
then a PBBD is a design such that:

1. o}k, and each variety occurs in each block int(k/v) or int(k/v) + 1 times,
where int(x) = the largest integer < x.

2. All the r,’s are equal.

3. If varieties i and j are sth associates, then the quantity A, depends only on s.
We denote it by A,.

4. There are at least two distinct A_’s.
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Note that when k < v, this is a little bit different from the conventional
definition, in that we have found it convenient to exclude BBD’s from PBBD’s.

A PBBD with 2 associate classes is called group divisible (GD) if the varieties can
be divided into several groups, each containing the same number of varieties, such
that two varieties are first associates if and only if they are in the same group.

If d is a group divisible PBBD with 2 groups and A, = A, + 1, then d is called a
most-balanced group divisible PBBD (MB GD PBBD) of type 1; and if A| = A, +
1 > 1, then d is called a most-balanced group divisible PBBD of type 2. (Again, we
use PBIBD if £k < v.)

Takeuchi (1961, 1963) was the first one to investigate the optimality of group
divisible PBBD’s. By a delicate computation, he showed that if a BIBD does not
exist, but there is an MB GD PBIBD of type 1, then it is E-optimal. (Actually, he
proved more. The same result holds for any GD PBIBD with A, = A, + 1.) Later,
Conniffe and Stone (1974, 1975) proved that in the same situation, any MB GD
PBIBD of type 1 is A-optimal over those designs in which each variety has the
same number of replications and appears in each block at most once. Conniffe and
Stone’s result seems weaker in the sense that they did not prove optimality over all
designs, but it is their method that allows us.to explore further.

Later, we shall remove the restriction in Conniffe and Stone’s paper mentioned
above, and prove that the same design actually is optimal with respect to a large
class of optimality criteria that include 4-, E-, D-, all ®,-criteria, 0 <p < oo, and
more. At the same time, we will also investigate the optimality of an MB GD
PBBD of type 2. It turns out that this kind of design is optimal with respect to
another class of optimality criteria. For convenience of later reference, we now
divide the optimality criteria which we shall consider into two classes:

Let ¢y = max,q tr C,, where 9 is the class of designs under consideration.

(a) Optimality criteria of type 1: Y{C,) = 2021 f( pg) where f is a real-valued
function defined on [0, ¢5] such that

(1) f is continuous, strictly convex, and strictly decreasing on [0, ¢g]. We
include here the possibility that f(0) = lim,_4+f(x) = + co.

(2) f is continuously differentiable on (0, ¢5), and f’ is strictly concave on
0, cg), ie., f' <0, f” >0, and f” < 0 on (0, Cg).

(b) Optimality criteria of type 2: Same as (a) except that the strict concavity of
[’ is replaced by strict convexity, i.e., f/ > 0 on (0, Cg).

We also define a generalized optimality criterion of type i (i = 1,2) to be the
pointwise limit of a sequence of type i criteria.

Note that the 4-, D-, and ®,-criteria are of type 1, and the E-criterion is a
generalized criterion of type 1 (being the limit of ®,-criteria, as p — 00). There do
exist functions satisfying the requirements for a type 2 criterion. For example, let
f(x) = ex® — ax over the interval [0, Cq] of interest, where ¢ > 0, a > 0, and ¢,
compared with q, is small.

Actually, we will prove the optimality of a more general class of designs
containing MB GD PBBD’s. John and Mitchell (1977) defined regular graph
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designs (RGD) for the case k < v. Generally (whether or not k < v), a block
design d with parameters b, v, k will be called a regular graph design if

(1) Each variety occurs in each block int(k/v) or int(k/v) + 1 times, and all
ry’s are equal.

A regular graph design d will be called an extreme RGD of type 1 if C, has two
distinct nonzero eigenvalues p > p’, and the multiplicity of u’ equals v — 2. On the
other hand, if the multiplicity of p equals v — 2, then d is called an extreme RGD
of type 2. It is clear that for given parameters, if there is a BBD, then there is no
extreme RGD of either type, and vice versa.

In Section 2, partial generalizations of Kiefer’s (1975) result on the universal
optimality of completely symmetric designs to some special asymmetrical cases are
given. These results are then used in Section 3 to establish the optimality of most of
the extreme RGD’s including MB GD PBBD’s (of both types). In Section 4, we
state Takeuchi’s uniqueness result on E-optimality in a more general form and
prove a dual result. Based on these generalizations, the uniqueness of optimal
designs when an MB GD PBBD exists is established. Section 5 contains some
simple result about the existence and nonexistence of MB GD PBBD’s. Finally, in
Section 6, we briefly discuss the situation where both BBD’s and extreme RGD’s
do not exist. Two possible candidates for optimal designs are compared, and one of
them is seen to be better for v > 4.

In what follows, we always assume v > 2.

2. Some general results. Kiefer (1975) proved a theorem on universal optimal-
ity.
THeEOREM 2.1 (Kiefer). Let B, , consist of the v X v symmetric nonnegative

definite matrices with zero row sums. Suppose a class C = {C, : d € 9} of matrices
in B, , contains a C,u such that

(@) Cu is completely symmetric, i.e., Cy is of the form al, + bJ,, where I is the
v X v identity matrix, and J, is the v X v matrix consisting of 1’s.
(b) tr Cjo = max,cq tr C,.

Then Cu minimizes ®(C,) over d € D for all ® : B, o — (— o0, + 0] satisfying

(i)  is convex,
(i) D(bC) is nonincreasing in the scalar b > 0,
(iii) P is invariant under each permutation of rows and (the same on) columns.

This is an important tool for proving the optimality of symmetric designs. It can
be generalized partially to some special asymmetrical cases as follows:

THEOREM 2.2. Let C = {C,: d € D} be a class of matrices in B, o and v > 2.

(a) Suppose C; € C has two distinct nonzero eigenvalues p. > p/, the multiplicity
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of u being 1, and

(2.1) Cy» maximizes tr C, over d € 9,
(2.2) tr C2 < (tr Cp)*/ (v — 2),
(2.3) Cyo maximizes tr C, —[(v — 1)/ (v — 2)]7 x

[tr C2 — (tr C,)*/ (v — 1)]? overalld € .
Then C,. is optimal w.r.t. all generalized criteria of type 1 over all d € 9.
(b) Suppose C;. € C has two distinct nonzero eigenvalues p > ', the multiplicity
of u being v — 2 and

(2.4) C4» maximizes tr C, over d € )

(2.5)  C, maximizes tr C, — [(v - (v — 2)(tr C?— (tr C)*/ (v — l))]3
overd € 9.
Then C,. is optimal w.r.t. all generalized criteria of type 2 over all d € 0.

The proof of Theorem 2.2 is very lengthy. This is due to some technical
difficulties. For this reason, the whole proof is presented at the back of the paper as
an appendix. To help the readers grasp the idea, we now give a heuristic argument
for the case of type 1 criteria Yy with lim,_,.f(x) = f(0) = c0.

With any positive numbers 4 and B such that 42 > B > A%/(v — 1), we
associate the number P = [B — (v — 1)"'42]%. It is easily seen that A% > B >
A?/(v — 1) is the necessary and sufficient condition for the existence of v — 1
nonnegative numbers p,, - - -, p,_; s.t. 4 =321y and B = 397 2.

Suppose C is a matrix in %, ¢ s.t. tr C = A and tr C> = B. Letp,, - - - , u,_, be
the eigenvalues of C excluding one multiplicity of zero, and p* be the nonzero
eigenvalue of the completely symmetric matrix C* with tr C* = 4. Then P is the
Euclidean distance between (u,, - - -, y,_,) and (p*, - - -, p*).

Let S(4,B) = {(p, - o)) 1 iy > 0, Zp, = A, = p? = B). Firstly, we con-
sider the problem of minimizing Y, over S(4, B) for fixed 4 and B. Since
lim,_4+f(x) = f(0) = oo, the minimum should occur at an interior point of S(A4, B )
and hence the method of Lagrange’s multipliers is applicable. It turns out that all
the stationary points have at most two distinct coordinates. This is a consequence
of the strict concavity of f (Lemma A6 of the appendix). The concavity of f* again
implies that among these stationary points, Y is an increasing function of the
multiplicity of the bigger coordinate (Lemma A3 (iii)). Thus the minimum of Y, on
S(A, B) is attained at a point which has constant coordinates or has two distinct
coordinates such that the bigger one has multiplicity 1.

Solving the equations

(o —2)p, =4
pi+ (v —2)u; =B
By 2 B
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we get

= (4 +[(0 = Do - 2]P)/ (0 - 1)

and

pe=(4 ~[(0 =1/ (0 =2)]P)/ (0 - ).
So if M(A4, B) is the minimum of Y, on S(4, B), then

(26)  M{4, B) = f{(4 +[(v — (0 = D]*P)/ (0 - 1))
+ (0= 2f((4 - [(0 = 1)/ (0 = D]?P)/ (0 - 1)).

It follows from the decreasing monotonicity and convexity of f that MJ(4, B) is
a decreasing function of A for fixed P and an increasing functiqn of P for fixed 4
(Lemma A3 (i),.(ii)). Accordingly, given two pairs (4, B) ahd (4’, B’) such that
2.7) A>A
and

28)  A-[(0=1/(6-2]P >4 ~[(0- 1)/ (v - 2] P,
(@) if P < P’, then obviously M4, B) < M{A', B');

(b) if P>P',then A+ [(v— I)v— 2)]%P >A +[(v— I)(v— 2)]5'P’,and
hence by (2.6), (2.8) and the decreasing monotonicity of f, M{(A,B) <M{(A’', B').

Thus, if 4* is a design satisfying the conditions in part (a) of Theorem 2.2, then
d* is optimal w.r.t. any type 1 criterion y; with lim,_ o+ f(x) = f(0) = + 0.

The difficulty with the proof of Theorem 2.2 is that without the assumption
lim,_o+ f(x) = f(0) = oo, there is no guarantee that the minimum of Y, on S(4, B)
will not occur at a point with some coordinate equal to zero, in which event Y, may
have no minimum over the interior of S(4, B). Thus, with the condition
lim, o+ f(x) = f(0) = o0, the proof is significantly simplified. As a matter of fact,
we even do not need condition (2.2). In summary, we conclude:

THEOREM 2.3. Let C = {C, : d € D} be a class of matrices in B, o, and v > 2.
Suppose C contains a matrix Cz. which maximizes tr C, and tr C,—[(v=1/(v—
2)]% X [tr C} — (tr C*/(v — l)]% over all d € %) st. rank C;=1v — 1. Also,
suppose Cy» has two distinct nonzero eigenvalues p. > ', the multiplicity of u being 1,
then Cu. is optimal with respect to any type 1 criterion Y such that lim,_+ f(x) =
f0) = + oo.

Not only is the proof significantly simplified, but the conditions put on @* here
are also simpler than those in Theorem 2.2. All A-, D-, and ®,-criteria are of the
type considered in Theorem 2.3.

Note that there is no type 2 analogue of Theorem 2.3. Actually, there is no
function f satisfying f* < 0, f” > 0, f” > 0 on (0, ¢) for some ¢ > 0, and with
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lim, 4+ f(x) = + oo. For, supposing such a function f exists, then lim,_ o+ f'(x) =
— 00, and lim,_+ f”(x) < + oo. These two conditions are contradictory to each
other.

From the proof of Theorem 2.2, we can easily see that the following corollary
holds:

COROLLARY 2.2.1.  Under the same hypothesis as Theorem 2.2, if some C; € C is
optimal with respect to a particular criterion (not a generalized one) y;, then C, has
the same eigenvalues with the same multiplicities as Cys.

The following lemma gives a sufficient condition for a matrix in B, , to have
two nonzero eigenvalues with the desired extreme multiplicities.

LEMMA 2.1. Let C € B, o be a matrix of the form

(a - C)In. + o, e, n,
ey (b - d)I,, + d,,

with a —c=b —d+0 and e # 0, where J, , is the n, X n, matrix with all

entries equal to 1. If C is not completely symmetric, then ¢ # e, and C has two distinct
nonzero eigenvalues: a — ¢ with multiplicity v — 2 and (n; — 1)c + (n, — 1)d +
a + b with multiplicity 1. Moreover,

@) Ifc>e thena—c<(n —Dc+(n,—1)d+ a+b.
(b) Ifc<ethena—c>(n—Dc+(ny—1)d+a+b.

ProoOF. If a # (3, then we have
29)  [(a—B)I,+ ]!
={(a=B)[(n=1B+a]} {[(n= 1B+ a]l, — BT,}.

Using the formula det[ ‘é g ] = (det A)det(D — CA~'B) and (2.9), we have

510 q (a — o), +cJ, ey n,
(2.10) et ey o (b — d)I, + dJ,

=(a—c)" " '(b—d)" {(n,— D[(n, — 1)cd + ad]

— mmye? +[(n; — 1)c + a]b}

= 0.
The characteristic polynomial of
(a—c)I, +cJ, e, n,
e, (b—d)I, +d,
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is (@a—A—cm b —X—d)y"(ny — D(n, — Ded + (@ — Nd] — nyn,e* +
[(n, — 1)c + a — A]J(b — A)}. Also, (2.10) implies that the nonzero eigenvalues are
a — ¢, with multiplicity v — 2, and the nonzero solution of A> — A[(n, — 1)c + 4]
—bA —(ny, — 1)dA, ie,a + b+ (n, — 1)c + (n, — 1)d, with multiplicity 1. Thus
(ny=De+(nn,—1)d+a+b—-(a—2c)
=(mp—De+(nmy—d+a+b—(a—c)—(b+ (ny,— 1)d + nje)
= n,c — ne,
which is > 0 if and only if ¢ > e. []

This lemma together with Theorem 2.2 will be used in the next section to
establish the optimality of MB GD PBBD’s.

3. Optimality of extreme RGD. Firstly, we state without proof the following
trivial lemma:

LemMA 3.1.  For given positive integers s and t, the minimum of =5_ ,n? subject to
25_\m; = t, where the n’s are nonnegative integers, is obtained when t — s int(t/s) of
the n;’s are equal to int(t/s) + 1, and the others are equal to int(t/s).

Let d’ be an RGD. Then d’ is (M - S)-optimal in the sense of Eccleston and
Hedayat (1974), i.e., d’ maximizes tr C, over all designs and minimizes tr C} over
the set {d tr C; = tr C,}. For, kC, has integral entries Vd € ), and by Lemma
3L,tr G} =3;¢5 + 2,#1% is minimized by a design &’ such that all the diagonal
elements of C, are equal, and for i # j, the numbers kc,; are as nearly equal as
possible, that is, d’ is an RGD.

Let the two distinct values of A;; for i #; be Aj(d") and Aj(d") with Ay(d") =
Al(d’) + 1. For each variety iy, let n, (d") = #{/j : j # o, and Ay, ; = A}(d")}. Then
n,(d’) is independent of i,. So we may drop the subscript i;. Then we have

THEOREM 3.1. For fixed v, b, k, let d* be an extreme RGD of type 1 such that
either Ai(d*) > 0, or A{(d*) =0 and n(d*) < v/2. Then d* is optimal over all
designs with respect to any generalized criterion of type 1. If an extreme RGD of type
1 described above exists and if d is a design which is optimal with respect to some
particular type 1 criterion {, then d must be an extrome RGD of type 1.

PrOOF. By Theorem 2.2, d* is optimal over %) with respect to all type 1 criteria
if (2.2) and (2.3) hold. We now verify these condit 7ns.

For convenience, we write n, A{ and Aj instead of n(d*), Aj(d*) and Ay(d*),
respectively. Also, for any design d, we write 4, = tr C;» By= tr C? and P; =
[B,— A,%/ (v — 1)]2 Then it is easily seen that c,; = A, /v, Vi, and for i+,

there are vn of the cpuy’s = —[o (o= 1)""4 — k7 '(v—1)"'(v =1~ n)], and
o(v—1—n) of the ¢po;’s = — [07 o-D"MUp—k {o-D) Y o—1-n)+k7']=
—[o N o-1)""4u+ k“(v — 1)~ 'n). In this case, we have

(3.1) o N o—-1D)""dp -k N o=1)""vo—1-n)

=k~ Vint(o (v — 1) 'kd,.).
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By a straightforward computation,

(3.2) Pi=kv—1)""on(v —1— n).
Also, (2.2) is equivalent to

(3.3) A4 > (v = 1)(v — 2)PA.

We have

(34) kdAp/v=n\|+ (v —1=n)A+1)

=(v-D\N+0o—-1-n

If A} > 0, then kA4, /v > v — 1, which clearly implies (3.3). If A{ = 0, then 4, =
k™ 'w(v — 1 — n). In this case, (3.3) is a consequence of the assumption that

v > 2n.
Now, we shall verify (2.3), i.e., for any d € 9,

(3.5) A — Ay > [(0 = 1)/ (0 = 2)]2(Pp — Py).
From (3.2), we have
(3.6) [(0 = 1)/ (0~ 2] Pp =k on(o -1 - n)/ (v —2)]".

Therefore, Ay — A, > k™ '[on(v — 1 — n)/(v — 2)]2= (3.5).
Thus, supposing (3.5) does not hold for some d, we have

(3.7) Age — Ay <k~ 'on(o = 1= n)/ (v — 2)]*.
We may also assume A, > A4,, since d* is (M - S)-optimal = (3.5) is satisfied if
Ay = Ap.
Because kC, has integral entries, 4, = A, — k™ 'a for some positive integer
1
a < [on(v—1-n)/(v — 2)]z. Thus

o o-D""dy=0"o-1)""dp -k o (v - 1)""a
>0 No—1)"4p -k Yo -1)""v—-1-n)
=k~ Vint(o (v — 1)"'kA4,.).
Since A, > A, we conclude that
(3.8) v N (o=1)""dp—k N (o=1)""o—-1-n)
=k~ Vint(v~ (v — 1) 'k4,).
Hence by Lemma 3.1, tr(C?) > tr(C?), where C is a matrix (c;),x, such that
¢, = Ay/v, Y, and for i # j, there are vn + a of the ¢;’s = — [0~ (v — )74, —

kY o—1)""v—1-n)], and o(v — 1 — n) — a of the ¢;’s = —[v" (v = 1)
Ap—k o =D o-1-n+k']=—[o" (- 1)""p+ k(v -1
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Hence
(39) P2>[o(o—1)""4p =k (0= 1) (0= 1= n)](vn+ a)
+[o" (0 = 1) 4p + k(0 = 1) 'n]'[o(o — 1 = n) — a]
+[(Ap — k7 a) /o]0 — (Ap — k7 '0)’/ (0 = 1)
=k 2o-D""onm(v—1-n)+k Xv—-1)""a(v —1-2n)
-k (o — 1) a2
Now, (3.5) is equivalent to

(3.10) k™'a — k™[ on(v - 1—")/(0_2)]%
> ~[(0 -/ (- 2],

ie.,
@) (k7= k™ [on(o — 1 - n)/ (v = 2)]
By (3.9), a sufficient condition for (3.11) is

N|—

) < PXv-1)/ (0 - 2).

312)  (kTa -k '[on(o — 1= n)/ (v = 2)]?)
<k Ho—-2)'on(o—1—n)+ k(v —-2)"
Xa(v—1=2n) — k™% (v - 2)"'a?
or, equivalently,
(3.13) a—2[vn(v—1-n)/(v— 2)]5l
<=2 v-1-2n)-0v (v -2)"a
This is the same as
(3.14) v (v —2) (o — 1 < 2[on(o — 1 = n)/ (v~ 2)]?
+(0=2)""(v—-1-2n).
Now, v~ !(v — 2) (v — 1)* < £ for v > 3. So a sufficient condition for (3.14) is

(315 (D[on(e —1-n)/(0-2)] > — (v = 1-2n)/ (v - 2).

The minimum of the left side of (3.15) is 202 /3, and the maximum of the right
side is (v — 3)/(v — 2). Therefore, (3.15) holds because v > 3 =>2v%/3 > (v —
3)/(v = 2).

Consequently, (3.5) = d* is optimal with respect to any type 1 criterion. In this
situation, if 4 is a design which is optimal with respect to some particular type 1
criterion y;, then by Corollary 2.2.1, C, has the same eigenvalues with the same
multiplicities as C,. This implies that C, is also (M - S)-optimal, and hence must
be an extreme RGD of type 1. []

Similarly, we have
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THEOREM 3.2.  For fixed v, b, k, let d* be an extreme RGD of type 2 such that
n(d*) < v/2; then d* is optimal with respect to any generalized type 2 criterion over
all designs. If an extreme RGD of type 2 described above exists and if d is a design
which is optimal with respect to some particular type 2 criterion Y, then d must be an
extreme RGD of type 2.

Proor. The proof is similar to that of Theorem 3.1. We only indicate the
differences in the details.
We only need to verify (2.5), i.e.,

(316)  trCp—trC,>[(0— I)(o —2)]3(Pp— P), VdED.

Pj is again k% v — 1)"'on(v — 1 — n). Hence Ay — A, > k™ '[(v — 2)
1
(v — 1 = n)on]>= (3.16). So we may again assume 4, = 4, — k~'a, where a is a
1
positive integer such that a < [on(v — 1 — n)(v — 2)]z. Then

v o - 1) (4p — k7la) >0 (0 - 1)_I(Ad. — k™ '[on(v =1 = n)(v - 2)]%)
>0 o-1)""4p—k "o -1 o -1-n)
=k~ Vint(o (v — 1) 'kA4).

The last inequality follows from the assumption n < v/2 because
on(v — 1= n)(v —2) —[o(o—1- n)]2
=o(v—=1-n)(v—-1)Q2n—-0)
<O0=0v(v—1-n)>[on(v — 1 — n)(v - 2)]".

Nl—

Therefore,
(B17) k7 'int(kdo "o — 1)7Y)

=0 o-1)""4p—k "o -1""(v—-1-n).

Hence, (3.9) still holds. Then (3.11) is replaced by
(3.18)  (k™'a = k~'[on(o — 1 = n)(o — 2)]3)° < (v = 1)(v — 2) P2,
and instead of (3.12), we have
(319 (k™= k" [on(o = 1 = n)(o - 2)]F)’
<k n(v —1-n)(v - 2)

+k%a(v — 1 —2n)(v —2) — k™% 'a?(v — 2),
which is equivalent to
(320)  a—2[vn(v—1-n)(o—-2)]>< (v — 1 - 2n)(v — 2) — av" (v — 2).
This is the same as

(321) 207 (v -1Da< 2[on(v — 1 = n)(v — 2)]2l + (v —1-2n)(v —2).
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A sufficient condition for (3.21) is
(3.22) 20" 'on(v — 1 = n)(v - 2)]% > —(v—=2)(v—1-2n).

Now, (3.22) holds for n < (v — 1)/2. If n > (v — 1)/2, then the left side of (3.22)
is a decreasing function of n, and the right side is an increasing function of n.
When n = v/2, both sides equal v — 2. Therefore (3.22) is satisfied for any
n<v/2. [

An important class of extreme RGD’s satisfying the conditions of Theorem 3.1
and Theorem 3.2 are the MB GD PBBD’s. Let d* be an MB GD PBBD of type 1.
If [,»; is the off-diagonal element of C,. at position (i, j), then

(3.23) Ly = —A;/k, if i andj are in the same group
= — (A, + 1)/k if i andj are in differgnt groups.
Therefore, C,. is of the form considered in Lemma 2.1 with ¢ > e. Hence d* is
an extreme RGD of type 1. Similarly, an MB GD PBBD of type 2 is an extreme
RGD of type 2. For an MB GD PBBD of type 1, n(d*) = v/2 — 1 <v/2, and for

an MB GD PBBD of type 2, n(d*) = 0/2 Therefore, by Theorem 3.1 and
Theorem 3.2, we have

COROLLARY 3.1.1.  For fixed v, b, k, if there exists an MB GD PBBD of #ype 1,
then it is optimal over all designs with respect to all generalized criteria of type 1.

COROLLARY 3.2.1. For fixed v, b, k, if there exists an MB GD PBBD of type 2,
then it is optimal over all designs with respect to any generalized criterion of type 2.

REMARK 1. A sufficient condition for (2.3) and (2.5) is (2.1) and that &*
minimizes tr C? — (tr C,)?/(v — 1) over all 4 € . But this is too stringent to be
applied. For example, although an MB GD PBBD is optimal when it exists, it does
not minimize tr C? — (tr C,)*/(v — 1) even over all connected designs. Take any
MB GD PBBD, to which add a BBD with the same block size and the same
number of varieties. Then the resulting design 4* is still an MB GD PBBD (with
different parameters). Now, in the new design d*, if we replace the original design
by one with the same number of blocks each containing only one kind of variety,
then the resulting design d’ is connected, but with tr C2 — (tr C;)?/(v — 1) =0 <
tr C4 — (tr C)?/(v — 1). This is why we need weaker conditions like (2.3) and
2.5).

REMARK 2. When k < v, the condition “either Aj(d*) > 0, or Aj(d*) = 0 and
n(d*) <v/2” in Theorem 3.1 is equivalent to (k — 1)r > v/2 — 1, where r =
bk /v.

REMARK 3. Even in the cases where there is no extreme RGD of type 1, the
result in Theorem 3.1 can still be used to establish a lower bound for y; (y,-optimal
design) for any type I criterion y,, as long as there is an RGD d s.t. Aj(d) > 0, or
A(d) = 0 and n(d) < v/2. This lower bound is sharper than the classical one
based on symmetric designs. This has been applied in Cheng (1977) to study the
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efficiencies of general regular graph designs. Similar comments hold for type 2
criteria.

4. Uniqueness of optimal designs. Takeuchi (1961, 1963) proved that for fixed
parameters b, v, and £, if there are BIBD’s, or GD PBIBD’s with A, = A, + 1, then
they are the only E-optimal designs. If we look at the proof carefully, we conclude
that his result can be stated in a more general form which is not restricted to the
setting of block designs.

That is, we have the following

THEOREM 4.1. Let C = {C,; : d € 9D} be a class of matrices in B, . Suppose 3
positive integer k such that kC has integral entries, VC € C, and 3C,;. € C such
that

(1) Cj maximizes tr C, over d € 9,
(2) kCu is completely symmetric or of the form

(v™'4 + m)I, — mJ, - (m+1)J, e - (m+ 1)J,
- (m+1)J, (v 4+ mi,—ml, --- - (m+ 1)J,
- (m+ 1)J, S (v™'4 + m)I, — mJ,

where m = int(v ™ '(v — 1)7'4), and v = tu for some positive integer t. Eliminate one
multiplicity of zero from the eigenvalues of the matrices in C. Then except for a
simultaneous rearrangement of rows and columns, C . is the unique matrix in C which
maximizes the minimum of the remaining eigenvalues over C.

The proof is essentially the same as in Takeuchi’s paper.

Therefore, Takeuchi’s result on E-optimality is also true for k& > v. That is, for
fixed parameters k, b, and v, if there are BBD’s or GD PBBD’s with A, = A, + 1,
then they are the only E-optimal designs.

We can also prove an interesting dual of Theorem 4.1.

THEOREM 4.2. Let C = {C, : d € D} be a class of matrices in B, ,. Suppose 3
positive integer k such that kC has integral entries VC € C, and 3C, € C such that

(1) Cy. minimizes tr C; over d € 9,
(2) kC,. is completely symmetric or of the form

(' 4+ m+ 1), — (m+1)J, —mlJ, e —md,
-ml, (M4 +m+1)J, - —m,
—(m+1)J, ’
-mJ, (v™'4 + m+ 1)1,
- (m+ 1)J,

where m = int(v ™ (v — 1)7'4), and v = tu for some positive integer t.
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Then except for a simultaneous rearrangement of rows and columns, Cy is the
unique matrix in C which minimizes the maximum eigenvalue over C.

This theorem can be proved by an easy modification of the proof of Theorem
4.1. One can multiply all the matrices in € by —1, and then follow the proof of
Theorem 4.1.

Therefore, for fixed parameters v, b, and k, if there are BBD’s or GD PBBD’s
with A, = A, + 1, then they are the only designs which minimize the maximum
eigenvalue of C, over the set {d :d maximizes tr C; over °}. While (unlike
E-optimality) the minimization of the maximum eigenvalue has no intuitive merit
as an optimality criterion, we will use the above result to obtain the uniqueness of
optimal designs for the meaningful type 2 criteria.

If there is an MB GD PBBD of type 1, say &* and d’ is a design which is
optimal w.r.t. some particular type 1 criterion , then by Corollary 2.2.1, C, has
the same set of eigenvalues as C,.. This implies that d’ is also E-optimal. Then by
Theorem 4.1, d’ must be an MB GD PBBD of type 1.

Similarly, if there is an MB GD PBBD of type 2, say d*, and d’ is a design which
is optimal w.r.t. some particular type 2 criterion y;, then d’ also minimizes the
maximum eigenvalue of C, over the set {d : d maximizes tr C, over % }. Therefore,
by Theorem 4.2, d’ must be an MB GD PBBD of type 2.

We state these results as

THEOREM 4.3.  For fixed v, b, k, if there is an MB GD PBBD of type i (i = 1, 2),
and d' is optimal w.r.t. some particular type i criterion, then d’ must be an MB GD
PBBD of type i.

Note that Theorem 4.3 is also true for BBD’s.

5. Existence and nonexistence of MB GD PBBD. If v <k, and k= v-
int(k /v) + k', then the existence of an MB GD PBIBD with parameters v, b, k" is
equivalent to that of an MB GD PBBD with parameters v, b, k. An MB GD
PBIBD plus several complete block designs adjoined to the incomplete blocks is
easily seen to be an MB GD PBBD, and conversely. Thus, for the construction of
an MB GD PBBD, it suffices to consider the case k < v. It is also clear that for
fixed k, b, v, if there is an MB GD PBBD, then there is no BBD with these
parameters.

An important necessary condition for the existence of an MB GD PBIBD of
type 1 is that (v — 1)7'(k — I)r — v/2(v — 1) should be an integer. One can
derive an analogous condition for type 2 designs.

By Theorem 2 of Shah-Raghavarao-Khatri (1976), and our Theorem 4.3, we have
the following simple result about the nonexistence of BBD and MB GD PBBD:

THEOREM 5.1. Let d* be a BBD or an MB GD PBBD of type 1 with parameters
b, k, v. If the dual design of d* is not a BBD, then there is no BBD with parameters
b =v,0" = b,and k' = r; also, if the dual design of d* is not an MB GD PBBD of
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type 1, then there is no MB GD PBBD of type 1 with parameters b’ = v, v’ = b, and
kK'=r.

PROOF. Let d* be an MB GD PBBD of type 1 with parameters v, b, k. If there
is a BBD with parameters b’ = v, v’ = b, and k’ = r, say d, then by Theorem 2 of
Shah-Raghavarao-Khatri, the dual design of d* is at least as good as & under the
E-criterion. Consequently, the dual design of 4* must be a BBD. The rest can be
proved similarly. []

So, e.g., combining this theorem with Theorem 10.3.1 and Theorem 10.3.2 of
Raghavarao (1971, pages 204-205), we conclude that if there is a BIBD with

parameters v, b, r, k, A = 1, or v =(r ; l), b =(£), k =r —2,\ =2, then there

is no MB GD PBBD of type 1 with parameters v’ = b, b! = v, and k' = r.
Theorem 8.6.3 of Raghavarao (1971, page 139) provides us with a method for

constructing many MB GD PBIBD’s of both types from a resolvable or partly

resolvable BIBD with v = 2k. For convenience of later use, we restate it as

THEOREM 5.2. If a resolvable solution or at least a solution with one complete
replication exists for a BIBD with parameters v*, b*, r*, k*, \*, in which k*|v*, then
there always exists a GD PBIBD with the parameters v = v*, b = tb* + av*/k*,
r=tr*+a, k=k* A\ =0\*+ a, \, = t\*, number of groups = v*/k*, and
number of varieties in each group = k*, where a and t are integers (t > 0,a > —
IA*).

Note that an MB GD PBIBD of type 1 (resp., 2) is obtained by taking v* = 2k*,
and a = — 1 (resp., +1).

For example, let d be the resolvable BIBD (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)
with parameters v* = 4, b* = 6, r* = 3, k* = 2, and A* = 1. Then there exists an
MB GD PBIBD of type 1 with parameters v =4, b =6t -2, r=3t -1, k =2,
A, =1t — 1,\, = ¢, where ¢t > 0; and there exists an MB GD PBIBD of type 2 with
parameters v =4, b =61+ 2, r=3t+ L, k=2, A\, =t + l,and A\, = .

For the method of construction, see the proof of the above theorem in Ragha-
varao’s book.

Because of the appealing optimality property which an MB GD PBBD possesses,
more developments on the construction of such designs would be useful. It is also
desirable, if possible, to investigate the conditions under which an RGD is extreme.
For a PBBD with two associate classes, the corresponding C-matrix has two
distinct nonzero eigenvalues. The question is, when do these two eigenvalues have
extreme multiplicities? Except for group divisible designs, there seems at present to
be no systematic study in this respect. The applicability of Theorem 3.1 and
Theorem 3.2 will be enhanced by significant research along this line.

6. Situation where BBD and extreme RGD do not exist. When both BBD and
extreme RGD of type 1 do not exist, and if we are considering type 1 criteria, then
intuitively there seem to be two most likely candidates for the optimal designs: a



1254 CHING-SHUI CHENG

GD PBBD d with 2 groups and A, = A, + 2, or a connected RGD d* such that Cpe
has two distinct nonzero eigenvalues u > u’, and u has multiplicity 2.

Although we cannot presently prove either of these is optimum, we can compare
the performances of 4 and d* when both of them exist. In order to do this, we need
a property of convex functions.

For any given n-tuples (x,, - - -, x,) and (yy, - - - , y,) of nonnegative numbers,
we say that (x,, - - -, x,) majorizes (yl, oLy if B x =27y, and BE x,
> Sk 1y Yk <n, where x> x5 2+« > x,;, and yy 2y 2> 000 2y
are rearrangements of (x, - - -, x,) and (¥1>* -+ ,y,), respectively. It is well
known (see, e.g., Mirsky (1963)) that the majorization of (y,, - - -,y,) by
(xy, - -+, x,) is equivalent to Z7_, f(x;)) > 2"_, f(y,) for each real continuous
convex functlon f defined on some real interval.

We now compare the two designs d and d*. Flrstly, we look at the E-criterion.

Both of d and 4* maximize tr C, over all possible designs. Let A =
tr C; = tr Cp. Then ¢z, = cpn; = A/v, Vi. Itis easily seen that for i # j, there are
v(v/2 — 1) of the ¢z’s=—[v '(v—=1)""4 — k7 '(v = 1)7'0], and v?/2 of
thecz’s = —[v"'(v = 1)7'4 + k™ '(v — )" (v — 2)]. By a straightforward com-
putation, Pd = k™ %(v — 1)""?*(v — 2). Also, by the computation in Section 3, 3
positive integer n s.t. P2 = k™% v — 1) lon(v — 1 — n).

We claim that
6.1) v > 4= Ry(1; 4, B;) < Ry(2; A, B,.), where R, is defined in Lemma A2;

i.e., d* is E-better than d.

Note that (6.1) is equivalent to

62)  0>4=[(0-2) "0 - 1)]P;>[20 - 3) (0 — )] Py

Now, the left side of the above inequality equals v/k, and the right side equals
k~'[2on(v — 1 — n)(v — 3)"']2, which is less than or equal to k~!(v — D[v/2
(v — 3)J2. So it suffices to show v? > 27 v = 3) (v — 1)%ie, v > 4o + 1. Itis
easily seen that this is true for any v > 5.

Therefore, v > 4 = d* is E-better than d if both of them exist. Since C; has two
distinct nonzero eigenvalues and the smaller has multiplicity v — 2, the nonzero
eigenvalues of C; majorize those of C,. Consequently, for v > 4, d* is also
yy-better than d for any continuous strictly convex function f defined on (0, ¢g).

A similar result holds for type 2 analogues of d and d*. An example of d* is a
GD PBBD with 3 groups and A, = A, + 1 (which exists only for v > 6). By
Takeuchi’s result, this design is E-optimal, but we do not know whether it is
optimal with respect to other generalized criteria of type 1.

John and Mitchell (1977) conjectured that if an RGD exists, then a D-optimal
(or A-optimal, or E-optimal) design should be an RGD. This is the same as saying
that an optimal design should be (M - S)-optimal if an RGD exists. We have seen
in Section 3 that this is true for many extreme RGD’s. Since we are considering
criteria , where f is a strictly decreasing function, seeking for optimal designs
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among those which maximize tr C, seems reasonable. The next step is then to find
a design which is closest to the ideal minimum. Unfortunately, except for designs
with certain structures like complete symmetry or those considered in Section 3, it
is difficult to prove that this can produce designs which are optimal with respect to
any meaningful criterion. But a design which is too far away from the ideal
minimum (with a big value of P,) certainly is bad. Therefore, as suggested by the
comparison of d with @*, Mitchell and John’s conjecture might be true for large v.

For v = 4, their conjecture is false, at least for the E-criterion. They used a
computer to search for the best RGD for many parameter values. If their conjec-
ture is true, then the designs they obtained should be optimal. For v = 4, we can
construct several examples of d which are not RGD’s but have the same per-
formance as the best RGD under the E-criterion.

For example, there is a BIBD with parameters v* =4, b*=18,r*=9,k* =2,

* = 3 (take three replications of (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)). Then by
Theorem 5.2, taking ¢ = | and a = — 2, there is a GD PBIBD d’ with parameters
v=4>b=14,r=7 k=2, A =1, and A, = 3. By Lemma 2.10, the nonzero
eigenvalues of C,. are 4 (multiplicity = 2) and 6 (multiplicity = 1). Looking up the
best RGD with the same parameters listed .in John and Mitchell (1977), we see that
it has the same E-performance as d’. This rules out the uniqueness part of Mitchell
and John’s conjecture. But it is still possible that the best RGD’s are optimal.

The problem of finding optimal designs when both BBD and extreme RGD do
not exist seems very difficult. At least the method we developed for proving the
optimality of extreme RGD’s failed. A GD PBBD with 3 groups and A, = A, + 1
might be a reasonable candidate to study. We hope that research along this line
can be carried out in the future.

APPENDIX

In what follows, a complete proof of Theorem 2.2 is given. We begin with
some terminology and a series of lemmas.

Given any two positive numbers A and B such that 42 > B > A4?/(v — 1), we
define the number P as before. Such a pair (4, B) is called regular if 39_{ p, = 4,
StZip? = B,and i, > 0, Vi= p, # 0, Vi; otherwise, (4, B) is called singular.

In Lemmas Al through A9, we always assume 42 > B > A%/(v — 1).

LEMMA Al. If (A, B) is singular, then B > A%*/(v — 2). Or, equivalently, A*/
(v — 1)< B<A?/(v — 2)=(A, B) is regular.

LemMMA A2. For any fixed positive number n, 1 < n < v — 2, the solution of
nR, + (v —1—n)Ry=A,nR} + (v — 1 — n)R} = B, and R, > R, is given by

R/(n; A, B) = (A +[n (o -D(0~-1~ n)]%P)/ (v —1),

Ry(n; 4, B) = (A —[(v=1-=n)""n(v - l)]%P)/ (v=1).
For fixed A and B, both of R, and R, are strictly decreasing functions of n.
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The easy proofs of Lemma Al and Lemma A2 are omitted.
For convenience, we define F(n; A, B) to be nf(R,(n; A, B)) + (v — 1 —n)
f(Ry(n; 4, B)).

LEMMA A3. Assume A** > B* > A*?/(v — 1), f' <0, and f” > 0 on (0, A).
Let n* be a number in [1, v — 2] such that Ry(n*; A*, B*) > 0. Then:

(i) For fixed n € [1, n*], F(n; A*, B) is a strictly increasing function of B (and
the corresponding P) on [A**/(v — 1), B*].

(i) For fixed n € [1, n*], F(n; A, B*) is a strictly decreasing function of A on
[A*, A**], provided A** < [(v — 1)B*]2 and f' < 0 on (0, A**).

(iiiy Furthermore, if f' is strictly concave on (0, A*), then F(n; A*, B*) is a
strictly increasing function of n on [1, n*].

(iv) If f' is strictly convex on (0, A*), then F(n; A*, B*) is a strictly decreasing
function of n on [1, n*].

PrOOF. We only give the proof of (iii). (iv) can be similarly proved, and (i) and
(ii) are trivial.
We have

dF(n; A*, B*)/0n
=j((A* +[n—l(v ~Do-1- n)]ilp*)/ (v — 1))
_f((A* —[(D -1- n)_‘n(v - 1)]%1)*)/ (v — l))

—(P*/2)[n Mo~ 1= n) (v 1)]%1
X [f’((A* +[n (o = (o — 1 = ))]7P*)/ (0 = 1))

+f'((A* —[(v —1-=n)""n(v - l)]%P ) (v — l))]
= f((4* +[n" "0 = Do = 1= W]P*)/ (0 - 1)
—j((A* —[(o=1=n)""n(v - 1)]%1’*)/ (v - l))

- (1/2)[f'((A* +[n 7o = (o — 1= m)]7P*)/ (v - 1)
+7((4* [0 =1=m"n(o - D]2P*)/ (v - 1))]

X [(4*+[n" 0= Do~ 1~ m)]:P*)/ (v - 1)

—(4* =[(0—1=n)"n(o - D]2P*)/ (v - 1)] >0,

since f* < 0, and f” is strictly concave. []
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LEMMA A4. Ry(v —2; 4, B) > 0= B < A?/(v — 2), and hence R,(v —
2; 4, B) > 0= (A, B) is regular. Similarly, Ry,(1; A, B) > 0= B < A% So we
always have R,(1; A, B) > 0

PROOF. Ry(v —2; A, B) = (4 — [(v — 1)(v — 2)]2P)/(v — 1) > 0 if and only
if 42> (v — 1)(v — 2)[B — 4%/(v — 1)].

This is equivalent to B < 4%/(v — 2).

The other part is similar. []

LEMMA AS. Let f be strictly convex on [0, A). If (A, B) is singular, and 31y, =

A, 22 =B, with u, =0, 4, >0, Vi=2,---,0—1, thenf0r0<p.<A2/2
(0 - 27, 3, - - oy >0t 00 = 4, 2 (u,)z- B — p, and 232, f( 1)
21
PrROOF. There is at least one p; > A/(v — 2), say .
Take 0 <e <A/2(v —2), then e < /2. Let pi=¢ py=p, — & W =u,

Vi > 2. Then SvZlw = A, and, by convexity of f, 2,_1f(u,) > E f(,u,)

Now, 3 2 = B + 2e? — 2pu,¢; also, e = 0= 2ppe — 2¢* = 0, ands—A/2(v—
2)=2e — 282 > A%/2(v — 2)%. So, by appropriate choice of &, 3> can be
B — pforany pwith 0 <p <A4%/2(v —2)% [

LEMMA A6. Let f be continuous on [0, A, f' < 0 and f” > 0 on (0, A) (allowing
lim, o+ f(x) = fl0) = + o0). Also, let S(A, B) = {(m1, - * " » o) : Z221py = 4,
SiZiw = B, >0, Vi)

If f” < 0 on (0, A), then the minimum of °Z| f(w,) on S(A, B) occurs at a point
with some coordinate equal to zero or the point (R,(1; 4, B), Ry(1;

A, B),- -+, Ry(1; A, B)). If f”” > 0 on (0, A), then this minimum value occurs at a
point with some coordinate equal to zero or the point
(R,(n*; A, B), -+ Ry(n* A, B), Ry(n*; A, B), - - - , Ry(n*; 4, B)),
PO

where n* is the largest integer < v — 2 s.t. R,(n*; A, B) > 0.

ProOF. The minimum of 392 f(y) on S(A4, B) occurs either at a point with
some coordinate = 0, or in the subset S(4, B) N {(;Ll, C o Be—) iy > 0 Vi)

Now, consider the subproblem of minimizing 39_! f( ;) subject to 3021w, = A4,
=¢Z\u? = B, and p; > 0, Vi. This is equivalent to minimizing 392 2f( ) + (4 —
S22 1,) subject to

Py +(A 2 ll’v) = B,
p>0,Vi=1,---,0—2and S22y < A.

By Lagrange’s theorem (see Apostol (1974, page 381)), it suffices to compare

CTI(w) + f(A4 — Ef_, ;) among the stationary points.

leferentlatlng Se2f(p) + (A — Z22w) + B — 302 — (4 — 2022wy
w.r.t. each y;, and setting the derivatives equal to zero, we get

(A1) F(w) = f(pomt) + o[ =2 + 2p,,] = 0.
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If w, # p,_,, then (Al) can be written as
(A2) () = f (o) ]/ (s = pomr) = 21

For fixed p,_,, the strict convexity or concavity of f* implies that (A2) has a
unique solution g, € (0, 4). Therefore, all the stationary points can have at most
two distinct coordinates. The rest follows from Lemma A2 and (iii), (iv) of Lemma
A3. [

For any A, B >0, A2> B > A*/(v — 1), we now denote the minimum of

LEMMA A7. Assume A > B’ >B > A%/(v — 1), and that (A, B') is regular;
also, f satisfies the conditions in Lemma A6. Then M{A, B") > M{(A, B).

Proor. (i) Firstly, we consider the case f” > 0 on (0; A).

By Lemma A6, 3n, n’ € [l,v — 2], n > n’ s.t. Ry(n; 4, B) > 0, Ry(n’; 4, B >
0, M{A, B) < F(n; A, B) and M{4, B") = F(n'; A, B).

By Lemma A3, F(n'; A, B') > F(n'; A, B) > F(n; 4, B).

G) If f7 <0 on (0, 4), then MgA, B) = F(1; 4, B') > F(l; 4, B) >
M{(A, B). [I

LemMA AS. If (4, B') is singular, B > B > B’ — A?/2(v — 2}, B > A?/(v —
1), and f satisfies the conditions in Lemma A6, then M{(A, B") > M{4, B).

ProOF. We only consider the case f/ > 0 on (0, A). The case f” <0 can be
proved similarly.

Then My(A, B’) either equals F(n*; A, B’) for some n* € [1, v — 2], or occurs at
a point with some coordinate equal to zero.

By an argument similar to that of Lemma A7, F(n*; A, B)) > M{A, B).

On the other hand, if 3¢2)y, = 4, S¢Z1p2 = B/, p; > 0, Vi, and some p; = 0,
then by Lemma A5, 257! f(p) > 3221 A(p*) for some pf, - + -, pdy st Bi2 w* =
A, 3”1 u** = B, and p* > 0, Vi. Therefore, M{A4, B") > M{(A, B). []

By a finite number of repeated applications of Lemma A7 and Lemma A8, we
get

LemMa A9. If A2 > B’ >B > A%/(v — 1), and [ satisfies the conditions in
Lemma A6, then M{A, B") > M{A, B).

Now we are ready to prove Theorem 2.2.

PROOF OF THEOREM 2.2. We will only give the proof of part (b) in detail, and
briefly indicate the major differences in the proof of part (a).

For convenience, we write P, instead of [tr C} — (tr C;)*/(v — 1)]z; also, A, =
tr C,, and B, = tr C;. It suffices to prove the optimality with respect to any type 2
criterion ;.

By Lemma A4, the existence of the matrix C, in part (b) implies that (A4, By)
is regular. So by Lemma A6,

(A3) Y{(Cyp) = M(A, B,) for any type 2 criterion y.
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For any d € 0, there are five possible cases:

() A4, = As. Then (2.5)= B, > B,.. Hence we may assume B, > B,.. Then
Lemma A9 = y(C,) > M{A,., B;) > M{( Ay, Bp) = Y{Cp).

(i) A, < Ap(A, B,) is regular, and P, > P,

In this case, In* €[1, v — 2] s.t. Y{(C,) > F(n*; A;, B;). On the other hand,
Y{(C) = F(v — 25 Ay, By) < F(n*; Ay, B). Now, compare F(n*; A, B,) with
F(n*; A;, B,.). Since f is strictly decreasing, it is easily seen that YACy) > Y{Cp)
in case (ii) if

(AD) A, —[(v—1-n)"'n*(v - 1)]?P,

=

<Ap —=[(0=1=n*""n*(v - )] P,

Now, 25)= A, — A; > [(v — (v - 2)]%(Pd. —P)>[(v—1-n*"'n*
(v — l)];‘(Pd. — P,), where the last inequality follows from (v — I)(v — 2) > (v —
I = n*)"'n*(v — 1) and P,. > P,. This gives (A4).

(i) A, < Ay, (4, B,) is regular, and P,. < P,

Then 3n* €[1, v — 2] s.t. Ry(n*; A,, B,) > 0 and

Y(C,) > F(n*; A,, B;) > F(n*; A, B,) (by Lemma A3(i))
> F(n*; A;, B,) (by Lemma A3(ii))
> F(v — 2; A;, B,) (by Lemma A3(iv))
= ¢f(Cd')~

(V) A, < Ag, (4, B,) is singular, and A, < A, — [(v — 1)(¢ — PP
Then

Y(Cy) > M[(A,, B,)
> M{ A, A/ (v — 1)) (by Lemma A9)
= (v =29f(4,/ (v = D) + f(4,/ (v = 1))
> (0= Df(Ap/ (0 = D) + f{(4p = [(v = (e = D] P,)/ (v - 1)
> xl/f(Cd.).

The last two inequalities follow from the fact that f is strictly decreasing.
1
(V) Ay <Ay, (A By) is singular, and A, > A, — [(v — 1) (v — 2)]2P,.

By Lemma A4, we have
(AS) Ap >[(0 = (v =2)]7P,.

Hence A, = A, — (Ap — A) > (v — 1)2(v — 2)2P,. — (A — A,) > 0. There-
fore 47 > {[(v = I)(v — 2)]2P — (A4 — A,))2 which implies

(A6) Aif (0 =2 >4}/ (0= D)+ {[(v = (v~ 2)]? P,
~ M= A) (0= e -2
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Choose a number B’ such that

(A7) A3/ (0-2)>B" >4}/ (v- 1)+ {[(0— D(o—2)]*Ppu

~(Ap =AY -0 -27"
Then (4,, B,) is singular = B, > B’. Hence by Lemma A9, y(C,) > M,(Ad, Bd) >
M{(A,, B’). Now (Ad, B’) is regular, and (A7) = A, — A; > (v — 1)2 (v - 2) (P,
—[B' — A42/(v — 1)] }. Thus, the proof is reduced to case (ii) and (111)
For the proof of part (a), we replace 4; < A, — [(v — 1)(v — 2)]2Pd. by 4, <
A —[(v—=1/(v - 2)]%Pd, in (iv), and make similar changes in (v).
Then instead of (A6), we need

(A8) A2/ (0 —=2)> A3/ (o= + (-1 (v-2)
x{[(0 = 1)/ (0= 2)]?Pp — (40 — 4))’

or, equivalently,
(A9) Ad > [(U - 1)(U - 2)]5Pd' - (D - 2)(Adt - Ad)'

Now, (2.2)=(AS5). Therefore, A; > Ap — (0 —2)(A,* —A4y) > [(v—1)
(v— 2)]5'Pd. — (v — 2)(4, — A,), which gives (A9). [
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