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RATE OF CONVERGENCE OF ESTIMATORS
BASED ON SAMPLE MEAN

By S.-S. PERNG
Howard University

The rate of convergence of the point estimators for the parameter based

on the sample mean of i.i.d. random vectors is obtained. The result is used

- to prove the Bahadur’s efficiency of the regular best asymptotically normal

estimator when the underlying distribution is in the exponential family.

An example is given to show that if the distribution is not in the exponen-

tial family, then the regular best asymptotically normal estimator is not
necessarily efficient in Bahadur’s sense.

1. Introduction and summary. Let X, X, X,, - --, be i.i.d. random vectors
with values in R* and common distribution P,, # ¢ ® — R", where k and r are
positive integers. Assume that © is open and that E,X = p((d) = p and
Cov, (X, X') = £(0) = £. Write X, = (1/n)(X, + --- + X,). The estimator 4,
of # to be considered will depend on the X,’s only through X, and possibly a
consistent estimator S, of Z. It is well known (see, e.g., [4]) that if (X, S,)
is regular (i.e., £ has continuous partial derivatives) and consistent for 6, then
it is asymptotically normal estimator for ¢ and furthermore it is regular best
asymptotically normal (RBAN) estimator when certain conditions are satisfied.

The objective of this research is to establish the rate of convergence to 6 of
such estimator and consider its efficiency in Bahadur’s sense. It is shown, for
instance, under some conditions, that

. . 1 - ’
lim, o lim, .. log P,{|H(X,) — h()| = ¢} = —}/|4Z41],

where A is the matrix of partial derivatives of & evaluated at . The norm of
a matrix is defined in Section 2. In fact [[4Z4'|| equals the maximum eigenvalue
of AXA'. A similar result for the case where / also depends on the sample co-
variance matrix is also established. The Bahadur efficiency of RBAN estimators
for ¢ is proved for the case where P, is in the exponential family. An example
is given to show that if P, is not in the exponential family, then the RBAN
estimator is not necessarily efficient in Bahadur’s sense.

2. Basic lemmas. In the k-dimensional Euclidean space R*, let be the

Euclidean norm. It is noted that for ¢ > 0,

(2.1) (e = o) = (s max, 1] = o)

Lemma 2.1. Let xe R*. If ¢ > 0, then for each 0 < 2 < 1, there are finite
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number of 1., 1,, - - -, 1, € R*, ||l|| = 1, such that
(oo ol =€) © U e Jlxd] = 4},
where the I.’s and M depend only on 2 and not on e.

ProoF. Let § = {x: ||x|| = ¢}. For each /e R* with ||| = 1, define D, =
{x: [I'x| > Z and ||x| = ¢}. Then D, is open relative to the usual topology in S.
It suffices to show that there are finite number of D,’s covering S. Since S is
compact the result follows by using Heine-Borel argument. Note that the D,’s
depend on 2 and ¢ but the /,’s and M depend only on 2 and not on ¢, i.e., if a
set of the /;’s and M works for one ¢ > 0, then the same set works for all ¢ > 0.

DEFINITION. For any p X k matrix P, define the norm of P to be

1Pl = Sup..o|[Px[|/]lxl] = max,,_ [|Px]|.

Note that by definition of ||P||, ||Px|| < ||P||||x||. Note also that if P = [1,, 0] with
1, being the p* identity matrix, then [|P|| = 1. Furthermore the norm ||P|| is a
continuous function of its entries. The following lemma is readily proved.

LeMMA 2.2, If A is a positive semidefinite matrix, then
Al = max, <, [|4l]] = max,_, 'Al = max,, I'l
which equals the maximal eigenvalue of A.

Lemma 2.3. If X is a k* positive definite matrix and P a r X k matrix with rank
r, then there is a (k — r) X k matrix P, such that [P', P'] is nonsingular and
PXP" = 0. Furthermore if P, satisfies the conclusion, so does aP, for a + 0.

Proor. Let Q = PX: Then Q is of rank r. Hence there is a (k—r)x k
matrix Q, such that [Q’, Q,'] is nonsingular and QQ,’ = 0. Let P, = Q2%
Then P, is the desired matrix. The second statement is obvious by examining
the linear independence of the columns of [P’, aP,'].

3. Rate of convergence. In this section the rate of convergence for estimators
based on sample mean is obtained. The first theorem is Lemma 2.4 of Bahadur
[1], page 235.

THEOREM 3.1. Let Y, Y,, ..., be i.i.d. random variables with finite mgf and
E(Y) = 0 and E(Y?) = o* Then fore >0
: .

—log P{|7,] = ¢} = —eY(20))(1 + i(n, ¢)) ,
n
where 6(n, ¢) — 0 as n — oo and ¢ — 0.

For the remainder of the paper, let X, X, X,, - - -, bei.i.d. random k-vectors
with finite mgf and E,(X) = () = p and Cov, (X) = Z(f) = Z. Assume that
e ® c R, r <k and that © is open.

THEOREM 3.2. If 1(0) = 0, then for each 6 ¢ ©,

N 1 .
(3.1 tim,_, lim, ... log Py{|X, — 0| = ¢} = —}/jZ].
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Proor. By Lemma 2.1, for each 0 < A< 1, there are M unit vectors
L, -+, 1, depending only on 2 such that {xe R*: |x — || = ¢} c | {xe R*:
|l/(x — 0)] =z Ze}. For each n, let I(n) be the I,’s such that P,{|/(X, — )| > e}
is maximized. Then

Py|IX, — 0| = ¢} < MP,{|lI'(n)(X, — 6)] = 2}
and hence

(3.2) lim sup,_, lim sup,_., % log P,{|| X, — 6] = ¢}
&‘n
< lim sup,_, lim sup, .. L log P,{|1(n)(X, — 6)| = 2} .
&°n

Note that /(n) takes only finite number of values, namely [, . .., [, which do not
depend on . Let /, be the /,’s which maximizes [/Zl,, i = 1,2, ..., M. Then,
by Theorem 3.1, the right-hand side of (3.2) is not greater than —1a%/I/Zl,.
Letting 2 — 1, we have

(33)  limsup,_, lim sup, .. - log P,{|¥, — 0 = ] = —3/I/Zly < 3/ .

On the other hand, by Lemma 2.1,

X2 — 0| = ¢} = {max,_, [I'(X, — 0)] = ¢} D {|I'(X, — 0)] = ¢},
for all unit vector /. By Theorem 3.1 and Lemma 2.2
(3.4) lim inf,_; lim inf,_ ;:; log P{||X, — 6|| = ¢} = —4/max,_, I'S]

= 3/I12l-
The result follows from (3.3) and (3.4)
To apply the results in the following theorems to RBAN estimators, (y) (or
h(s, Z)) equals #. But in the discussion here no such restriction is necessary.

THEOREM 3.3. If h: R* — R (r < k) has continuous partial derivatives, A(x) =
(0/0x)h(x), where A(+) is of rank r, then for each 6 ¢ ©

(5 liminf,,liminf, . log PJA(F.) — k()| = o} = —}/lAZ4,
where A = A(p). /

Proor. By Lemma 2.3, there is a (k — r) x k matrix 4, such that [£]isnon-
singular and 4,24" = 0. Write 4,* = 4, = [«4,], @ > 0. Then
h&,) — () = A )X — 1) = A(g) A7 4K, — 1),

where 7, is in between x and X, and is a continuous function of X,. Thus for
each e > 0,

(3:6)  {IA(X,) — Ml = ¢} © {14(7) 4,7 AL X, — )| = ¢}
C {447 > A} U {[ 46X, — ) = ¢/4},



RATE OF CONVERGENCE OF ESTIMATORS 1051

where 4, > 1 is arbitrary but fixed. Let B(x) = A(x)A4,'. By the continuity of
A(+), as x — p, B(x) — A4,™ = [1,, 0], by noting [,4 ]4,™* = /,. Hence by the
continuity of B(.) there is a neighborhood N (depending on 4,) of p such that
x e N implies |||B(x)|| — 1] < 4, — 1, which in turn implies ||B(x)|| < 4,. Hence
{lIB(x)|| = 4} C {x¢ N}. Combining this with (3.6), we have
(3.7) {In(X,) — Al = ¢} < {Xo @ N} U {|4(X, — p)ll = ¢/4} -
Since {x: ||Ay(x — p)|| < ¢/4,} is an ellipsoid centered at g, there is an ¢, > 0
depending on 2, such that 0 < ¢ < ¢, implies
{4(Xs — )]l < ¢/A} < {X, € N}
This along with (3.7) implies that for 0 < ¢ < ¢,

(3-8) {IM(X,) — h(p)| = €} C {|4(X, — p)| = ¢/4} .
But by Theorem 3.2 we have
. . 1 o 1
(3.9) lim,_, lim,_, — log Py{||Ay(X, — p)|| = ¢/4,} = —_/||A22A2’|| .
en 247

By (3.8) and (3.9), after letting « — 0 and 4, — 1, and using Lemma 2.2, we get
(3.10)  limsup,  lim sup, .. —— log P,{|A(%,) — k()| = ¢} < —4/|lAZA] .
en

Next, for § > 0, let A4,(n,) = (447),) be a nonsingular augmented matrix of
A(7,). Note that

{IR(X,) — h(p)l| Z €} = limy_o {|4,(7,) 4,7 A,(X, — )| Z ¢}

(3.11) = lim,_, {max,_, [I'4,(7,) 4, A(X, — p)| = ¢}
= lim,_, {max, ., [ A(X, — p)| = ¢}
> limpao {maxleFk(ﬂ) |1,A2(X—n - /1)! = ¢}

for k < n, where for = 0 E,(B) is defined to be the union of the spaces of
I'Af(n,)A,~" over all I such that ||/|| = 1 and F,(8) = N, E,(B). Note that with
probability one lim,_., 7, = ¢ and lim,_, E,(8) = E(B) = lim,_., F,(B) for 8 = 0,
where E(B) = {u: u' =1I'4,,A4,7, ||l|| = 1}. Since F,(B) is nondecreasing in k,
F(B) c E() for =z 0. Note that the elements in E(8) do not depend on the
random variable X,, as do the elements in F,(8). Note also that lim, , E,(8) =
E,(0) and hence that lim,_, F(8) = F,(0). (In fact the E,(8)’s and the F,(B)’s

are “continuous” for § in [0, }] in the sense that lim,_ , E.(f) = E,(8,) and
lim,_, Fi(B) = Fi(B,)-) By (3.11)
(3.11") {Ir(X,) — h(p)l| Z ) D {max, o [ (X, — )] Z ¢}

O Il AX, — )] Z ¢}
for every /e F,(0). By Theorem 3.1 for every /¢ F,(0),

(3.12)  lim,_, lim, _, ;:; log Pl AKX, — p)| = ¢} = — /I 4, 54,1 .
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Since A4, = [I,,0], as B = 0 A4, = [[» 3] and E(B) = E(0) = {u: |lu| < 1
and the last (k — r) components of u are 0}. Recall that lim,_, F,(0) = E(0).
By (3.11’) and (3.12), after letting k — oo and a — 0, we have

(3.13) lim inf,

€0

lim inf, ... % log P,{|(R,) — h(z)]| = ¢} = — /I AS AL,

for all ], € E, where E is a subset of R" obtained from E(0) by dropping the last
(k — r) components of the elements in E(0). The desired result follows from
(3.10) and (3.13) with the help of Lemma 2.2.

Let Y; = X, X,/. Let the column vector formed by the columns of the lower
triangular matrix of X, X’ also be denoted by Y,. The exact meaning of Y, will
be clear from the context. Assume that Y, has finite mgf. Let X, be the co-
variance matrix of Y, and X, ,, the covariance matrix of (X, Y;')’. Recall
that £ = ZX.

THEOREM 3.4. If h: RETEUE+D/2_, RT has continuous partial derivatives, A(x, s) =
(0/0x)h(x, s) and B(x, s) = (0/0ds)h(x, s), where the matrix [A(, +), B(+, +)] is of
rank r and B = B(p, L) = 0, then for each 0 ¢ O,

1

lim, o lim, . log P,{[A(,. S,) — (. Z)| Z ¢ = — 3|l AZA]

e—0

where S, = Y, — X,X,’ (= sample covariance matrix) and A = A(p, Z).

Proofr. Leth(x,y) = h(x, s), where y = s 4 xx’. Then at (x, y) = (¢, & + p'),
(9/0y)h, = (0/0s)h = B = 0 and (9/0x)h, = (0/0x)h = A. The result follows from
Theorem 3.3 by noting (4, B)X , (4, B) = AXA'.

THEOREM 3.5. If h: R¥*k*+0/2_, R™ has continuous partial derivatives, A(x, s) =
(0/0x)h(x, s) and B(x, s) = (0/ds)h(x, s5), where A(y, X) is of rank r and B(p, £) = 0
and if S, is a consistent estimator of X such that for small ¢ > 0,

(3.14)  timsup, . [P{IS, — ) = e}/P{|AX, — )] = )] < oo
then for each 6 ¢ O,
lim sup, ., lim sup, .. - log P,{|(X,, S,) — k(. D) = &} < — /| AZ4,
&‘n

where A = A(p, X).
Proor. Write

(3.15) WX, S,) —h(p, Z) = A,(X, — #) + B,(S, — X).
Fore >0and 0 < 4 < 1, we have

{IA(X.., S,) — h(p, 2l = <}

C {1 4u(Zn — 2] = 2} U {Bu(S, — DI = (1 — 2)e}

But

{1Bu(Sw — D) = (1 = e}  {lIBull > (1 = D} U IS, — 2| = ¢}
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and
{l4:Xs — @l = 2¢} C {[4uA) 7 > A} U {4 X — m)ll = 2¢/4),

where A, is defined as the P, in Lemma 2.3 and 2, > 1. Since ||B,]| — 0 and
[4.(:4)7— 1 as X, — p and S, — X, there is a neighborhood N = N, x N, of
(¢, Z) such that (X,, S,)e N implies ||B,|| < 1 — 2 and l4,(a4,) 7l < 4. Thus
B =1 — 2 or l4,(.4) 7Y = 4, implies S, ¢ N, or X, ¢ N,. Choose ¢ > 0 so
small that S, ¢ N, or X, ¢ N, implies {||(af}1)(/\7n — )| = Aefa}or {||S, — Z|| = ¢}.
Then
P{|Ih(X,, S,) — (e, Z)]| = ¢}
= P{lad)(Xn — Il Z e/} + P|IS, — Z[| > ¢}
< PIGA)Kn — oIl > 2/} + LP,{|AX, — p)]| > ¢},

asnsufficiently large, by (3.14) where L >0. Taking limsup,_,limsup,_., 1/e’nlog
on both sides, noting log (a + b) < max (log 2a, log 2b) and letting 2, — 1, 2 — 1
and a — 0, the result follows from a similar argument as in the first part of the
proof of Theorem 3.2.

REMARK 1. The assumption of B = 0 in Theorems 3.4 and 3.5 is inherited
from a similar situation in the discussions of RBAN estimators. This assumption
is discussed in the remark on page 343 in [4] and is explicitly assumed in [7].
It says essentially that the dependence of A(X,, S,) — Ay, Z) on (S, — Z) is
negligible as n — co (see (3.15)). It is readily shown (and demonstrated in [7])
that such assumption holds for a wide class of estimators generated by mini-
mizing quadratic equations of (X, — ) (e.g., (X, — p)’S, (X, — p)).

REeMARK 2. The assumption of (3.14) in Theorem 3.5 is satisfied if S, is the
sample covariance matrix given in Theorem 3.4. This is an immediate con-
sequence of Theorem 3.3 by noting that the conclusion of the latter can be
written in the form of that of Theorem 3.1.

REMARK 3. By the definition of the matrix norm, ||[4XA'| is the maximum
eigenvalue of AXA’. In other words, the rate of convergence of A(X,) (or
h(X., S,)) to h(y) depends only on the variance of a normalized linear combi-
nation of the components of 4X, which has maximal variance, or roughly, on
the variance of a normalized linear combination of the components of A(X,)
(or k(X,, S,)) which has maximal variance. This is an interesting observation.

4. Bahadur’s theorem. To prove the efficiency of consistent estimators in
Bahadur’s sense, the following theorems are useful. The first theorem can be
found in [1], page 252 and the second is an extension of the first to multi-
dimensional case. Let /(f) be the information matrix of X. Assume that /(f)
is nonsingular. Assume that g: ® — R® has continuous first partial derivatives.
Let U = (0/a0)g(9).

THEOREM 4.1. If s =1 (i.e., g = g(0) is real) and T, is a consistent estimator
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of g, then for each 6 ¢ ©
lim inf,_, lim inf,_,, Tl log P{|IT, — g| = ¢} = —3/UT(6)U .
&°n

THEOREM 4.2. For positive integers, if T, is a consistent estimator of ¢, then
for each 6 ¢ O,
lim inf,

e—0

lim inf, .. - log P{|T, — gl = ¢} = —4/IVI-(O)U] .

Proor. By (2.1) for all unit vector /,
(1T, — gl = &} 2 (1T, — 9)| Z ¢}

Combining this with Theorem 4.1, we have

lim inf,_, lim inf,_,

1
- 10g P{IT. — gl 2 &} 2 — 31U IOV,

for all unit vector /. The result follows by taking maximum on the right-hand
side over all unit vector /.

Note that if the equality in the inequality of Theorems 4.1 or 4.2 holds, then
T,, as an estimator of g(6), is efficient in Bahadur’s sense.

5. Efficiency of RBAN estimators. Assume that g: @ (C R") — #(©) C R*

is one-to-one and bicontinuous and has continuous first partial derivatives. As-
sume that X = X(6) is positive definite (this condition may be weakened, see,
e.g., [5]). Let V = V(0) = (3/00)p(6). Assume that ¥ is of rank r. Consider the
function # defined in Theorems 3.3, 3.4 or 3.5, if 4, = A(X,) (or k(X,, S,)) is a
(regular) consistent estimator of 4, then (see, e.g., [4] or [7]) 8, is asymptotically
normal, i.e., n¥(f, — 8) — N(0, AZA’) in distribution and A(x) (or A(z, 2)) = 6,
where A is defined in the aforementioned theorems. Furthermore
(5.1) 6, is RBANiff A = (V'Z-W)-/'E-1.
See, e.g.,[4],[S]or [7]. RBAN isdefined in the sense that if ,=d(X,) or d(X,, S,)
satisfying the same conditions as 4 is any other consistent estimator of ¢, then
Z, — X, is positive semi-definite, where X, and X, are respectively the asymp-
totical covariance matrix of n*d, and n*f,. Note that if §, is RBAN, then , =
(V’Z-'¥)~1. Methods to generate RBAN estimators can be found in [4] and [5],
among others. ‘

ExAMPLE 1. Exponential family. Let X, X,, X,, - - -, be i.i.d. random k-vectors
with pdf with respect to some g-finite measure,
(52) Po(x) = exp(g'(6)x — b(q(9))) »

where # ¢ ® — R” with r < k. Assume that © is convex and open and that both
b(+) and ¢(+) have continuous second partial derivatives. It is readily shown
that 1 = p(6) = (3/9)b(g) and = = £(6) = (3/29)((2/09)b(g)y Let 6, = h(X,)
be a solution to

(5.3) Wi, — ) =0,
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where W = (9/06)¢(6). Note that the left-hand side of (5.3) is the partial de-
rivatives with respect to ¢ of the exponent in (5.2). From (5.3), using implicit
function theorem, it is found 4 = (9/dx)h(x)|,_, = (V'E"'V)'V'Z, where V =
(0/06)p = V(). By (5.1), 8, = h(X,) is RBAN. (A more detailed discussion
of this can be found in [7].) Further, by Theorem 3.3,

(5.4) lim,_, lim, _, ?in— log {0, — 0l = ¢} = —3/I(V'=V)7|.

e—0

Next, by (5.3), the information matrix of X is given by
(5.5) 1(6) = WEIW = V'EV,

because V' = ZW. By Theorem 4.2 with g being the identity function and (5.4)
and (5.5), 4, is efficient in Bahadur’s sense.

Note that 4, is also a maximum likelihood estimator (if one exists). Hence
the result of this example confirms the conjecture mentioned on page 252 of [1]
for distribution in exponential family.

Note also that Theorem 3.5 is useful in proving Bahadur’s efficiency if the
minimum modified y* method is used to generate the RBAN estimator, e.g., in
the multinomial case.

The following example shows that an RBAN estimator is not necessarily effi-
cient in Bahadur’s sense if the distribution is not in the exponential family.

EXAMPLE 2. Double exponential distribution. Consider the i.i.d. random vari-
ables X, X, X,, - .- with pdf

f(x; 0) = Le~l==01 | —o0 < x < oo,

where 6 € (— oo, co). Consider h(X,) = X, as an estimator of p(f) = §. Then
A=V =1. By(5.1), X, is RBAN. But by Theorem 4.2 of [6], X, is not effi-
cient in Bahadur’s sense since the sample median is strictly more efficient than
X,. See also Example 6.1 in [3].
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