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EMPIRICAL BAYES ESTIMATION OF A DISTRIBUTION
(SURVIVAL) FUNCTION FROM RIGHT
CENSORED OBSERVATIONS!

By V. SusarRLA® AND J. VAN RYZIN?

University of Wisconsin— Milwaukee and
University of California— Davis

This paper provides an empirical Bayes approach to the problem of
nonparametric estimation of a distribution (or survival) function when
the observations are censored on the right. The results use the notion of
a Dirichlet process prior introduced by Ferguson.

The paper presents a generalization to the case of right censored ob-
servations of the rate result of an empirical Bayes nonparametric estimator
of a distribution function of Korwar and Hollander in the uncensored case.
The rate of asymptotic convergence of optimality is shown to be the best
obtainable for the problem considered.

1. Introduction and summary. With R(G) denoting the infimum Bayes risk
in deciding about a parameter # ~ G, Robbins (1955) proposed decision rules,
based on data gathered in nindependent repetitions of the same decision problem,
whose overall risk converges to R(G) as n — oco. Since the appearance of this
paper of Robbins (1955), much empirical Bayes work has evolved with most
of the results obtained under the assumption that # is a random vector. Some
of the references where this assumption was relaxed are Johns (1957), Van Ryzin
(1970), Korwar and Hollander (1976) and Susarla and Phadia (1976). The last
two papers considered empirical Bayes squared error loss estimation and gener-
alized empirical Bayes testing problems concerning a random distribution func-
tion F which is distributed according to the Dirichlet process prior D, introduced
by Ferguson (1973) (see also Antoniak (1974)).

This paper treats the generalized empirical Bayes estimation problem con-
cerning F (described in detail in Section 2) when the observations in the sequence
are independent but not identically distributed in that the distribution of the
right censoring random variable associated with each decision problem in the

sequence is not fixed.
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In Section 2, we describe the decision problem and its empirical Bayes analogue
and an example where this empirical Bayes problem might be useful. Section
3 provides a necessary and a sufficient condition for the family of distributions
on the real line to be identifiable with respect to Dirichlet process priors. (Iden-
tifiability is a necessary requirement if one hopes to solve the empirical Bayes
problem.) Section 4 provides the best possible rate O(n~") uniformly in the pa-
rameter « for a risk convergent empirical Bayes estimator when the sequence
of censoring distributions is known. Section 5 provides empirical Bayes esti-
mators with rates O(n=%=9) (0 < ¢ < 1) when the censoring distributions are
unknown. The final section concludes with a few remarks concerning possible
generalizations of the results of Sections 4 and 5.

For notational convenience, we let [A4] denote the indicator function of 4
and the arguments of functions will not be exhibited Whenever they are clear
from the context. Integrals are over R = (— oo, co) unless otherwise stated.
Ratios of the form ¢ are taken to be zero (see (3), (15) and (28)). Familiarity
with Ferguson’s (1973) paper on Dirichlet process prior will be very helpful in
reading this paper.

2. The problem and its empirical Bayes analogue. Let (F, X, Y) be a stochastic
process where 1 — F is a random distribution function on R = (—oo, o) and
distributed according to the Dirichlet process D, (see Ferguson (1973)) with «
denoting a finite measure on the Borel o-field <2 of R; given F, X ~ right sided
distribution F (that is, F(¢) = P[X > t|F]) and finally, Y is a univariate random
variable independent of (F, X) and distributed according to the right sided dis-
tribution H. (Y may be defective, in which case H = 0.) The decision problem
is to estimate F using (9, Z) where

(1) 0 = [X§ Y] and Z — min {X, Y}
when the loss function is given by
(2) L(F, F) = § (F(u) — F(u))* dw(u)

where w is a known finite nonnegative measure on <% and F is an estimate of
F. Kaplan and Meier (1958) considered estimation of F in a nondecision theo-
retic setup and obtained two estimates of F, one of which is the maximum
likelihood estimate.

A trivial extension to R for the case of unit sample size of (4.2) of Susarla
and Van Ryzin (1975) shows that the Bayes estimate d, of F in the above com-
ponent decision problem is given by

{a(R) + 1} d,(u, (9, 2)) = 1 + a(u) if u<z
3) = a(u) if =1 and w>=:z

:(1—|—a(z))% if 5=0 and uxz,

where a(.) stands for a(-, co). It is clear that one can use the above Bayes rule
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from (3) when « is known. By using (3) to estimate F one achieves the minimum
possible risk r(H, a) for the family of loss functions in (2).

Suppose that « is unknown in the above component problem, but there is a
sequence of independent stochastic processes {(F,, d,, Z,)} where for each n,
(F,, 9,, Z,) has the same probability structure as that for (F, §, Z) of the com-
ponent problem except that H is replaced by H,. While the (d,, Z,) are inde-
pendent they are not necessarily identically distributed random vectors. In this
setup, a generalization of the empirical Bayes approach of Robbins (1955) is
applicable wherein one obtains an estimate S, (called the nth component of the
empirical Bayes procedure) of d,(+, (3,1, Z,4,)) Using the independent random
vectors (9,, Z,), - -+, (3,, Z,) and shows that the overall risk less risk if « known
approaches zero.

DEFINITION 1. The sequence of estimators {S,} is said to be asymptotically
optimal with order k(n) (a.o. k(n)) if

(4) 0 < D, = ry(S., {H;}"* @) — K(H,,,, @) < ck(n)

where the constant ¢ and k(n) are independent of a and {H,} and k(n) — 0 as
n— oo. ‘ :

We show that k(n) = n~' in Section 4 when {H,} is known and k(n) =
n=9-9(0 < ¢ < 1) when {H,} is unknown and under certain conditions on S,
a, and {H,}. The following lemma, whose proof is similar to the proof usually
given in empirical Bayes parametric cases (see page 46, Maritz (1970)), is useful
in obtaining the above rates of convergence.

LemMma 1.

(5) 0 =D,= rn(Sn’ {Hj}1n+1’ a) - r(Hn+1’ 0() = S {S En[{Sn (u’ (5n+1’ znﬂ))
— dy(#, (0415 Zus1))Y'] aw(u)} dG(d,., Zy41)

where d, is given by (3), E, stands for expectation operation with respect to the
joint distribution of (3, Zy), - -+, (0., Z,) and G is the distribution function of
(5n+1, Z'ﬂ+l)'

We will obtain rates of convergence results for D, in Sections 4 and 5 by
first obtaining rates of convergence results for the inside integral involved in
the right-hand side of (5).

We briefly describe a possible application here in the context of survival
times under a particular treatment T. Consider a cancer treatment study con-
sisting of observing the length of survival time for the cancer patients under
T. Due to dropping off from the study for some reason or other, some of
these true survival times are censored on the right. Since the patients might
respond differently for the same type of cancer under the same type of treat-
ment T because of their health conditions, it is reasonable to assume that these
patients have different survival distributions, but on the average they have the
same survival distribution, say 8. Thus, in statistical terminology, one has
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independent observations like (Fy, X;, 1)), - - -, (F,, X,, Y,) where we do not ob-
serve the independent stochastic processes F,, - - -, F, having the same distribu-
tion, X, ---, X, are the unobservable random survival times, and Y;, --., Y,
are the random censoring times, all corresponding to the first n patients. Notice
that given F, = F, X; ~ Ffori =1, ...,n. We observe only §, = [X; < Y,]
and Z; = min{X,, Y;} for i =1, ..., n because of censoring. Looking at the
data after the (n 4 1)th observation, one has not only (d,,,, Z,,,) to infer
about F,,, (here we need a Bayes estimate of F,,, with @ unknown) but also
(01, Zy)s +++, (0,5 Z,). These first n vector observations do contain information
about a, and consequently should be useful in saying something about the sur-
vival distribution function F,, of the (n ++ 1)th patient. Since Dirichlet process
priors are reasonable to work with, we took in this paper 1 — F;, ..., 1 — F,
to be i.i.d. Dirichlet processes with common parameter a with a(R) known.
For further possible applications, see the books by Barlow and Proschan (1974)
and Gross and Clark (1975).

We describe our procedures, their risks at the (n + 1)th stage, and the Bayes
risks at the (n + 1)th stage with examples in which H,(u) = P[Y, > u] = e~
and a(u) (= a(u, o)) = ce~?* for some constant ¢ > 0 where u > 0. Of course,
other distributions are possible. In the partially known censoring distribution
case with the above choice for H, with 8 unknown, we illustrate our procedure
with cancer data. The data and the form of the empirical Bayes estimator are
given in the Appendix. Generally, in life testing problems, the above choices
for H, and « are reasonable.

3. An identifiability problem. In this section, adhering to the notation of the
decision problem of Section 2, we obtain a necessary condition and a sufficient
condition for the identifiability of the class & of distribution functions on the
real line R to be identifiable with respect to Dirichlet process priors. Such an
identifiability result is needed to solve the empirical Bayes problem since in order
to solve this problem, one must be able to estimate a in view of (3) from ob-
servations (0, Z,), - - -, (0,, Z,) and the integrand in rhs equality (5). In short,
identifiability here means that if two marginal distributions are equal, say for
(6, Z), in the decision problem described, then their prior distribution (here
Dirichlet process priors) must be equal. So let the marginal distribution of (¢, Z)
be G. Analogous to that of Teicher (1960), we have

DEFINITION 2. & is said to be identifiable with respect to Dirichlet process
priors iff
(6) G, (i, x) = Gy(i, x) for (i,x) in {0,1} X R=a, = ca,
for some constant ¢ where (3, Z) ~ G, when F involved in the definition of Z
is ~a;,i=1,2.

THEOREM 1 (Sufficiency). If H(x) = O for all x (that is, X is uncensored) or the
support of H is (a, oo) for some a < co, then & is identifiable with respect to
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Dirichlet process priors. (That is, G, = G, = a,(A)[ay(R) = a,(A)/ay(R) for all
measurable A.)
Proo¥. The first case follows from Proposition 4 of Section 3 of Ferguson

(1973). So let the support of H be (a, o) and G, = G,. We show that a, = ca,
for some constant c. By the hypothesis and the above quoted result of Ferguson,

_ e 00290 gy e @000 00) g
(1) 60,9 = 52 B2 ar(y) = 5. BL) ar(y) = 6,0.)

for x in R. If p((—o0, +]) = G0, ) for i = 1, 2, then the corollary on page
28 of Chung (1974) shows that measures ¢, and p, are equal, or equivalently,

(), 0) _ ay(y, o) _ :
(8) SB{ w(R) (R }dH(y)_o for B in 2.

If there exists a y, such that

©) a(Yor 00)/ay(R) # ay(yo, 00)[ay(R)

then y, > a since the support of H is (a, c0). Therefore, G,(0, x) = G0, x) for
all x implies that

(10) a,(x, oo)/ay(a) = a,(x, oo)/ay(R) for x<a.
Moreover, since a,(+, oo)/a,(R) is right continuous for i = 1, 2,
Haa(y> 00)/ay(R)} — {ay(y, o0)/ay(R)} > 6 > 0 for yy<ysmp+t+e

for some ¢ and 6 > 0. This inequality shows that H(y, + ¢) — H(y,) = 0 in
view of (8) and hence y, + 27 (> a) is not in the support H. This contradic-
tion together with (10) gives that a,(y, co)/a;(R) = a,(y, oo)/ay(R) for all y. Now
the above quoted result of Chung gives the theorem. []

THEOREM 2 (Necessity). If H(t)) = 1 for some t, < oo, then % is not iden-
tifiable with respect to Dirichlet process priors. (If Y is bounded above by M, then
we cannot distinguish between the measures a,(+)/a,(R) and a,(+)/a,(R) which agree
up to M but not afterwards.)

ProoF. Let a, be a fixed measure so that a,(f, co) > 0 and let a,(B) =
a(B N (—o0, t]) + a(ty, oo)[t, € B] for B in <& where 1, > t, and [, eB] =1
if,eBand =0 if 1, ¢ B. Now it is a matter of simple verification that the
measures «, and a, give the same marginal distribution for (4, Z) and clearly

a;(R) = ay(R) and a, +# a, if ay({1,}) # ay(ty, 00). [J

4. Empirical Bayes estimation with {H,} known. With a view towards de-
fining an empirical Bayes estimator and to apply Lemma 1 of Section 2 to bound
its risk difference from r(H,,,, ), we note that Z,, -.., Z, are independent
and that

(11) a(R)P[Z; > x] = a(X)H (x) for j=1,..-,n
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where, here and elsewhere, a(.) abbreviates a(+, co). Consequently,

(12) n{@,(x)} = a(R) XL7-, (H;(x))7[Z; > x]
is such that for each x in R,
(13) E[@,(x)] = a(x) = a(x, o)

(14)  nr*Var (@,(x)) = a(x) Zjo (H;()){a(R) — Hi(x)a(0)} = 14(x) -

We use (12), (13) and (14) to find the rate of convergence of D, in (5) for the
following empirical Bayes estimate S,. S, is motivated by the fact that in view
of the rhs of the equality (5), we need a good estimate of d,(u, (9,,,, Z,,,)), and
a good estimate of d, (see (3)) is simply obtained by replacing a of d, by &, of
(12) with @&, retracted to [0, a(R)] since a(+) < a(R). Thus S, is defined by

(«(R) + I)Sn(”’ (Ons1> Zns1))
= 1 + min {&,(u), a(R)} if u<z,,
(15) = min {&,(u), a(R)} if 0,,,=1 and uz=z,,

A

an(z'n+1)

=0 and u=z,,,

= {1 4+ min {&,(z,,,), a(R)}} min{ a,(u) , 1}

if 0

n+1

where, according to our convention, ratios of the form 8 are to be taken as zero.
To obtain the main results of this and the next section, the following lemma of
Singh (1974) with y = 2 will be useful. Its proof can be found in O’Bryan and
Susarla (1975).

LEMMA 2. Let a, b and | be in R with b, | > 0. If A and B are real valued
random variables, then for all y > 0,

brE[(min {|(A/B) — (a/b)|, 1})'] = c{E[|4 — a|'] + (la/b|” + I)E[|B — b|']}
for some constant ¢ depending on y alone.
THEOREM 3. For each n, let H, be known with support = (a,, oo].
0= n'D, — §r.(u)dw(u) < ¢ E[[0,.1 = 012, {ru(¥) + 7u(Zasr)} dw(u)]
for some absolute constant ¢, where v, is defined by (14).

Proor. In view of (5) and the definitions of d, and S, in (3) and (15) respec-
tively, we consider the inner expectation of the rhs of (5) in two cases, namely,
NHu<z,,ord,,=1landu >z, and (2)0,,=0andu = z,,,.

In case (1), with 7,(+) as in (14), '

(16) 41’12 n[{sn(u9 (5n+1’ zn+1)) - da(u’ (6n+1’ zn+1))}2] é Tn(u) *

In case (2), the inequality (@ + b)* < 2(a* + b*) along with the intermediate
term (1 + min {&,(,,,), 1})a(#)/a(z,,,), the definitions of d, and $, in (3) and
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(15) respectively imply that for 6,,, = Oand 4 > z

4En[{§'n(u’ (5'n+1’ zn+1)) - da(u’ (5n+l? z’n+1))}2]
(17) = 2En[{&n(z'n+1) - a(zn+1)}2]
: i ayu) | _ _a) 1?
+ 2(a(R) + 1) En[{mm{l, &”(zw)} a(z,,+1)}:l

where we used the facts that min {1, (@,())/&,(z,,,)} and a(z,,,) are < a(R) + 1.
The first term on the rhs of (17) is 27,(z,,,). The second expectation is at most

(18) EnHmin{ &) _ _am) ,1}}2]

&n(zn+l) a(zn+1)
since a(u)a(z,,;) < 1. .

Now we apply Lemma 2 to (18) with 4 =1 — @,(x), B =1 — &,(2,,1),
a=1—a), b=1—a(z,,,) >0, (a(z,,,) = 1 will be considered below),
I = land y = 2. This application results in (18) < ¢,{r,(¥) + 7.(2,4,)} for some
absolute constant ¢, for a(z,,;, c0) > 0.

If a(z,,,) =1, then a(u) =0 since u > z,,, and hence a(u)/a(z,,,) =0
by our convention. Moreover, a(R)P[X; > z,,,] = a(z,,,) = 0 and hence
PlZ;>2z,,]=0 for j=1,...,n  Therefore, with probability one,
{a,(u))d,(z,,,)} = 0 for j=1, ..., n by our convention since u > z,,,. Hence
(18) is equal to zero if a(z,,,) = 1.

Combining the results of the two last paragraphs, (16), (17) and (18), gives
the desired bound. []

Three corollaries to Theorem 3 are given below. The first corollary shows
that the rate of convergence is n~! for §, of (15), the second one shows that
rate n~! cannot be improved upon while the third corollary obtains the rate n~*
obtained by Korwar and Hollander (1976) in the uncensored case.

COROLLARY 1. Let the conditions of Theorem 3 hold. Then S, is a.0. n~* uni-
formly in a provided n=* 337_, § (H (u))™* dw(u) is bounded in n.

ProoF. The result follows from the bound in the theorem upon
noticing that the assumed condition implies that (1/n)§ r,(¥)dw(u) and
(1/n) Sz 1a(Znsn) dw(u) < §5 07t 33, (Hy(u))~ dw(u) are bounded in n. []

Zn+1

COROLLARY 2. Under conditions of Theorem 3, the rate in Corollary 1 cannot
be improved uniformly in all a and all sequences {H,} if the support of w = R.

ProoF. The result will be proved by showing that D, = r,(S,, {H,},"*!, @) —
r(H,.,, a) = n~'c, for some positive constant ¢, for certain choices of a and {H,,}.
Let {H,} be any sequence satisfying the conditions of Theorem 3 and ad-
ditionally, be such that H,(a) = 0 for a point @ in R and a(R) = 1. Then
n{&,(x)} = X3..[Z; > x] for x < a by (12). Therefore using the definition of
S, for u > z,,, and §,,, = 1 as in case (1) of the proof of Theorem 3 and the
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equality obtained in Lemma 1 together with (14) show that
(19)  4nDy = §i5,y =10 s {12, @)1 — a() dw(u)} dG (5,14, Zasa)

where G is the distribution function of (9,,,, Z,,,).

Now let the measure «, z, and ¢ be such that 0< 1 — a(z) <
l —a(z, + ¢) < 1 for z, < aand ¢ in (0, a — z)). Now the rhs of (19) is posi-
tive since {3 a(u)(1 — a(u))dw(u) >0 for z,,, in [z,z,+ ¢) and since

POy = 1,2, < 2,4, < 2, + €] = a[z,, 2, + €) > 0 by the choice of z, and ¢. []
COROLLARY 3. If X, is uncensored for all n, then S, isa.o. (n~Y) uniformly in a.

ProoOF. The result is immediate from the bound in the theorem since P[4, =
0] = 0 and the integral n~* § y,(u) dw(u) = § a(u)(a(R) — a(u)) dw(u) < oo. []

ExAMPLE 1. Here we show how the theorem and its torollaries apply in the
situation where H,(4) = e~ on (0, o) and a(u) = ce=* for u > 0,6 > 0 and
¢ > 0. In this situation, all the conditions of the theorem and its corollaries
are satisfied if dw/dx = (2/r)te-*’[x > 0]. Below, we provide expressions for
r(H,,,, @), and the bound in Theorem 3, and the form for S,.

To obtain r(H,,,, a), notice that

(20) H(Hyp, @) = S{E[F*(u)] — E[d(#, (3p11s Zo11))]} dw(k)

where d, is given by (3). Obviously,
(21) E[FXu)] = a(u)(a(u) + )fe(c + 1),

since 1 — F is a Dirichlet process with parameter . Also, in view of (3),

(¢ + I)E[dX(u; (41 Zy1a))]
— (1 + Ce—f)u)ze—(ﬁ+0)u + cze—zeup[[)*w—:l — 1, Zn+1 < ll]
(22) + eME[[0,, = 0, Z,,; < ule®Znti(l 4 ce™Znt1)?].
= (1 + ce—f)u)ze—(ﬂ+0)u + 026_20"(0/(0 + ﬁ))(l _ e—(ﬁ+0)u)
+ Be‘”“{(ﬁ _ ﬁ)—l(eu(ﬁ—ﬂ) _ 1) + 26‘3‘1(1 _ e—ﬁu)
+ Cz(ﬂ _|_ 0)—1(1 _ e—(ﬂ+0)u)} .
Combining (20), (21), and (22) gives the desired expression for r(H,,,, a). Since
(Hyy, a) = § E[F(u)] dw(u) < (c 4+ 1) § e=(1 + ce?) dw(u), it easily fol-
lows that r(H,,;, @) < {ce™®® + e~} /(1 + ¢) < 1.
In the situation described above, S, takes the following simple form.

(€ + DS, (Bnsa Zoi))
=1+ cmin{eG,(u), 1} if Z,,, >u

23 = ¢ min {e*G (), 1 if 0,,=1, and w>= 2,
+1 = +1
. (b2 G ()
= {1 + ¢ min {ef?211G (Z,.,), 1 mm{e——;—-——”—, 1}
{1+ emin (#2416,(Z,,.), 1} iz

if 0,,,=0, and u>2,,,
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where nG,(:) = X", [Z ; > +]- This estimator is easily programmable because
the only quantity that changes with n is G, which can be recursively obtained
since nG,(+) = (n — 1)G,_(+) + [Z, > +] for n= 1,2, .... The question of
estimating § can be argued as follows. Since Z(=n"'Y"_,Z;) and 1 —0
(0 = n™* X3, 0,) are consistent moment estimators of (§ + B)~* and B(4 + B)*
respectively, it follows that B = (1 — 5)/2 is a consistent estimator of 3. If j
is assumed to be unknown, then one can use (23) with 8 replaced by 8.

By bounding the integrals in the rhs of the bound in Theorem 3 by 2y,(u),
we obtain that this bound can simply be bounded by nc$/(26 + ), and conse-

quently, it can be shown that S is such that
(24) D, < ¢en™[{B(26 + P)} + eV + e,

where c, is an absolute constant.

The estimator S, of (23) was applied to a practical example involving survival
times of melanoma patients. We obtain the survival curve estimator S, of (23)
using this data. This curve along with the actual survival data are given in the
Appendix.

5. Empirical Bayes estimation with {H,} unknown. In this section, we obtain
a rate of convergence of D,, defined in (5), to zero corresponding to S, (see
around (27)) when {H,} is unknown under some mild restrictions on {H,} and
a. To startoff, the following assumption is made throughout this section:

(25) a(R) is known, a(0)= a(R) and support of H, = (a,, o)
where f{a,} C R=.

Throughout ¢, ---, c, denote constants. For ease of notation, let a(0) =

The plan of this section is as follows: we first obtain estimates of (a(x))(H(x))
and —a'(x)(H(x)) where nH(x) = y_, H(x) and a’ = da/dx. By taking the
integral of the ratio of these two estimators over (0, ¢], we obtain an estimate
for —{§{a’(x)/a(x)} dx = —In (a(r)+) where the equality follows by the assump-
tion «(0) = 1. From this estimate of In (a(r)), we obtain an estimate a,(¢) of
a(f) (= e ™). a(.) when substituted in d,(+, (0,,;, Z,4;)) of (3) gives the
(n + 1)th component S,, of the empirical Bayes estimator whose rate of risk
convergence is the main result of this section.

For first reading, one can look at the form of §n given below and the main
result of this section (Theorem 4) omitting the details in between. For defining
S, assume that

(26) —a'(x)/a(x) < r(x), aknown function,
and that K is a known real valued bounded function on R vanishing off (0, u,),
u; < oo, such that { w'K(u)du = 0 for j=1,...,1 — 1 with [ a fixed positive

integer and § K(u) du = 1. It will be shown below that (ne,)a(R) Y7, [0, = 1]
K(Z; --- x)[e,) is a good estimator of —a’(x)H(x) whenever ¢, | 0, and
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obviously, n~'a(R) 333_,[Z; > x] is a good estimate of a(x)H(x). Consequently,
the integral of the ratio of these estimators over (0, ] will be a good estimator
of — {4 {a'(x)H(x)/a(x)H(x)} dx = In a(r). In view of this discussion, the estimator
S, is defined by (15) with &, there replaced by a, where

(27) a,(t) = exp(— § J.(x) dx)
with

(28)  Pu(x) = max {min { in1 [jf Z:"_l]fgzé :]x)/ &) r(x)} ) 0} .

The next three results are designed to lead to a bound on the mean

square error of @, as an estimate of a. Since Z,, - .-, Z, are independent with
PlZ; > x] = a(x)Hy(x) for j =1, ..., n, it readily follows that
(29) nE[{n= 3512, > x] — (H(x)a(x))]

= (aC){n(H(x)) — (2(x)) L= (HL*))} -
LemMa 3. If o' and the Ith derivatives of o', H,, - - -, H, are uniformly bounded,
then

(30) E[{(ne,)™" 23110, = 1]1K((Z; — x)/[e,) — (H(x))a'(x)}]
é cl(snzl + (nen)_l) M
Proor. The distribution of (9;, Z,) for j =1, - -, n and a change of variable
imply that

(Bl El(ne))a(R) D=1 [0; = 1IK((Z; — x)fea) + &' (x)H(x)]

= —[JK@){e'(x + e, 0)(H(x + ¢,v)) — &'(x)(H(x))} dv]
since § K(v)dv = 1. Expanding the expression in the curly brackets in (31),
using the /th order Taylor expansion, and then using the orthogonality condi-
tions on K, one obtains that

(32) [lhs of (28)| < ¢,e,} .
Moreover, by independence of (3, Z,), ---, (d,, Z,) and a change of variable,
(ne,)* Var {(ne,)™* 335, [0, = 11K((Z; — )/e.)}
(33) = 2i- Ell0; = 1]K%(Z; — X)/[en)]
< ne, § KX)(H(x + &,0)a’(x + €,v) dv < ¢yne, ,

where the last inequality follows since «’ is bounded by assumption. Adding
the square of (32) to (33) gives (30). [J

A needed corollary to (29) and (30) is

COROLLARY 4. Let 0 < ¢, < 1. Under conditions of Lemma 3,

E[[$u(x) — (@ () N@()I] = (1 + P} a() (HE) e + (ne,) ™} -
Proor. By the definition of &, in (28), |§,(x) — {a’(x)/(a(x))}|? is exceeded by

I e R
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since —a’(x)/(a(x)) < r(x). We now apply Lemma 2 of Section 4 to the expec-
tation of (34). Applying Lemma 2 with

A= i aR)6; = 1]K(Z; — x)/e,)/ne, , B = n'a(R) 3.,[Z; > x],

a = —a'(x)H(x) and b = a(x)H(x) (> 0 if a(x) > 0 since A(x) > 0 by assump-
tion), I = r(x) and y = 2 results in

(35) E[(34)] = &(1 + P(0))a(x))*(H(x) e + (ne) 7} 5
after some simplification for a(x) > 0 due to Lemma 3.

If a(x) = 0, then a’(x)/(a(x)) = O by our convention. Also, P[Z, > x] =0
forj=1,...,n. Therefore, [Z; > x] and K((Z; — x)/e,) are both zero with
probability one for j = 1, . - -, nsince K vanishes on (—o0, 0). Thus both ratios
in the modulus in (34) are zero with probability one by our convention and
hence, if 1 — a(x) = 0, so is (34). This together with (34) and (35) completes
the proof. [J

Recalling that a,(f) = exp{{ §,(x) dx} is the proposed estimator for a(#), its
mean square error can be bounded as in the following subcorollary.

SUBCOROLLARY 1. Under the conditions of Corollary 4,
E[|a, (1) — a(0)]’] £ est{§5 (1 + ri(x))(a(x))"2(H(x))* dx}{e, + (ne,)7}.

ProoF. The result follows immediately from Corollary 4 upon rewriting the
lhs of the result as E[|exp{— {} ¢,(x) dx} — exp{— {} (a’(x)/(a(x))) dx}|*] and ob-
serving that this expectation is <

E[|§5 {a(x) + {2/ (x)(@(x))} dx}[] < 1§ E[{a(x) + {o'(x)/(a(x))}}] dx
where the first inequality follows by applying the mean value theorem and noting

that {;¢,(x)dx and {}{a’(x)/(a(x))}dx = 0 and the second inequality follows
from the inequality between first and second moments. [J

The following main result can be proved using Lemma 2 of Section 4, the
above subcorollary and the method given for the proof of theorem except for
the following change in the case when a(Z,,,) = 0: If a* = inf {a|a(a, ) = 0},
then Z,,, < a* with probability one so a(z,,,) > 0 for z,,, < a* and P[Z,,, <
a*] = 1. Since Z,,, has a density wrt Lebesgue under the conditions of Lemma
3, P[Z,,,=a*] = 0. So we essentially have to consider only those z,,, for
which a(z,,,) > 0 which is necessary for the application of Lemma 2 for our
situation here as in the proof of Theorem 3.

Pulling together all the assumptions made so far, we state the main result of
this section as

THEOREM 4. Let a(R) be known and support of H, = (a,, o). If &' and the
Ith derivatives of o', Hy, - - -, H, are uniformly bounded and —a'(x)[(a(x)) < r(¥),
a known function, then S, defined by (15) with &, replaced by &, of (27) with
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e, ¥+t = n~!is such that

RUEOD, = w0 (S, (H ) @) = My, @)}
(36) < e §5 u{§3 (1 + r())(@(x)7(H(x)) ™" dx} dw(u) .
If the rths of (36) is uniformly bounded in n, then 8, is a.0. (/@)

REMARK 2. The above rate result is close to the best possible exact rate O(n™")
in view of Corollary 2 of Section 4 for large [.

ExAMPLE 2. Here we explain how the above theorem can be applied to the
situation in which H,(z) = e~#* and a(u) = ce=* for u, ¢ > 0 where ¢ and 8 are
unknown. However, we assume that § < #*, a known quantity, and hence
—a'(x)Ja(x) < 6 < 6* = r(x) for x > 0. We take the kernel function K in our
estimator (27) to be

(37) K(u) = 4 — 6u if 0gsugl,
=0 otherwise.

Then § K(u)du = 1 = 1 — § uK(u) du. Thus K satisfies the conditions imposed
on it in the above theorem with u, = [ = 1. Take ¢,® = n~*in (27) and (28).
If dw/dx = (2/z)te=**[x > 0], then the bound (36) is finite. Consequently, the
above theorem gives a.o. empirical Bayes distribution function estimators with
rate O(n~%) corresponding to [ = 1. Also, observe that the expression for
r(H,,,, a) is given by (20), (21) and (22). The bound in (36) is given by

(38) el + OF)a-tens+n?

If H, and a are gamma distributions with parameters bounded above instead
of the exponential distributions as described above, then r(x) can be taken to
be a polynomial, and hence, the bound (36) will still be finite. Therefore, the
conclusion of the theorem follows. If K is as given in (37), then the rate is
again O(n%).

REMARK 3. As in the known {H,} case, the boundedness of (33) is really a
tail condition on H, a and w.

6. Some possible allied results, generalizations, and concluding remarks. If
a is known to be such that a(R) = a(—oo, a], then the weight function w
in the loss function L of (2) should assign all its mass to (—oo, a] since
P[F,|F,(a) = 1] = 1. If a is such that H,(a) = 1> H,(b) for all b6 < a and
n, then we should restrict the range of the integral in the loss function (2) to
(— oo, a] since there is no way of estimating a(— oo, c] (or a(c, o)) for ¢ > a
in view of Theorem 2 of Section 3 on identifiability, the form of d, in (2) and
Lemma 1 of Section 2.

The results of this paper can be used to obtain a.o. procedures in empirical
Bayes monotone multiple testing problems, thus generalizing Theorem 3.1 of
Susarla and Phadia (1976) in the uncensored case to the case when {H,} is known
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and a slightly weaker result when {H,} is unknown. The results given in this
paper can be extended to the situation when one has m, (in {1, - - -, m}) obser-
vations in the nth component problem with tedious manipulations. If F is dis-
tributed according to a process neutral to right (see Doksum (1974)), it should be
possible to obtain results similar to Theorems 3 and 4, thus giving the empirical
Bayes results with the component problem as that described in Ferguson and
Phadia (1975) in a more general situation than that considered by them in their
Bayes estimation problem.
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APPENDIX
Listed below are the survival times (in weeks) of 81 participants from a
melanoma study conducted by the Central Oncology Group with headquarters
office at the University of Wisconsin-Madison. The survival times which are
censored are indicated with a 4 sign. They are listed sequentially in order of
entry into the study.

136, 58, 55+, 181+, 21, 23, 1904+, 65, 234
194+, 14, 90, 20, 130, 2134, 2154, 124, 108+
54, 98, 1934, 138, 141, 110, 674+, 50, 26

103, 59, 134+, 1474, 1524, 65, 40, 34, 57
814, 1524, 1254, 1514, 34, 158+, 27, 1484, 27
1324, 1404, 32, 1304, 38, 85, 1294+, 100+, 19
118, 53, 1204+, 66, 46, 37, 50+, 114+, 124+
26, 102, 934, 80+, 60, 864, 214, 444, 23
70, 734, 19, 38, 31, 25, 764, 13, 164

Using these data, we compute the empirical Bayes estimator given by (23) with
0401 =0, Z,,, =16, n=80and 8 = f§ = (1 — §)/Z as the empirically determined
value of 8 as described immediately after equation (23). For the abvoe data,
1 —6=1—48=.425, Z =79585 = 88.1875 and f = (1 — 0)/Z = .00482.
Since exp(fZ,,.)G,(16) = exp(165)(38) = 1.053 > 1, we see that for this ex-
ample the estimator (23) with 8 = § becomes,

$.(u) = c——il——l{l + cmin (exp(Bn)Cu(u), 1)} if u < 16

— min (e"P(ﬁ(” — 16))G,(1) | 1> if =16,
(3% -
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or more simply since exp(Bu)G () > 1 for u < 16,
S.(u) =1 if u<16
= min (exP(ﬁ(” — 16))G,(4) | 1) it u>16.
(3%
The table below gives the values of this estimator for various values of u based
on the above data.

<16 20 40 60 80 100 120 140 160 180 200 220 233 = 234
S.(u) 1 .980.835.745 .681 .615 .529 .326 .180 .198 .093 .034 .036 0

Note that $,(180) = .198 > .180 = §,(160). This peculiarity of an increasing
survival estimator over a short range is brought about by the product of 2 fac-
tors exp(B(u — 16)) and G,(u), the first exp (B(u — 16)) increasing continuously
in u and the second G,(u) decreasing by discrete jumps. Thus over an interval
in which G, (u) stays constant, $,(u) increases. This appears to be an undesirable
feature of the estimator caused by use of (H,(x))™* in equation (12). We have
not investigated alternative estimators &,(x) defined by (12) which avoid this
problem. This would be an interesting area for future work.
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