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STRONG CONVERGENCE OF A STOCHASTIC
APPROXIMATION ALGORITHM

By LENNART LJUNG

Linkoping University
Convergence with probability one of a recursive stochastic approxi-
mation algorithm is considered. Some extensions of previous results for
the Robbins-Monro and the Kiefer-Wolfowitz procedures are given. An

inportant feature of the approach taken here is that the convergence ana-
lysis can be directly extended to more complex algorithms.

1. Introduction. Stochastic approximation algorithms of different variants
have now long been studied in many contexts. In this paper the following par-
ticular recursive algorithm will be studied:

(1) x(m) = x(n — 1) + 7(M[f(x(n — 1)) + e(n) + S(n)],

where f(x) is the negative gradient of a real valued function V(x), {e(n)} is a
sequence of random vectors, {8(n)} is a (possibly random) sequence tending to
zero, and {r(n)} is a (possibly random) sequence of positive scalars. Algorithm
(1) coincides with the one recently analysed by Kushner [7].

This algorithm has obvious relations to the Robbins-Monro procedure [11]
which perhaps is the best known stochastic approximation algorithm. The
Robbins-Monro procedure is a way of stochastically solving the equation

f(x) =0 N
where to each value x there corresponds a random variable Y = Y(x) with dis-
tribution P(Y(x) < y) = H(y|x) such that

f(x) = §2a y dH(y | x)
is the expectation of Y for given x. The Robbins-Monro procedure for finding
the root of f(x) then is

) x(n) = x(n — 1) + 7(n)y(n) ,
where y(n) is a random vector whose distribution function for given x(1), - --,
x(n — 1), y(1), -+, y(n — 1) is H(y|x(n — 1)). The asymptotic properties of
(2) have been studied by many authors, e.g., [1], [2], [11], etc.

If in (1) B(n) = O all n, and {e(n)} is a sequence of identically distributed ran-
dom vectors obeying

3) Ele(r)|e(n — 1), -+, e(1)] =0,

then algorithm (1) can be put in the framework of (2). However, in many
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applications where (1) is used, the disturbances {e(n)} are correlated, which vio-
lates (3) and then (1) no longer can be described in terms of (2).

The Kiefer-Wolfowitz procedure [6] for minimization of a function has a
similar relationship to (1), and as is further described in [7] and in Section 5
below, the inclusion of the terms {(n)} then is essential. Algorithms of the
form (1) are also widely used in many applied fields, such as control theory,
parameter estimation methods, etc. More general variants of (1) have been
analysed by the present author [8], [9], [10] with particular emphasis on control
theory applications. The approach in these references is to associate (1) with a
deterministic differential equation, in terms of which strong convergence of (1)
can be studied. In the study by Kushner [7] a similar idea is pursued, though
with an entirely different technique and for convergence in probability.

The conditions that have to be imposed on the algorithm (1) are described in
Section 2, while Section 3 contains the basic lemmas of the analysis. The main
results about strong convergence of (1) are given in Section 4. Applications of
the results to the Robbins-Monro and to the Kiefer-Wolfowitz procedures are
treated in Section 5. As remarked above, algorithm (1) is just a simple special
case of the algorithms studied in [10]. In Section 6 extensions of the convergence
results to these more general algorithms are described.

2. General assumptions. A main concern of this paper is to prove conver-
gence with probability one (w.p. 1) of (1) into the set

(4) Ds = {x|f(x) = 0} .
To do this, certain assumptions have to be imposed on (1) and these conditions
will now be stated.

The following general assumptions will be used throughout the paper.

Al: V(x)isatwice continuously differentiable function on R" and (d/dx)V(x) =
—f(x) (column vector).

A2: {x|V¥(x) £ C}is compact for all C < sup V(x).

A3: The set Dy consists of a finite number of isolated connected sets.

A4: {r(n)} is a (possibly random) sequence of positive scalars, such that
7(n) > 0 and 37 y(n) = oo (W.p. 1).

AS5: {B(n)} is a sequence of R" valued random variables, such that f(n) — 0
w.p. l as n — co.

By A3 it is meant that Dg can be written as a union of connected sets, such
that each of these sets has a strictly positive distance to the union of the other
sets. The assumption A3 can be replaced by

A3’: The function V(x) is n times continuously differentiable, where n is dim x,

as is explained after Lemma 1.
In the main lemma the following two assumptlons about the behavior of (1)
and about the properties of the sequences {e(n)} and {y(n)} are introduced.
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Bl: Let z(n) be defined by z(n) = z(n — 1) + y(n)(e(n) — z(n — 1)); z2(0) = 0.
Then z(n) > 0 w.p. 1 as n — 0.
B2: liminf, ., |x(n)] < co w.p. 1.

Notice that assumption B2 as such does not preclude that a subsequence of
{x(k)} may tend to infinity.

These conditions are fairly implicit, and more easily checked ones are desir-
able. Several ways of verifying Bl and B2 are possible, and in two lemmas it
will be shown that, e.g., the following conditions ensure B1, B2.

Cl: e(n) has an innovations representation

e(n) = Li-o h(n, k)u(k)
where {v(k)} are independent random vectors with zero mean values and unit
covariance matrices, and such that EJu(k)|** < C for some integer p. Further-
more |k(n, k)| < a,A*"* where {a,} is nondecreasing and 2 < 1.
C2: {r(n)} is a deterministic, nonincreasing sequence such that

1 1

lim sup,,_,., —
r(n)  y(n—1)

< oo

Moreover
L7 (r(ma,?)r < oo
where «, and p are defined in Cl1.

C3: sup |(d/dx) f(x)| < oo.
C4: D; = {x||f(x)| < 9} is compact and nonempty for some 6 > 0.

The reason for including a sequence {a,} in Cl that may tend to infinity is to
allow treatment of schemes like the Kiefer-Wolfowitz -procedure, where the
variance of the disturbances increases to infinity.

Finally, it will be shown that the set Dg defined by (4) into which the esti-
mates converge may be replaced by the smaller set

®) D, = {x | f(x) = 0 and the matrix ‘_;_1_ f(x) is negative semideﬁnite} .
X

This requires the following additional assumptions.

D1: The sequences {5(n)} and {y(n)} are deterministic sequences. Further-
more, the sequence {e(n)} consists of independent random vectors with zero
mean values and covariance matrices obeying

¢ a,- I < Ee(n)e(n)” <¢,-a,-1

for some strictly positive scalars c,, ¢, and where {a,} is a nondecreasing sequence
of strictly positive scalars. Moreover,

Ele(m)[*/(Ele(n)]’)* < ¢, -

D2: The set Dy consists of isolated points.
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3. Basic lemmas. Convergence of (1) w.p. 1 follows from the following main
lemma.

LemMA 1. Assume Al to AS and Bl to B2. Then
x(n) — Dg = {x| f(x) = 0} w.p. 1 as n—oo.
Proor. Let Q* be a subspace of the sample space such that
Q* = {BI holds} n {B2 holds} n {A4 holds} n {AS5 holds} .

Clearly P(Q*) = 1. Consider from now on a fixed realization o* € Q* and let
us study the sequence {x(k)} = {x(k, »*)}. We shall throughout suppress the
argument w*, on which most of the variables (including subsequences) below
depend. In view of B2 there exists a cluster point x* to {x(k)}. Let n, be a
subsequence such that x(n,) — x*. Suppose that | f(x*)| = 6* > 0. (“|-|” denotes
here, as everywhere else, the Euclidean norm.) From (1) we obtain directly

6) X)) = x(m) + Zi,ar(k)ek) + Ziar()Bk) + Zi,mrk)f(xk — 1)
= x(m) + Sim, J) + St J) + %) Tipnar(k) + R(ny, J, x*) 5

where

Si(me J) = T r(k)e(k)

Sy(me, J) = Zf;kﬂ 7(k)B(k)

R(m, o x*) = D r(R)(f(x(k — 1)) — f(x*)) .

Now suppose that n, < j < m(n,, t) where m(n,, 7) is such that
(7) faeir()) St < as m,—oo.

The number m(n,, ) is finite for any k and any r < oo due to A4. Then we
claim that

®) Si(n, j)— 0 uniformly in n, < j < m(n, )
for fixed z as n,— oo.
PROOF OF CLAIM.

i =2t |Sn, j)| < max, , |B()| - v — 0 as n, — oo according to AS.
i = 1: From the definition of z(n) in Bl we have

2(j) = 2(m) + Su(m J) — Zidmr(k)z(k — 1)
or
1Sy DI = 120 + l2(m)] + = max, ¢ |2()] -0 as n,— oo

according to BI.
Let B(x*, p) = {x||x — x*| < p} and C* = max {Sup,e sieny) [(4/dx) (X)), 1}.
Choose from now on a fixed sphere B* = B(x*, p*) with

0 < p* < min (1, 6%/8C*) .

We recall that 6* = |f(x*)|. The reason for this particular choice of p* will be
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clear below. Clearly,
IR(nys j> X*)| < Max,, gz, |f(X( — 1)) = f(x¥)] - 7.
Choose from now on
T =k = p*20% (< 1/(16C))
and denote m(n,, *) = m,*. From (6) we have that for j < m,*,
9 xX() = x| = x(m) — x*[ 4 [Sym, DI+ 1S:(m DI+ 1) Ziea 1K)
+ t* max, g, [f(x@E — 1) — f(x)] -
According to (8) there exists an integer K;, such that for k > K,
ISima )l < 0*/8  i=1,2, n <)< m

and
|x(n,) — x*| < p*/8. (Then in particular x(nm,) € B*.)

If x(iye B* fori = n,, ---,j — 1, then

max, .., |[f(X(@ — 1)) — fx*)] < C*p*
and

|X(j) — x*| < p*/8 + p*/8 + p*[8 + d*t* + Cxp*r*
< p*[8 + p*[4 + p*[2 + p*[16 < p* .
Hence also x(j) € B*. By induction it follows that
x(j)eB* m=j=m*; k>K,.

In particular we have

(10a) x(m*) — x* = v*f(x*) + Ry(n,)
where
(10b) IRy(m)| £ [x(me) — X*| + [Si(me, m*)| + |Sa(res )]

+ Crprex 4 ¥jex — Ik r())] -
Now (subscript x denoting derivative)
V(x(m,*)) = V(x*) 4+ (x(m*) — x*)TV (x*)
(11) + 3(x(m*) — x*)TV . (6)(x(m*) — x¥)
= V(x*) + o*f(x*)TV (x*)
+ Hx(m*) — x*)TV(E)(X(m*) — x*) 4 R,"(m)Vo(x*) -
Now V, (x*) = —f(x*) and V_,(§) = —f.(§); § € B*. Hence
R, (m)f(x*) 4 $(x(my*) — x*)Tf(E)(x(m*) — x)|
(12) < o*{lx(m) — X¥*| + |Su(me> mF)| + |y, M)
+ Croret 4 0%[c* — ()]} + CHo*.
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Since x(n,) tends to x* and according to (7) and (8), there exists an integer K*,
such that for k > K*

|x(n,) — x*| < 0*7* /32
1S:(me, M *)| + |So(my, m*)| < 6%c*[32
[ — Sk, 1)) < /16
Then the RHS of (12) is less than (recall that p* = 2*r*)
5% <6*‘r* o*T*  g*rk gk

C* . 4(5%c+)?
32 32 8 +16>+ (0*7)

1(5%)2 * * ()% 2% C*
< HOO - 4Ky

= Je oy
where the inequality follows from z* < 1/(16C*).
Hence,

(13)  Vx(m*)) < V(x*) — o) + (8%)'n*2 < V(x*) — o*|f(x*)[[2
for k > K*. This holds for all cluster points x* such that

/() > 0.

Therefore, if x* is any cluster point with V(x*) = V* and | f(x*)| = 6* > 0 then
(13) implies that x( j) belongs infinitely often (namely for j = m,*, each k > K*)to

D* = {x|V(x) < V* — c*(6%)}/2}

which is compact according to assumption A2. Hence there is at least one cluster
point in D*, and if this does not belong to Dg we may repeat the argument.

Let ¥ = inf ¥(x) where the infimum is taken over the cluster points of {x(k)}.
Since the set of cluster points is closed, it follows that there is a cluster point X
with V(%) = V. Obviously % € Dg; otherwise we could use (13) to infer the exist-
ence of a cluster point with still lower value of V. Similarly, all cluster points
% with V(X) = ¥ must belong to Dy.

We shall now proceed to show that there can be no cluster point outside Ds.
Such a point x° would obviously yield ¥(x%) = ¥° > V. Then for some suffici-
ently small d > 0, V(x(k)) > V+d infinitely often. Since V is continuous we
can according to A3 choose this d so small that the compact set

(1) D:{x|17+_;_§ V(x) < 17+d}

has no point in common with D;.

Since the “step size” |x(n 4+ 1) — x(n)| tends to zero when x(n) € {x|V(x) <
V + d}, it follows that x(k) would be inside D and cross it infinitely often
“uphill” and “downhill.” Consider now a subsequence of “upcrossings” of D.
Let {x(n,’)} be defined as follows:

d

Vix(n, — 1)) < V + 5

Vxm) 2 7+ 5
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and assume that the smallest positive s for which x(n, 4+ s)g D yields
V(x(n,' + 5)) > V + d. Thatis, n,’ is the kth time the iterate is =¥ + d/2 just
after it is < ¥V + d/2 and also where the sequence {x,} does not enter {x| V(x) <
V + d/2} until it first leaves D.

Let % be a cluster point to the sequence x(n,’) and let x(n,”’) be a subsequence
of this sequence tending to %. Clearly, V(%) = ¥ + d/2; and let | f(%)| be denoted
by 0, which is strictly greater than zero. Now denote

d
21 1}:@

and let 5 > O be less than min (1, §/8¢, d/2) and so small that B(%, p) has no point
in common with the set {x|¥(x) = ¥V + d}. Let # = /2. Now, apply result
(13) to the cluster point %, which gives, for sufficiently large &,

max {supxe B(3,1)

V(x(m(n,", 2))) < V + izl. e

From the analysis preceding equation (10a) it also follows that x(j) € B(%, p);
n'' < j < m(n/, t). Consequently, the sequence {x;, i > n,”} will not enter the
set {x| ¥V(x) = V + d} when it first leaves D, which isa contradiction to the defini-
tion of n,” as a sequence of upcrossings. Therefore D will not be crossed upwards
infinitely many times, and since there is a cluster point in Dy, the sequence {x(k)}
will remain in any arbitrarily small neighborhood of D for sufficiently large k.
There are consequently no cluster points outside Dy, and the proof of Lemma 1
is complete. []

Note that in the proof a fixed realization is considered throughout. There-
fore the conclusion of the theorem holds for any sequences {e(n)}, {r(n)}, {8(n)}
(regarded as realizations of stochastic processes or not) such that Bl, B2, A4
and AS hold.

REMARK. Notice that assumption A3 is used only to infer the existence of
the set D in (14) disjoint from Ds. For a general set Dg but under the additional
assumption A3’ it follows from the Morse and Sard theorem that the set S =
{z| V(x) = z, xe Dg and z < V°} is a compact set of measure zero. This also
implies that a set D can be chosen disjoint from D;. Notice also that it follows
from the proof that {x(n)} cannot oscillate between the isolated sets in Dg.

In order to verify assumption Bl certain conditions on the sequences {y(n)}
and {e(n)} have to be introduced. The recursion in Bl can be solved by

(15) z(n) = Xk, $(n, k)e(k)
where
P(n, k) = 7(k) [Tk (1 — 7)) k<n;  §(n,n)=y(n).

If {e(n)} is a sequence of independent random variables, many approaches to
prove convergence of z(n) are available, but we shall not pursue that here (cf.
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[8]). The fairly common choice y(n) = 1/n gives ¢(n, k) = 1/nand then various
“laws of large numbers” can be applied to (15). In Cramér and Leadbetter [3],
pages 94-96, the following variant is given:

Let y(n) = 1/n and assume Ee(n) = 0, and that

nP+mP

(16) ‘Ee(”)e(m)‘ < Km

0<2p<qg<l.

Then z(n) — 0 w.p. 1 as n — oo. (In [3] this result is given for continuous time
stochastic processes, but the proof is valid also for discrete time processes.)
Another result that appears to be useful in applications is the following.

LeMMA 2. Assume Cl1 and C2. Then B1 holds.

Proor. Let
1 1

) =1y

The moments of z(n) are estimated in the following claim.

L = limsup,,_,.,

Cramvm. If L < 1 then, for some positive constant C,
Elz(n)|" < Ca,)(r(n))?; 1<r=<2p.
The claim is shown by straightforward calculation of the moments of sums like

T, = D2y ()T (0 D)e(i) where lim,_, ¥550 y()) =7 >0

2
and then linking such estimates together using Minkowski’s inequality. The
formal proof is given in [8].

With this claim, Chebyshev’s inequality can be applied to yield
C,, r?(n)a,®

g

P(jan)] > o) < FEO” <
and

N COPPER NEOESTS

The Borel-Cantelli lemma now assures
z(n) — 0 as n—oo w.p.l. 0

If L > 1 we take
2(n) = 2(n — 1) + Ly(n) (i e(n) — - 2(n — 1))
L L
which, according to Lemma 1 (V(z) = (1/2L)z*) converges w.p. 1 to zero if
Hn) = 2(n — 1) + Ly(n) (%. e(n) — 2(n — 1))

does. But this latter algorithm converges w.p. 1 according to the first part of
this proof. []
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The reason for assumption B2 is that it very well may happen that the sequence
{x(n)} tends to infinity even when assumptions A and Bl are satisfied. Further
conditions on the functions ¥(x) and f(x) = —(d/dx)V(x) have to be introduced
to ensure B2.

LeMMA 3. Assume Al to AS, Bl and C3 to C4. Then B2 holds.

Proor. Consider as in the proof of Lemma 1a fixed realization v* € Q*. Let
0 > 0 be a constant, such that C4 holds and denote ¢ = sup |f,|, which is finite
according to C3. Introduce, analogously to the proof of Lemma 1, 5 =
min (1, §/8¢) and ¢ = $/26. Denote m(k, ) = m,. According to (7) and (8)
there exists an integer K, such that for k > K
[S:(k, )| + [Si(k, )| < 67/32
e — Sih 1) < /16
(cf. expressions below equation (12)). This implies, following the arguments
leading to (13) and taking x* = x(k) that if for some k > K x(k) ¢ D;, then
V(x() < V(x(k)) — 82 .
Therefore, if |x(k)| — oo, x(k) would remain outside the compact set D; from a
certain K, on. With K, = max (K,, K) and n, = m(n,_,, 7); n, = K, we then
would have )
V(x(ny)) < V((K,) — je2
which would imply that ¥(x) —» —oco. This is impossible since V' is bounded
from below, according to A2. []

The set Dy consists both of local minima, local maxima and saddle points of
V. In fact, as might be expected only the local minima are possible convergence
points as shown in the following lemma.

LeMMA 4. Assume Al to AS, Bl and D1 and that x(n) — x* on a set of positive
measure as n — oo. Then f(x*) = 0 and all eigenvalues of the matrix

d
L

*

have nonpositive real parts.

REMARK. Since f(x) = —(d/dx)V(x), the matrix —(d/dx)f(x)|,,«is the second
derivative matrix (the Hessian) of ¥ at x*. -The condition is that this should be
positive semidefinite.

Proor. Let x(n) — x* on Q*, with P(Q*) > 0. Denote f,(x*) = 4. Then
(17) f(x) = fx*) + Alx — x*) 4 g9(x — x¥)
where

(18) g(x)/lx] -0 as x—0.
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It follows directly from the proof of Lemma 1 that f(x*) = 0. Suppose that
the assertion of the lemma is not true, i.e., that at least one eigenvalue of 4 is
positive.
Let L be a left eigenvector for this eigenvalue:
LA=pL; p>0.

Introduce the following notation:
L(x(n) — x*) = y,, LA(n) = B.., Lg(x(n) — x*) =g, , é, = Le(k) .

Then E(e,)* = L[Ee(k)e(k)"]L" = &,.
Multiplying (1) by L from the left gives, using (17),

(19) Ve = Yemr + () #Yucs + & + B+ Tuma] -
Solving (19) from k = n + 1 to k = m gives

(20) ym = L(m, n)y, + f(m, n) + B(m, n) + G(m, n)]
where

L(m, n) = TI2a (1 + pr(k))
(21) flm, n) = 3n, r(k)L(k, n)7e,
B(m, n) = 3w T(k)r(k1 ”)_l.ék

G(m’ n) = 2imn T(k)r(k1 n)_lgk—l .
Let

A(m, n)* = Ef(m, n)* = 3», y(k)’L'(k, n)*a, .
Now, choose m = m(n) so large that
(22) A(m(n), n)T'(m(n), n) = 1.
This is possible, since I'(m, n) tends to infinity as m — co for any fixed n, accord-

ing to (21), (A4) and to the fact that # > 0.
Now, the random variable

§n = A(m(n), n)~f(m(n), n)
has zero mean, unit variance and fourth moment
B, = [3 SR %pmnss 1(6)'7(k) T (ks m)~T (ks n)EL, &, JA((n), n)*
= 3 4 [3 TEW r(RYEES — a)]A(R(n), m)* < 3(1 + G-
The last inequality follows from Schwarz’ inequality since
Eetr — a2 < Cya,?
according to assumption D1.

Since &, has unit variance and bounded fourth moments there exist constants
C, > 0, C, > 0, independent of n, such that

Pl =zC) =G,

The random variable &, is constructed from {e,, n < k < m(n)}. It is therefore
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independent of &, for n’ > r(n). The second Borel-Cantelli lemma can therefore
be applied to an infinite sequence of independent &, , giving that

(23) 6 =C, >0 for infinitely many n w.p. 1, i.e.,

in particular on Q*.
Now from (20), with m = m(n)
(24) = = A(m, n)['(m, n)H(rm, n)

where
H(m, n) = A(m, n)™"[y, + B(m, n) + G(m, n)] + &, .

Since we assume that y,,, tends to zero on Q*, (24) implies according to (22)
that

(25) H(m(n),n) >0 on Q* as n—oo.
Since &, is independent of y, and of B(m, n), it follows from (23) that also
|64 + A(m, 1) (y. + B(m, n))|

is greater than a strictly positive constant i.o. w.p. 1. Therefore (25) would
imply that A(m, n)~*G(rm, n) does not tend to zero on Q*. Consequently, for
some subsequence n, (with m, = m(n,))

0 CL A(rh,,, nk)‘lG(rhk, nk)
<A@y, m)™t Dk (DT m)HF;5-4]

1 _ - _
< 7 A(my,, n)™ max, o 19, »

where we in the last inequality used the fact that

2 ()T, n)~ = .:7 all n.
Moreover, from (18)
3 < rx(j) — x%) - Ix(j) — x*]
where r(z) — 0 as z — 0. Hence, on Q* as x; — x*, it follows that
A(my, n,)"' max, o |x(j) — x*|—o00  as k—oo.

Let the maximum be attained for j = r,. Since A(m, n) is decreasing as n in-
creases it follows that (s, = m(r,))

A(sy, 1) Mx(r,) — x*| — 00 .

According to assumption D1 a full rank random vector, independent of previous
data is added to x(n) for each n. Therefore, in a sufficiently small neighborhood
of x* the distribution of x(n) will be nondegnerate. It consequently follows that

A(sy r,,')‘ly,.;c — 00 as k— oo

for some subsequence {r,’} of {r,}. But if this is the case, this term would
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dominate H(m, n), which violates (25), and we have arrived at a contradiction
to the assumption that f,(x*) has a positive eigenvalue. []

REMARK. It may be of interest to comment somewhat on the role of the
independence assumption about {e(n)} in the proof. It is used on two occasions:
firstly, in the calculation of the variance and fourth moment of &,. It is clear
that under assumption C1 with some restrictions on A(+, ») similar results would
be obtained. Secondly, the independence assumption is used in the application
of the second Borel-Cantelli lemma and to infer that &, and y, are independent.
Again, under assumptions C1 and C2 it can be shown that “the part” of £, that
has its origin in innovations y(k) for k < n tends to zero w.p. 1. Therefore this
part can be treated separately, and the independence property of the rest can be
used in the same way as in the proof above.

4. Main results. The lemmas of the previous section can be combined into
several results. It should be noticed that, in addition, Lemmas 1 and 2 are
results of independent interest. Two theorems will now be given concerning
convergence of (1).

THEOREM 1. Assume Al to AS and Cl to C4. Then x(n) — Dgw.p. lasn — oo.
Proor. Follows from Lemmas 1 to 3.

THEOREM 2. Assume Al to A5, Cl to C4 and D1 to D2. Then x(n) tends to a
point in Dy w.p. 1 as n — oo (D,, defined by (5)).

Proor. It follows from Theorem 1 that x(n) converges to Dy w.p. 1 and, as
remarked after Lemma 1, {x(n)} cannot oscillate between isolated points in Dy.
Therefore, except on a set of measure zero, x(n) will converge to a point in Dj.
Obviously D consists of at most a denumerable number of points. Any such
point to which x(n) converges on a set of positive measure must satisfy the con-
ditions of Lemma 4. This concludes the proof of Theorem 2.

Now, if ¥(x) is such that C3 or C4 do not hold it might happen that x(n) tends
to infinity. This can be seen from the following simple example.

ExaMmpLE 1. Let V(x) = {x*and e(n) =0 n = 2, y(n) = 1/n, B(n) = 0 all n.
Then if x(0) =0, x(n) = x(n — 1) 4+ (I/n)(—x(n — 1)%); n = 2; x(1) = e(1);
clearly, x(n) will tend to infinity if |e(1)| > 2.

However, in any application of the algorithm (1) this will certainly be pre-
vented somehow. A very straightforward idea is to project the estimate x(n)
into a compact set D, if it is outside another set D,. Then (1) takes the modified
form
(26) x(n) = [x(n — 1) + y(m)(f(x(n — 1)) + e(n) + B(n)]52
where

[Z]2=Z if ZeD,

= some valuein D,, if Zg¢D,

and where D,, D, are compact sets such that D, C D,.
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For the modified algorithm (26) obviously B2 holds. However, Lemma 1
cannot be directly applied because of the modification of (1). The following
holds though.

THEOREM 3. Consider the modified algorithm (26). Assume Al to AS, Bl, and
that .

(i) sup,ep, V(x) < inf,, D, V(x),
(ii)y Dy C D, (Dg defined by (4)).

Then x(n) — Dg w.p. 1 as n — oo.
ProoF. Let sup,., V(x) = ¥, and inf,, 0, V(x) = V, and introduce

Vi— Vs
4

D~={x|V(x)§V3— ;V(x)ngJer_;_’.ﬁ}.

Then sup,.; |f,| = C is less than infinity since D is bounded and
inf, .5 |f(x)] = ¢
is greater than zero due to (ii).
Define g and # such that 0 < g < min (1, 6/8C) and # = 5/26. Then, as in
the proof of Lemma 3 we conclude that, for a fixed realization in Q* (defined

in the beginning of the proof of Lemma 1) there exists an integer K, such that
if x(k) € D and k > K then

V(x(m(k, £))) < V(x(k)) — #6/2.
Therefore V(x(k)) is strictly decreasing in D from a certain k on. Since, as be-
fore, the step size x(n) — x(n — 1) tends to zero in D, it follows that x(k) cannot
pass from D, to a value outside D, after a certain value of k. Hence from this

value on the algorithm (26) coincides with (1) and Theorem 1 now completes
the proof of Theorem 3. [] ‘

Clearly, this theorem can be combined with Lemmas 2 and 4 to yield obvious
variants.

5. The Robbins-Monro and Kiefer-Wolfowitz procedures. The analysis gives
some extensions of the “classical” convergence results on the Robbins-Monro
procedure, e.g., [11], even though the results given so far deal with a fairly
special structure. In the first place it is possible to treat the case with dependent
disturbances {e(n)} in (1). Moreover, the frequently cited condition

27) Zrr(n)y < oo

has been shown to be unnecessary. When the disturbances {e(n)} satisfy CI
(with a, = constant), and when {y(n)} satisfies C2 it is sufficient that

(28) Zor(ny < oo

This condition together with C2 are satisfied, e.g., for y(n) = Cn=* where
I/p < a« < 1. There consequently is a trade-off between conditions on {y(n)}
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and on the moments of {e(n)}. It can also be shown that (27) can be relaxed
only if higher moments of {e(n)} exist ([8]).
It can also be remarked that often

r(n) = A(n)/n

appears to be a suitable choice of gain sequence, where 4(n) is a possibly random
sequence tending a.e. to a positive constant 4. Then (1) can be written

x(n) = x(n — 1) + % (Af(x(n — 1)) + (A(m) — Df(x(n — 1))

+ A(n)e(n) + A(n)B(n)) .
The term (4(n) — A)f(x(n — 1)) then can be incorporated in (n) if f is bounded.
The result quoted in Section 3 for the choice y(n) = 1/n then can be applied to
infer Bl from mild conditions on {e(n)} and {i(n)}.
A frequently studied problem ([6], [7]) is to find the minimum of a function
V(x) from noise corrupted measurements
(29) yi(x) = V(x) 4+ w(i)
where {w(i)} is a sequence of random variables with zero mean values.
In the Kiefer-Wolfowitz procedure [6] it is suggested to form an estimate of
the negative gradient at x = x*
d(x*, ¢)

based on (linear operations of) at least n 4+ 1 measurements of ¥(x) in the sphere
around x* with radius ¢. Then

dor )= =Ly +p4e
dx z=z*
where
1B < c|V"(§)] § Dbelongsto B(x*,c)
and e is formed from the variables w(i) and has a variance
Ele|* ~ Ew(i)*/c*.

The Kiefer-Wolfowitz procedure amounts to choosing a decreasing sequence
¢, — 0 and then take

x(n) = x(n — 1) 4 p(n){d(x(n — 1), ¢,)} .
Suppose that the function V(x) satisfies Al, A2, A3, C3, C4 and {y(n)} satisfies
C2, A4 and w(i) satisfies C1 with @, constant(which implies that the corresponding

sequence {e(n)} satisfies C1 with @, = 1/c;). Then Theorem 1 implies that x(n)
tends to Dg w.p. 1 as n — oo if

LT (r(m)fe,y < oo
which is less restrictive a condition on {r(n)} and {c,} then the one given by
Blum [2]:
Zrenr(n) <eo and  FE(r(n)/e,) < oo .
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6. Extensions. In this section it will be discussed how the results of Sections
3 and 4 can be extended to more general algorithms than (1).

(1) First, it is not necessary that f(x) is the negative gradient of V. Itis clear
from the proofs that what matters is only that V' is a twice continuously differenti-
able function, subject to A2, such that the scalar product ((d/dx)V(x))"f(x) < 0
outside a compact set Dg. Then under the appropriate additional assumption
convergence of x(n) to Dg follows. Therefore we may dispense with the assump-
tion (d/dx)V(x) = —f(x) and instead postulate the existence of such a function
V. Inthe theory of differential equations (see, e.g., [4] or [12]), such a function
is known as a Lyapunov function, and it guarantees that the solution of the dif-
ferential equation

(30) £ X(e) = X))

for any initial condition X° € R at r = 0 tends to the set Dy as r tends to infinity.
Conversely, the existence of an invariant set Dy to the differential equation
(d.e.) (30) such that for all initial conditions, the solution tends to Dy implies
the existence of a function ¥(x) with the aforementioned properties. (An invari-
ant set Dg of a d.e. is a set such that a solution that belongs to Dy for a certain
7, also belongs to Dy for all other 7, —oo < 7 < oo. The set of all values x°
such that solutions starting at x° tend to Dy is known as the domain of attraction
of Dg.)
Therefore Al and A2 can be replaced by

A1’: The d.e. (30) has an invariant set Dy with global domain of attraction.

Actually, if an invariant set does not have a global domain of attraction Al,
A2 and Bl may be replaced by

Al1”: The d.e. (30) has an invariant set Dg with domain of attraction D,.
B1’: x(n)eDi.o. w.p. 1 where D is a compact subset of D,.

To make the d.e. (30) meaningful, we here assume that f isan everywhere defined
locally Lipschitz-continuous function.

Actually, in the proof of Lemma 1, it was shown that the sequence {x(n)}
locally and asymptotically follows the trajectories of (30). In fact, under addi-
tional conditions the trajectories of (30) can be associated with the asymptotic
behavior of (1) in a more strict sense, cf. [8]—[10].

It may also be remarked that the derivative of f in Lemma 4 can be interpreted
as the system matrix for the linearized d.e. around a stationary point x*. The
interpretation of Lemma 4 then is that x(n) may converge only to stable stationary
points of the d.e. (30).

(2) The analysis can be applied not only to the structure (1) with additive
disturbances but also to the case

31) x(n) = x(n — 1) 4 r(n)Q(n; x(n — 1), e(n))
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where Q(-, «, +) is a function from R X R" X R™ to R" satisfying certain regu-
larity conditions. A function f is defined as

(32) f(x) = lim,_,, EQ(n, x, e(n))
where the expectation is over the distribution of e(n), with x regarded as a fixed
parameter. It is assumed that the limit in (32) exists. With f thus defined we
may study the d.e. (30) and relate convergence of (31) to stability properties
of (30) as above. Some further technicalities in the proof of the the theorem are
required in this case, but the basic paths of the proofs remain the same. The
structure (31) is studied in detail in [8].

(3) Asafinal increase of complexity, it may be assumed that the disturbance
term e(n) in (31) depends on previous estimates x(k), k < n. In particular a
structure like

(33) o(n) = g(n, (n — 1), x(n — 1), v(n))
e(n) = h(n, o(n), x(n — 1))
or a linear variant

(34) ¢(n) = A(x(n — 1))g(n — 1) + Bx(n — 1))«(n)

e(m) = C(x(n — 1))¢p(n)
can be postulated, where {v(n)} is assumed to be a sequence of independent ran-
dom vectors. These structures are of particular interest in control theory and
in certain sequential parameter estimation applications, cf., e.g., Hannan [5].
They are treated at length in [9] and [10]. The analysis again follows that of
the simpler variant (1). A variable &(n, x) is defined for each x by

o(n, x) = g(n, p(n — 1, x), x,(n)) 5 ¢(0, x) =0

é(n, x) = h(n, ¢(n, x), x)
and it is assumed that the limit

f(x) = lim,_, EQ(n, x, é(n, x))
exists with expectation over {y(n)}. The corresponding d.e. (30) is then analysed
for stability properties, and these are related to strong convergence of (31), (33)
as above. '
The proofs for the case (31) and (33) or (31) and (34) are considerably more

technical than those given in Section 3, but differ from them essentially only by
an increased amount of bookkeeping over small terms.

7. Conclusions. Strong convergence of a certain recursive algorithm (1), has
been the main topic of this paper. The convergence results have been obtained
by studying the behavior of the algorithm on each realization outside a given
null set of realizations. The convergence results (Theorems 1 and 3) imply cer-
tain extensions compared to previous results on strong convergence of stochastic
approximation algorithms. Also the classification of possible convergence points,
Theorem 2, seems to be new.
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It is believed, though, that the important merit of the present approach is that
the method of proof extends directly to more complex algorithms as described
in Section 6, while it does not seem to be clear how the conventional technique
would be applied to, say, (31) and (33).
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