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COVARIANCE CHARACTERIZATION BY PARTIAL
AUTOCORRELATION MATRICES!

By M. Mor¥F, A. VIEIRA AND T. KAILATH
Stanford University

It is known that the autocorrelation function of a stationary discrete-
time scalar process can be uniquely characterized by the so-called partial
autocorrelation function, which is a sequence of numbers less or equal to
one in magnitude. We show here that the matrix covariance function
of a multivariate stationary process can be characterized by a sequence ot
matrix partial correlations, having singular values less than or equal to one
in magnitude. This characterization can be used to extend to the multi-
variate case the so-called maximum entropy spectral analysis method.

1. Introduction. It has been known for some time (see, e.g., [1, 2, 10]) that
the autocorrelation function (ACF) for a scalar stationary discrete-time process
also has a useful characterization in terms of the so-called partial autocorrela-
tion coefficients (also called in [ 10] the partial autocorrelation function or PACF).
An important application of this characterization has been to the development
of a new spectral estimation technique known as the (Burg) maximum entropy
method, in which the PACF (rather than the ACF) is estimated by minimizing
the sum of the squares of the forward and backward prediction errors (or in-
novations).

No completely satisfactory vector (or multivariable) extension of these results
seems to be known as yet, though some results have been reported by Burg [2],
Jones [5], and Nuttall [8]. In [7] we have taken a somewhat different route by
first finding the vector multivariate analog of the ACF—PACEF correspondence,
which then enables a natural extension of the above-mentioned Burg technique.
Since this extension is perhaps of more interest in applications, we shall treat-it
elsewhere. In this note, we present only the vector generalization of the ACF-
PACEF correspondence, which may have theoretical implications beyond its role
in suggesting spectral-estimation methods.

In the scalar case, the PACF is naturally encountered in the efficient solutions
of Levinson [6] and Durbin [3] to the problem of fitting autoregressive (AR)
models to a given stationary autocorrelation sequence. In this method, AR
models of increasing orders are fitted by calculating the one-step forward and
backward predictors at each stage as a linear combination of the corresponding
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quantities at the previous stage. The coefficients in this linear combination are
particularly important and give a set of partial autocorrelation coefficients (also
called reflection coefficients) which turn out to have a one-to-one correspondence
to the given autocorrelation coefficients. Now multivariate extensions of the
Levinson-Durbin algorithm have been obtained by Whittle [11] and Wiggins
and Robinscn [12]. We shall show that a normalized version of this algorithm,
which we shall call the LWR algorithm, provides the vector generalization of
the previous characterization theorem: the matrix autocorrelation coefficients
of a vector stationary process have a one-to-one correspondence to a sequence
of (partial autocorrelation) matrices whose singular values have magnitude less
than or equal to unity. (We recall that the singular values of a matrix A are the
positive square roots of the eigenvalues of 44’.)

One application of this result is to the problem of suitably extending a given
correlation sequence {R,, - - -, R,} so that the new sequence is also a correlation
sequence (i.e., has the right positive-definiteness properties). It is not easy to
characterize all suitable extensions {R,;, R, - - -} but, with the above result,
we know that in the PACF domain we just have to add any matrix with singular
values less than unity. Applications to spectral estimation have already been
briefly mentioned (see also Section 3).

2. The normalized LWR algorithm. Suppose we are given the (N + 1) ma-
trices? of size m X m
R, = E{yi.y/}, Inf=N
where {y,} is an m-vector stationary random process, so that we also have
R_,=R,.

Then the so-called autoregressive (or maximum entropy) extension of the
sequence {R,, |n| < N} is known (Parzen [9], Burg [2]) to be defined by the
expressions

R(z) = Yo _oR,z7" = Ay (2)Ry Ay "(27Y)
= By Y(2)Ry"By"(z7Y)
where A,(z) and B,(z) are the forward and backward prediction filters, and R*
and R," the respective prediction error (or innovation) variances, defined by
the equations (see, e.g., [11])

(1) [1, AN,v “.’AN’N]IE’?Nz[RNE’ 0, ...,0]
BN,N’ ] BN,v 1 0, "',0, RNT
where
Ro Rl RN
R_, R R, _
RN = 1 0 N-1

Ry Ry Ry

2 4’ denotes the transpose of 4. If 4 is complex then it will denote conjugate complex of 4.
Also 4-T = (A)~L.
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and {4y ;} and {B, ;} are the coefficients in the forward and backwards predic-
tion filters, respectively, i.e.,
(2a) Ay(z)y =T+ Ay 270+ - + Ay yz7v
(2b) By(2)= By y+ By y_ 270+ -0 + 1277V,
Note that (1) are just the (Yule-Walker) equations obtained by minimizing
trace E{ey . ¢ .} and trace E{r, , ry ,}, where
(3a) evie =Y+ Ay Yo+ o0 + Ay y Yoy
3 b) Twe= By yy.+ -+ + By Viyi1 + Yi-n

are respectively the forward and backward prediction errors.

LeMMA 1. We have
det R, = []r,det R = [[r,detR", |n| < N

so that
detR, s =detR,”, |n|< N

and
R,>0=Rf>0=R7 >0, i=0,1,2,...,n.

ProOF. These relations follow from the readily verified identity

I0
‘ A} R [RO]
oo 0 | R,

b

and a similar one with B, and R,”. [

The LWR algorithm. Equations (1) can be solved in an efficient recursive
manner by using the LWR algorithm (see, e.g., [11], [12]),

(7) A, =11 An+1,v ) An+l,n+l]
= [I’ An,l’ ] An,'n,’ 0] - An+l(Rnr)—1[0’ Bn,n’ B Bn,l’ I] ’

(8) B, = [Bn+l,n+1’ ceey Bapa 1]
= [0, Bn,,n’ R Bn.l’ I] - A:&+1(Rn$)_1[l’ A"hl’ o A""”’ 0] ’

where
(9) A'n+1 = Rn+1 + A'n,an + -+ An,an
= (R—n—l + Bn,lR—'n + -+ Bn,nR-l) H
and
(10) R;+1 =R, — An+1(Rnr)_lA;+1 s
(11) R:+l = R“r - A;L+1(Rn$)_1A'n+l

A, =By =1, Ry =R"=R,.
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The normalized LWR algorithm. It will be useful to introduce a normalized
form of this LWR algorithm. For this we shall need various matrix square
roots: for any positive-definite matrix R, define a lower triangular matrix® R}
such that

(12) RIR™* =R.
Here A7/* = (At)'; also let A% = (A})™1, A~7/2 = (A~%). R} can be made unique

by requiring the diagonal elements to be positive. Recalling (12) let us now
define

(13) P, = (Rne)_*(R:zﬂ)é ; Q3+1 = (Rnr)_i(R;+1)§
P} = Q}f = Ry}

and

(14) Ouir = (Ry) T, (R)TT.

Then from (10)—(11) we can see with a little calculation that

(15) Pooy=1T— 04110041

and

(16) Quin =1 — 00110041 -

The recursions (7)—(8) can then be written in the normalized form
(17) A,11(2) = PE[A(2) — 270, B,(2)] A(z) = R
(18) B,.(2) = Qit[z7'B,(2) — phnAu(2)] By(z) = Ry*
where

4,() = (R)H4,(2),  B,(2) = (R))B,(2) -

To complete the normalized algorithm, define
(19) [S:t+1 = Bﬂ,oR—n—l + Bn,lR—n + - + Bn,nR—l = (Rnr)_éA;+1 .

Then we see that
(20) Psr = P74 PHA,
For, using (13), we can write
(Rf)t = Pyt -+ P}, (R,y)} = Qf -+ Q,}
which, with (14), leads to the formula (20).

Equations (15)—(20) then form a complete set of recursions that are readily
seen to be equivalent to the recursions (7)—(11): 4,(z) and B,(z) can be re-
covered from 4,(z) and B,(z) by
(21 A(2) = (A, ) '4.(2)

(22) B,(2) = (B, ) 'B.(?)
and R,°, R, from (21).

8 Even though a square root may be in general nontriangular we require such a form so as to
get a uniquely defined matrix.
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The significance of this equivalent form of the LWR algorithm is that we can
now uniquely characterize the covariance {R,, |n| < N} by the partial correla-
tion sequence {p,, n = 1, ..., N} and R,. In other words we have the following
theorem.

THEOREM 1. The normalized LWR establishes a one-to-one correspondence be-
tween {R,, |n| < N}with R, > 0and{R,; p,,n=1,-.-, N}, where{p,,n=1,-.., N}
is a set of matrices with singular values {d(0,)}i—.,... n less than one in magnitude.

Proor. Given R, > 0, the partial correlation sequence p,, n =1, ---, Nis
uniquely defined by (14). Also from Lemma 1, R, >0, n =1, ..., N. But
from (15), R, > 0= |o(p,)| <1, i=1, ..., m. Conversely given {R; p,,
n=1,..., N}define {P,} Q,},n =1, ..., N}through (15)—(16). These square
roots always exist if {|o,(p,)| < 1,i =1, ---, m}. Then, Equations (17)—(18)
uniquely define {A~,,(z), B,,(z), n=1,..., N}, which in turn uniquely define
R > 0 from the LWR algorithm. []

Note. If for some n the covariance matrix R, is not strictly positive (i.e.,
|R,| = 0), the LWR recursion will stop. In this case p, will have singular values
equal to one in magnitude.

3. Concluding remarks. Theorem 1 gives a parametrization of the correla-
tion function of a multivariate stationary process in terms of matrices with
singular values less than one in magnitude. This generalizes a result known for
the covariance function of a scalar stationary process.

We may remark here that the scalar case has also been considered in the
context of orthogonal polynomial theory [4] and consequently the result given
here carries over to matrix orthogonal polynomials.

The implication for spectral estimation is that instead of estimating {R,} di-
rectly we can first estimate {p,} and then find the corresponding 4,(z) (and if
desired the corresponding R,). Finding {R,} from {p,} can be done efficiently
through formulas (19)—(20). In[7] we give estimates of {p,} that are guaranteed
to have singular values in magnitude less than or equal to one, so that the cor-
responding R, form a nonnegative-definite sequence.
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