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INTERVAL ESTIMATION FOR THE UNBALANCED CASE OF
THE ONE-WAY RANDOM EFFECTS MODEL

By JAMES D. THOMAS AND ROBERT A. HULTQUIST

University of Texas at San Antonio and
The Pennsylvania State University

Interval estimation of variance components is studied for the unbal-
anced one-way random effects model. An easily calculated function, W,
of the harmonic mean of the class sizes and of the sample variance of the
class means is found to be important. The exact distribution of ¥ is found
and is shown to be excellently approximated by a chi-square distribution.
The random variable W is used to construct interval estimates for (i) the
between classes variance component and (ii) the ratio of the variance
components and thus for the intraclass correlation and heritability. For
most one-way unbalanced designs use of these approximate interval esti-
mators will work very well.

1. Introduction. In many experiments the suitable model is the one-way
variance component model: y;; = 4+ a,+ ¢e;,i=1,.--,a,j=1, ..., n, with
a, ~ N0, 0,’), e;; ~ N(0, 6.%) and all a,, e;; independent. In this paper attention
is directed to the interval estimation of the quantities ¢, ¢,*/¢,> and ¢,2/(c,? +
o). For the balanced case there are several approximate procedures for con-
structing confidence intervals on ¢,” and there are exact confidence intervals for
oo and ¢,%/(d,? + 0.%).

There are no published methods for constructing confidence intervals for ¢,
in the unbalanced case which do not in fact assume the data are balanced. Wald
(1940) developed an exact procedure for constructing interval estimates of ¢,%/0,’
and ¢,%/(0,’ + ¢,?) but the method requires the numerical solution of two non-
linear equations and is difficult to carry out.

In this paper a statistic is presented which enables us to adjust confidence
interval formulae developed for the balanced case so that they hold for most
unbalanced designs arising in practice.

2. The balanced case. In the traditional analysis of variance for the balanced
case with a classes, withn, = n, = ... = n, = r and with n = ra it is well known
that S,/(re,> + 0.*) ~ x*(a — 1), S,/0,* ~ ¥*(n — a) with S,, S,, independent and
thus M,/(re,* 4 0.2)/M, [0} ~ F(a — 1, n'— a) where S,, M,, S,,, M,, are the among
classes sum of squares, among classes mean square, within classes sum of squares
and within classes mean square respectively. Inference on the variance com-
ponents is based on these distributional properties. Confidence intervals for
0,0} and ¢,%/(0,> + 0,*) which are exact are readily derived.
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The problem of constructing confidence intervals for ¢,? has been investigated
by several authors. (See, for example, Bartlett, 1953; Bulmer, 1957; Huitson,
1955; Satterthwaite, 1941; Tukey, 1951; Williams, 1962.) The only exact
methods available use artificial data to accomplish the exactness. Two approxi-
mate procedures which appear (Boardman, 1974) to give the specified (1 — a)
100 % coverage are Bulmer’s formula (Bulmer, 1957) and the Williams-Tukey-
Bross formula (Bross, 1950; Tukey, 1951; Williams, 1962).

3. The unbalanced case. In the traditional analysis of variance table for the
unbalanced case E(M,) = 0,2 + ky0,? where k) = (n*— Zn;*)/n(a — 1) withn = Zn,.

In this case it can be shown that S,/(k,0,? + ¢,) has a y*(a — 1) distribution
if and only if ¢,> = 0. Since the methods for constructing interval estimates of
o2 for the balanced case make use of the fact that S,/(rs,? + ¢,%) has a y* distri-
bution, those methods are not applicable to the statistics arising from the AOV in
the unbalanced case. For some unbalanced designs S,/(k,0,’ + ¢,%) will be
approximately distributed as a y*(a — 1) variable and use of the formulae for
balanced data will be adequate; however, the approximation to be given in
this paper gives a considerably better approximation for a much wider scope
of one-way designs.

4. Development of the new statistic. The results were obtained by use of di-
agonalization methods such as those used by Hultquist and Atzinger (1972) and
others including Spjotvoll (1967) who used such methods on this model in finding
an optimum test for hypotheses about ¢,%/s,2. Here transformations were applied
in an attempt to arrive as close as possible to chi-square statistics corresponding
to those found in the balanced case. We present here only the essential points.
For a more complete discussion see Thomas (1976). Our model written in matrix
notationis: Y = pj, + ZA 4 E where 4 ~ N(¢,,0,*I)and E ~ N(¢,, 0. I). We
have E(Y) = pj, and V(Y) = ¢,2ZZ" + oI

Our first step is to employ the transformation R = [R,/R,] where R, =
diag ((1/n)jn> -+ > (1/na)jn,) = (Z'Z)~*Z’ and R, consists of n — a orthonormal
rows in the orthogonal complement of the row space of (Z’Z)~'Z’. It follows
that E(R,Y) = R, pj,, = tja, E(RY) = ¢,_, and

V[ ........ } — 0, RZZ'R’ + 0 RR’ = 04 8] + o [“D" 9]
R,Y ,
thus Y'R,/R,Y ~ y*n — a) and R, Y, R,Y are independent.

We next form the a X a orthogonal matrix H where H = [h,/H,] with h, =
(1/at)j,’ and H, consists of a — 1 orthonormal rows in the orthogonal complement
of o,. Wethen have E(HR,Y)=E(Hj,)=[pat|¢,_,]'and V(HR,Y)=HR,ZR/H' =
ol + 6 H(Z'Z)'H'.

Consider H,R,Y. We have E(H,R,Y)=¢,, and V(H,RY) = 0.l +
0'H(Z'Z)"'H,. Let P bean(a — 1) X (a — 1) orthogonal matrix which diago-

“nalizes Hy(Z'Z)™'H,'. Let PH(Z'Z)'H,/P' = A = diag (4,,- - -,4,_,) where 1,,-
4,-, are the eigenvalues of H,(Z'Z)™'H, .

cey,
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We now have PH,R,Y ~ N,_(¢, ¢,*I + ¢,’A) with PH,R,Y and R,Y inde-
pendent. If P, denotes the ith row of P

v, = P,H,R,Y ~ N0, ¢,” + 2,0.%), i=1,.-.,a—1;
Y 1) and W=yt Y a1,
gt + 20 0t + Ao

Note that tr[H,(Z'Z)"'H,] = tr[(Z'Z)*H/H,] = tr [(Z'Z) I — Jja]] =
Zg=l(l/n,.)—(1/_a)j’(Z’Z)‘1j=((a— 1)/a) 3¢ 1/n;. So A=2Z2,/(a—1)=(1/a)Z(1/n,)
in general and A = 1/t where i = a/Z1/n, is the harmonic mean of the n,.

The formulae for constructing confidence intervals for ¢,* in the balanced
case make use of the facts that

(a) S,/(re.* + 0,%) ~ y*(a — 1) and

(b) S,, S, are independent. The statistic W* although it has a chi-square
distribution and is independent of S, cannot be put in a form similar to the
form in (a) above.

Considering that 4 = 1/ we conclude that the 2, are usually small and it
would seem that W* will often differ little from
v
0. + jaez :
We propose that the random variable W will have approximately a y*(a — 1)
distribution and would thus be suitable for use in constructing confidence
intervals for ¢,%

Since P is orthogonal Xv;> = £Y'R/H,P/P,H,R,Y = Y'R/H,H,R,Y. We see
that it is not necessary to calculate P in order to find . In summation notation

W= i

Y'R/H/H,R, Y = i i — %[Zgﬂyi]z = (a - l)sﬁz

where S;* is the sample variance for the treatment means, and thus W =
(@ — 1)S;}/(s,? + 40.%). Also Y'R/R,Y = S, the analysis of variance within-
classes sum of squares.

5. The distribution of W. The exact distribution of W given values of ¢,
and ¢,2 can be displayed using a theorem due to Robbins and Pitman (1949).

Letting 2,, = minimum ofthe 4,,i = 1, ---,a— l,and b = (¢,> + 4,0.%)/(d.* +
A0, the cumulative distribution of W is given by

P(W < W) = 32520 ¢;Furiia;j(/0)

where F,(x) is the cumulative chi-square distribution,

C; = Dlipretipmi Criy * Cagyt 0 Coi, with
¢, = b2 "'.'(% +Jj— 1)|:1 - Zl—]j’
J: i

(C,;,o=bi_§), i=1,...,r;
and where b; = (0,* + 4,0,%)/(0,” + 2,0.7) .
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As previously stated W should have approximately a y*(a — 1) distribution.
To examine this nine designs (given in Table 1) representing a wide spectrum
of unbalancedness were selected for study. For each design ten values of the
ratio ¢,%/¢,> were chosen: .25, .50, .75, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10., thus
creating ninety experimental situations. For each situation Pr (W < y,?) was
calculated for ten values of « where Pr < 1) = a. These values are: .005,
.010, .025, .050, .100, .900, .950, .975, .990, .995.

TABLE 1
Design Number of classes Values of n;
1 3 5, 10, 15
2 6 5, 10, 15, 20, 25, 30
3 10 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
4 3 2, 2, 100
5 3 10, 50, 500
6 10 2, 2, 2 2 2 2 2 2 2 100
7 6 10, 10, 50, 50, 500, 500
8 4 4, 5 6, 7
9 3 10, 20, 40

Although the accuracy of the approximation depends to some extent on the
values of @ and ¢,%/0,?, for 849, of the situations we have |Pr (W < x,’) — a| <
.0005. For 98 9, of all situations |Pr (y2, < W < Xi_,,) — (1 — a)| < .005 and
with 1 — @ = .95 for all but two of the 90 situations |Pr ()% < W < %) —
.95| < .005. Summarizing our observations we conclude that the y* distribution
is an excellent approximation to the distribution of W affording (at least for
g, = .25¢%) two or more places of accuracy for calculating Pr (35, < W <
X3_a) for a wide spectrum of unbalanced designs.

Note that the moment generating function of W is

3 3 \—%
(1) = ;;}(1 2%+ 40 t)
0‘0,2 + 20‘62
and thus @,(t) — (1 — 2¢)~*~v/2 if all n, — a constant value, or if all n, — oo
or if 6,%/6,> — co. We thus expect the approximation to improve if any of these

latter conditions occur. The numerical study supports these conclusions and
we state

ResuLt 1. The distribution of W = (a — 1)S;*/(s,* + ¢,%/t) is approximately a
(@ — 1)
6. The exact distribution of [ W/(a — 1)]/[S,/((n — a)s,?)]. Since
R,Y ~ N,_,(¢,0), Y'R/R,Y[o}? = S,[0,) ~ x}(n — a)
and W and S, are independent, it would be expected that
Wia — 1)

ot gy ~ PRI e = L= a).
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Using another theorem due to Robbins and Pitman (1949) the exact distribution
of G = [W/(a — 1)]/[S,/((n — a)s,?)] can be given. The approximation of this
distribution by the F distribution was investigated for each of the unbalanced
designs given in Table 1. For each design P(G < F,) was calculated for the same
values of a and ¢,%/0, considered for W. The calculations indicated excellent
agreement. For designs 8 and 9 there was exact agreement to three decimal
places for all entries. Designs 1, 5, and 7 had maximum errors of .001 while
designs 2 and 3 had .002 as the maximum error. The quantity |P(F.,; < G <
F.4) — .95| was less than .005 for all cases and less than .002 for 94 9, of the
cases.

REsuLT II. The ratio

G = Silled + 9/R)
M,[a}?

is distributed approximately as F(a — 1, n — a).
The W statistic is related to the balanced case by the following

CoROLLARY. If ny=n,= -.- =n, =r then rS;’ = M,, W has exactly a
x*(a — 1) distribution, and G has exactly an F(a — 1, n — a) distribution.

An approximation to the distribution of the statistic G with ¢,> = 0 has been
given by Rankin (1974).

7. Confidence interval formulae for ¢,% ¢,%/0,%, and the intraclass correlation.
Many of the confidence interval formulae for ¢,* developed for the balanced
case can now be applied to the unbalanced case by making the substitutions 7
for r and F* = iS;?/M,, for F. The Williams-Tukey formula becomes

— )M a— 1M
ga—)w[F* — Fian] < ”a2<(.#°[F* — Fopl

— 2
BYi—ase Xas2

where the chi-square values are for @ — 1 degrees of freedom. Bulmer’s and
the other formulae are likewise readily adjusted.

Confidence intervals for ¢,%/s,* and the intraclass correlation can be formed
using the same substitutions. For ¢,/s,> we have

- 1)< <[ -1].
B LFy o o} i LF,,

To appraise the use of the W statistic in constructing interval estimates for
the unbalanced case, data was simulated for the designs given in Table 1 for
several values of ¢,%/o,2. Interval estimates for ¢,” were calculated for 2000
simulated experiments using Bulmer’s formula and the Williams-Tukey formula.
The percent coverage and the average width were observed for each experiment.
The conclusion drawn from these simulations was that we would not expect

exact methods to give much better results, at least for the designs considered.
Interval estimates were also constructed for ¢,%/s,* and ¢,%/(0,* + 0,*) for the
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same designs and values of ¢,2/0,”. The results indicate that the formulae do
give 1 — a coverage. Considering the ease with which these interval estimates
are calculated as compared to Wald’s method we recommend that these formu-
lae be used in preference to Wald’s method.
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