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LINEAR PREDICTION BY AUTOREGRESSIVE MODEL
FITTING IN THE TIME DOMAIN

By R. J. BHANSALI
University of Liverpool

Let {x:} be a purely nondeterministic stationary process satisfying all
the assumptions made by Berk (1974), and {y;} be another purely nonde-
terministic stationary process. Assume that y; is independent of x; but has
exactly the same statistical properties as that of x;. Consider the linear
prediction of future values of y; on the basis of past values, using predic-
tion constants estimated from a realisation of T observations of x; by least-
squares fitting of an autoregression of order k. By assuming that k — oo,
k3T — 0 as T — oo, the effect on the mean square error of prediction of
estimating the autoregressive coefficients is determined. This effect is the
same as for the case when the prediction constants are estimated by factor-
ising a ““windowed”’ estimate of the spectral density function of x;.

1. There has recently been considerable interest in the time domain estima-
tion of the spectral density function and of the linear predictor of a stationary
time series by autoregressive model fitting (see Akaike (1969), Parzen (1974),
Berk (1974)). Such an approach may be regarded as an alternative to the cor-
responding frequency domain approach of first estimating the spectral density
function by the “windowed” method and then estimating the linear predictor
by factorising the estimated spectrum (see Bhansali (1974)). Berk (1974) derived
the asymptotic distribution of the autoregressive spectral estimates on the as-
sumption that the fitted order k of the autoregression increases simultaneously
with the sample size. Davidson (1965), Akaike (1970) and Yamamoto (1976),
on the other hand, derived expressions for the asymptotic mean square error
of prediction when the generating model is assumed to be a true finite order
autoregression. However, the corresponding problem of determining the mean
square error when linear prediction is carried out nonparametrically in the time
domain by autoregressive model fitting does not seem to have been considered
in the published literature. In this paper an approach similar to that of Berk
(1974) is used to derive an expression for evaluating the mean square error of
prediction up to / steps ahead (2 = 1, .- -, v) when the true order of the autore-
gression is assumed to be infinite. This expression shows that the nonparametric
predictor given by time domain autoregressive model fitting is asymptotically
equivalent to the corresponding linear predictor obtained by factorising a “win-
dowed” estimate of the spectral density function.

The idea of fitting autoregression of order k such that k — co with the sample
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LINEAR PREDICTION IN TIME DOMAIN 225

size has also been used by Durbin (1959), (1960) to derive asymptotically effi-
cient estimates of the parameters of the moving average and the autoregressive-
moving average models. The results of this paper may be used to give an
asymptotic justification of this procedure, which was not given by Durbin (see
Hannan (1969)).

The notation used in this paper is the same as in Chapter 6 of Rao (1973).
Hence for any two sequences of random variables {g,} and {#,} g, =, g is used
to denote the fact that g, — g tends to zero in probability as T — co. Similarly
a.Var {g,} is used to denote the variance of the asymptotic distribution of g, as
T — co, and a.Cov {g,, k;} is used to denote the covariance in the joint asymp-
totic distribution of g, and #,.

2. Estimated autoregressive coefficients. Suppose that {x,} (r = 0, +1, -..)
is a purely nondeterministic stationary process satisfying the equation
(2.1) e a(u)x,_, = e, a0) =1,

where the a(u)’s are real coefficients such that the polynomial

A(2) = Xicoa(u)z*
is bounded and bounded away from zero for |z| < 1, and {e,} is a sequence of
independent, identically distributed random variables with mean 0 and variance

o’. Let X, ..., X, denote a realisation of {x,} and ¢, =4d,, (u=1, ---, k)
denote the kth order estimates of a(x) obtained by minimising
(2.2) (T — k) X707 (Xwjr + 6 Xy + - + X))

Following Berk (1974) define the vectors a(k) = [dy;, -, 4,], a(k) =
[a(1), - - -, a(k)], X;(k) = [X;, Xiprs »+ s Xj_pa]- and let ¢, = ay,, -+, ¢, = a,

be the values that minimise

E[f{x, + Ziacuxiufls
with minimum ¢*(k). We will also need the k x k matrix of sample covariances
1

RO = =TI XXk

and an infinite dimensional matrix
R = [R(u — v)], v =12, ...
with R(u — v) = E(x,_,x,_,). A k X k submatrix of R will be denoted by R(k).

Although Berk (1974) did not explicitly consider the asymptotic distribution of
the estimated autoregressive coefficients, this could be derived from his results.

THEOREM 1. Assume that the conditions stated in Theorem 2 of Berk (1974) are
satisfied. [In particular, assume that:
(i) A(e*?) is nonzero, —n < A < w;

(ii) E(e}) < oo;
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(iii) The choice of k in terms of T is such that K’|T — O;
(iv) The choice of k in terms of T is such that T4(|ay,,| + |@pis + - +) — 0.

Then the joint asymptotic distribution of
THd,, — a(u)} and THd,, — a(v)}, w,v=1,.--,k,
is bivariate normal with zero means and covariance structure
(2.3) lim,_. T a.Cov {d,,, 4,} = o%,, = X “Zia(p)a(p — u + v),
l<sugv <k,
where c,, denotes the term in the uth row and the vth column of R™'.
Proor. Suppose that the constants y;, of Theorem 2 of Berk (1974) take the
following values:
=1 j=u
=0 j#u
and let 7(k) = [ru> 7o = *> Thal-

Then it follows from his Theorem 2 that

Tt , _ _
YR D5 X (Keyyn s w=1, ok

T&{dku —a(u)} =, (7,__7)

Proof of the present theorem follows by repeating the argument given in Berk’s
Theorem 4, and introducing an infinite dimensional analogue of the matrix U
defined by Wise (1955).

3. One-step prediction. Consider another stationary, purely nondeterministic
process {y,} which is independent of {x,} but satisfies the same equation as {x,}

e ca()y,_, = e, al0)=1.
Suppose that it is desired to obtain the linear, least-squares predictor of the
future values y,,,; h =0,1, ...,v — 1, say of y, from its known past. If the
a(u)’s are known and the complete history of {y,} is available, then the one-step
predictor is given by
(31) yAn = _Z$=l a(u)yn—u
with the corresponding mean square error of prediction

E[{. — y.}'] = o*.
In practice, the a(u)’s are rarely known a priori: if these have been estimated by
least squares, using a realisation of T observations of x, in the manner described
above, y, will be estimated by
(3'2) ﬁ'fb(k) = Z];.:l dkuyn—u .
Let
u‘":y'ﬂ_ﬁﬂ(k) = wn + Zn’
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where
= {a(ky — a(k)}y.i(k) ,

Zy = Duckr1 QW)Y u_u s
and
yn—l(k) = [yn—l’ . "yn—k]/ .

The asymptotic effect on the mean square error of prediction of estimating y,
using (3.2) rather than (3.1) may be determined by letting k and T tend to in-
finity simultaneously.

THEOREM 2. Assume that the conditions (i)—(iv) given in Theorem 1 are satisfied.
Then

(3.3) lim,__a.Var {<_kT_>* wn} Y
Proor. Let
y, = (" exp(itd) dS,(4) ,

where S,(2) is a process with orthogonal increments. Then

(7Y wa = v2. (1) i) — ah)) s, (2

where
(34) “/(k) — [ei(n—l)l, ei(n—Z)l’ cee, ei(n—ku] .

Arguing as Berk does in proving his Theorem 2, we may show that

<:,>J‘k Wo =L+ L+ I,
where
b= () s RO = RO ZIA X000 450
h= 5 () s RO BT X e — ) 4,0,
B= 5 () s RO ZIE X ey dS,)
" ene = Do)y

For an arbitrary vector x let
[[x[]; = (x'x)*
denote its Euclidean norm and for an n X n matrix C = [C;;] (i, j=1, ---, n)
define the matrix norms
[|IC||, = max,; }37_, C,
IClJ, = max (xC'Cx)*, [|x]|, < 1.
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It then follows that

T}
T —k
Hence, using (2.13), Lemma 3 and condition (iv) of Berk (1974) it follows that
I, tends to zero in probability as T'— oco. [, may similarly be shown to tend to
zero in probability. Then (3.3) follows by taking conditional expectations of /,
first with respect to the y’s and then with respect to the x’s.

To derive an expression for the asymptotic mean square error of predicting
one step ahead, we note that

B < e RGO — RO S X0yl §7. 1% W jas, )

(3.5) lim,_,, E(z,%) = o*

lim,_, .. E(z,w,) = 0.
Hence, to order T-1, the asymptotic mean square error of prediction is given by
(3.6) a.Var (u,) ~ o* <1 + _;.> .

For two arbitrary stationary processes {y,} and {x,}, Wahba (1969) considered
prediction of y, from a realisation of x, by a distributed-lag model. An expres-
sion for the increase in the mean square error of prediction due to estimating
the prediction constants was also given. In this paper, we have assumed that
y, is independent of x, and has the same statistical properties as x,. However,
(3.6) is similar to the expression given by Wahba.

4. More than one step ahead prediction. The linear least-squares predictor

of y,., (R =0, ---,v — 1) when the autoregressive coefficients are known may
be written as
(4.1) Puin = Vo1 Lnoi h=0,1,.-.,v—1,

where V, ,, is the first row of an infinite-dimensional matrix A*+!,
A=[o) —a@) —aG) -],
I
I denotes an infinite-dimensional identity matrix, and
Xn1 = [yn—v,}%—z’ . ']/ .
The corresponding mean square error of prediction is given by
E‘[{y}\'n&h_,y'n,+h}2]:02 ’;‘=0b2(j)1 h=011,"',y—1,
where the b(j)’s are the coefficients of the moving average representation of y,.

As in the last section, we will suppose that, in practice, the a(u)’s are estimated
by d,,’s using a realisation of length T from x,. y,,, will be estimated by

(4.2) Inin(k) = Vii(K)Yuu(k) 5
where Vhﬂ(k) is the first row of A"“(k), f\(k) isa k X k matrix similar to A but
a(u) is replaced by d,, (u = 1, ---, k) and y,_,(k) is the same as in Section 3.
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Let
Upin = Yuirn — Purn(k) h=0,1,...,v -1,
yn+h(k) = Vh+1(k)yn—1(k) .

Here V, (k) is the first row of A*+!(k) and A(k) isa k X k matrix similar to A(k)
but d,, replaced by a(u) (u =1, - .., k). We, therefore, have

and

Vosh = Wain + Zuga
where

Woin = yn+h(k) - }jn+h(k) s
and

Zuin = Yurn — Yurn(k) -

Following an approach taken by Yamamoto (1976), we get by Taylor series
expansion

Fura(k) = Yara(k) + {A(k) — a(K)YM,.,(K)y, (k) + higher order terms -

where

_ 0Vyn(k):
“3 Mol = 72500 sorone
= 25=0 b())A* (k) .
Let
M, (k)Y uoi(k) = (2. q(k) dS,(2) »
where
a(k) = M, ,(k)a(k) .
Set

i = {A(K) — a(k)IM, 1 (K)Y,_y(K) -
Then its asymptotic variance may be determined using the following result.

THEOREM 3. Assume that the conditions (i)—(iv) stated in Theorem 1 are satisfied.
Then

H —
(4.4)  lim,_, a.Var {(%) sm} = lim, ., k=" {=, q(kYR(k)"'q(k)f(2) 4
=c, say,
where f(2) denotes the spectral density function of x,.

Proor. The argument of Theorem 2 with a(k) replaced by q(k) yields (4.4).
To complete the proof we will show that as k — oo, ¢ remains bounded.

Let m,, (r,s =1, ..., k) denote the term in the rth row and the sth column
of M, ,,(k) and let

H. (X)) = 2k, m, exp(—isd).
Then
¢ = lim,_. k7 §2, (T, D(HD*(D)f(A) dA ,

where

D) = Yi_, Gisir _H(3),

Yai(j — 1)
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and D;*(2) is similarly defined with H,(2) replaced by its complex-conjugate
H,(2). Now

[HAD)] = |IM (k)| £ 25-0 6(PHIAK) L}

remains bounded forall A = 0, 1, .. -,v — 1. Since the first derivative of f(1) ex-
ists for all 2, it follows that D;(4) and D;*(2), and hence ¢, also remain bounded.
We have
lim,_, EZ,, = o* 2 h_, b%(j) .
Also, as k — oo, z,,, and w,,, are asymptotically uncorrelated. These results,
therefore, show that as 7 — oo, k — oo the asymptotic mean square error of
predicting more than one step ahead may be approximated by

(4.5) a.Var (u,,,) ~ o, + % c.

In practice k and T will be finite. Provided that these are large, (4.5) may be
approximated by

(4.6) Ghar + T 15 M, (R(K) M, (R (K)])

If the given T observations were assumed to be a sample of an autoregressive
process of order k, then the resulting asymptotic mean square error of prediction
will be given by (3.6) and (4.6). The above results, therefore, show that the
expressions valid for this case may still be used for the case when the true order
is in fact infinite, provided that k is large enough to ignore the bias due to fitting
a finite autoregression. Indeed, in practice, kK may be chosen so as to minimise
the expected one step prediction error (3.6). Since for a finite kth order auto-
regressive process, the asymptotic one step prediction error, to order T-, is also
given by (3.6); this suggestion may be implemented by using the FPE-criterion
introduced by Akaike (1970). We, however, note that the FPE criterion was
originally suggested for estimating the order of a finite autoregressive process.
Therefore, it may also be used for determining an optimal finite order approxi-
mation to a true infinite order autoregressive process. Parzen (1974) has sug-
gested an alternative CAT-criterion for this purpose.

Bhansali (1974), (1977) gives expressions for the increase in the mean square
error of prediction when the autoregressive coefficients are estimating by fac-
torising a “windowed” estimate of the spectral density function. The expressions
(2.3), (3.6) and (4.6) given above are similar to the corresponding results given
there. If 2k equals the equivalent number of independent spectral estimates
(see Bloomfield (1972)) then the two mean square errors of prediction will be
the same. When this condition is satisfied, the asymptotic distribution of the
autoregressive spectral estimates is also the same as that of the “windowed”
estimate (see Hannan (1970), Berk (1974)).

Expressions (3.6) and (4.6) were also derived by Bhansali (1976) when study-
ing the effect of mis-specifying the order of a finite autoregression, on the as-
sumption that first 7 and then the order k of the fitted autoregression tends to
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infinity. The results given in this paper give conditions on the relative asymp-
totic rates of k and T for the bias in using a finite autoregression to vanish
sufficiently quickly.
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