The Annals of Statistics
1978, Vol. 6, No. 1, 154-168

NONPARAMETRIC ESTIMATION OF LOCATION PARAMETER
AFTER A PRELIMINARY TEST ON REGRESSION!

By A. K. Mp. EHSANES SALEH AND PRANAB KUMAR SEN
Carleton University and University of North Carolina, Chapel Hill

For a simple regression model, the problem of estimating the intercept
after a preliminary test on the regression coefficient is considered here.
Some nonparametric procedures for this problem are formulated and their
various asymptotic properties studied. Comparison with the conventional
estimation procedures (for both the situations where the regression coeffi-
cient is treated as a nuisance parameter or not) has also been made.

1. Introduction. Let Y, .., Y, be independent random variables (rv) with
absolutely continuous distribution functions (df)
(1.1) F(x)=PY, S x} =F(x — 6 — pt,),
——OO<x<OO,i: 15 HERE (O

where t, = (1, - - -, t,) is a vector of known constants (not all equal) and 6, 8 are
unknown parameters; the form of F may or may not by specified. We are pri-
marily concerned with the estimation of #. If 8 = 0, then the Y, are identically
distributed with location 6, and a host of (parametric as well as nonparametric)
estimators of 6 is available in the literature; we designate such an estimator by 4,,.
On the other hand, if 8 is unknown, the estimator of § depends on the estimator
of B and generally results in a larger mean squared error (m.s.e.); such an esti-
mator is denoted by §,. When the true § is not specified, but is suspected to be
close to 0, often a preliminary test of significance concerning j is made: if H,:
B = 0 is tenable, the estimator #, is used, while ¢, is used when H, is not tena-
ble. Such an estimator after a preliminary test on regression is denoted by 4, *.
Usually 6,* is not strictly unbiased, though it has generally a smaller m.s.e.
than 4,.

The effects of such a preliminary test of significance (viz., bias and m.s.e.)
upon estimation have been studied in various special cases by Bancroft (1944),
Han and Bancroft (1968) and Mosteller (1948), among others. Ahsanullah and
Saleh (1972) considered the model (1.1) and studied these effects for the classical
least squares estimators. The object of the current investigation is to employ
robust, nonparametric estimators of # and 8 and to study the effects of prelimi-
nary tests on 3 on the estimation of 4.

Received June 1976; revised February 1977.

1 Work supported partially by NRC (Canada), Grant No. A3088 and partially by the (U.S.)
Air Force Office of Scientific Research, U.S.A.F., A.F.S.C., Grant No. AFOSR 74-2736.

AMS 1970 subject classifications. Primary 62F20, 62G99.

Key words and phrases. Asymptotic bias, asymptotic mean square, asymptotic normality, line-
arity of rank statistics, nonparametric estimation of location, preliminary tests, relative asymp-
totic bias, robustness, tests for regression.

154

WWww.jstor.org



LOCATION ESTIMATION AFTER REGRESSION TEST 155

Along with the preliminary notions, the proposed estimators are introduced
in Section 2. Section 3 deals with the asymptotic distribution theory of the
estimators. Expressions for the “asymptotic bias” and the “asymptotic mean
squared error” of the estimators are studied in Section 4. Asymptotic relative
efficiency (a.r.e.) results are presented in the last section.

2. The proposed estimators. Let .54 be the class of all absolutely continuous
symmetric (about 0) df’s with (almost everywhere) absolutely continuous prob-
ability density functions (pdf) having finite Fisher information:

(2.1) I(f) = (2o {f'()[f)) dF(x) (< o0),

where f'(x) = (d/dx)f(x) = (d¥dx?)F(x). Also, let

(2.2) f,=n1Yr,t, and Q,= N, (1, —I,).

We assume that

(2.3) (1.1) holds with Fe .5,

(2.4) lim, . n'Q, = 0* (0 < Q* < )  and
lim,_,f, = (]f{] < o) both exist,

(2.5) the ¢, are all bounded (= max.,_, (1, —,)/Q,—0 as n— o).

Let ¢ = {¢(u), 0 < u < 1} be a nondecreasing, skew-symmetric (i.e., ¢(u) +
¢(1 —u) =0, YO0 < u < 1)and square integrable score function, ¢* = {¢*(u) =
é((1 + u)/2),0 < u < 1}, and for every n (= 1), let

(2.6) a,(i) = E¢(U,;) or ¢(7%1),

a,*(i)y = E¢*(U,;,) or *(’7>, i=1,..-.,n,
()= Ep*(U) or ¢+ (.

where U,, < .-+ < U, are the ordered rv’s of a sample of size n from the rec-
tangular (0, 1) df. Finally, letY, = (Y, - -, Y,) and for every real (a, b), define
Y,(a,b) =Y, — al, — bt, where 1, = (1, ---, 1) and t, is defined after (1.1).
Consider then the statistics

(27)  Tya,b) =T(Y,(a,6) = n7 i sgn (Y, — a — bi)a,*(Ri(a, b)) ,
(2.8)  Ly(a, b) = L(Y,(a, b)) = n~t X0 (1, — F,)a,(R,(a, b)),

where R,;(a, b) (or R},(a, b)) is the rank of Y, — a — bz, (or |Y, — a — bt))
among Y, —a —bt, ---, Y, —a— bt (or|Y, —a—bt|, - ---,|Y, —a— bt)),
for i =1, ..., n. Note that R, (a, b) = R,,(0, b) for every real a, and hence,
L,(a, b) does not depend on a; we write it as L,(b). Also, we write R,,(0, 0) =
R, fori=1,...,n.

Note that for every given Y, and b, T (a, b) is \, in a: —oo < a < oo, and
for every given Y,, L,(b) is \, in b: —oco < b < oo (see Theorem 6.1 of Sen
(1969) in this context). Also, if in the model (1.1), we let § = 8 = 0, then
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T,(0, 0) and L,(0) both (marginally) have distributions symmetric about 0. As
such, as in Adichie (1967), we consider the following estimators. Let

(2.9) 6,9 =supfa: T,(a,0) >0}, 6,7 =inf{a: T\(a,0) < 0};

2.10) b= 400 + 6,
(2.11) B0 =sup{b: L,(6) >0},  ,® =inf{b: L,(b) < 0};
(2.12) B =3B + B

(2.13)  6,v =supfa: Ty(a, B,) >0}, 6,2 =inf{a: T,(a, f,) < 0};
(2.14) g, = 40,2 +6,”).

Then, 0} is a translation-invariant, robust and consistent estimator of # when
B = 0, while 5n is a similar estimator when 8 is unspecified.

For the preliminary test on regression, we use the nonparametric test based
on L, = L,0). Thus, for the one-sided test (viz., H,: 8 = 0 vs. H;: 8 > 0),
our test consists in

(2.15) accepting or rejecting H, accordingas L, is < or >=L,,,

n

where P{L, =L, |H}<Sa, 0<a<l,
and « is the level of significance of the test. If we let

(2.16) A= (n— 1) Y {a,(i) — n7t Do a())) n=2,
and if 7, is the upper 100a9%, point of the standard normal df, then
(2.17) nQ, tA4,7'L, ,—> 7, as n-— oo .

For small n, L, , can be computed by direct enumeration of the null distribution
of L,, generated by the n! equally likely permutations of the ranks R,,, - - -, R,,
(over the set (1, - - -, n) of natural integers).

Our proposed estimator of ¢ is then as follows:

(2.18) 0, =40,, if L, <L,,
=6,, if L,>L,,.

For a two-sided test, we replace in (2.15), (2.17) and (2.18), L, by |L,| and r,
by 7,,-

As is usually the case with estimators based on preliminary tests, #,* is not
(generally) an unbiased estimator of §. Our contention is to study the nature
of the bias and m.s.e. of §,*. In passing, we may remark that, in general, 19,”
f, and 6, (and hence, 6,*) are to be obtained by trial and error solutions. For
some specific scores (viz., Wilcoxon’s), in some specific cases (viz., #,), an exact
expression may be available. Also, if instead of the linear rank statistic L,, one
uses the estimator of 8 (and the test for 8 = 0) based on Kendall’s tau [viz., Sen
(1968)], then for the Wilcoxon estimator in (2.10) and (2.14), we have some
exact expressions. The linearized rank and signed-rank estimators of Kraft and
van Eeden (1972) can be used and they are computationally simpler. However,
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they are asymptotically equivalent to the estimators in (2.10), (2.12) and (2.14)
only if ¢(u) = ¢(u) = —f(FW)/f(F-()), 0 < u < 1. For ¢(u) # ¢(u), the
Kraft-van Eeden estimators can still be used, but these will have asymptotic
distributions different from those of 4, B, and 6,, and we do not intend to
pursue the case here.

3. Asymptotic distribution of the estimator ¢,*. Let us denote by

(3-1) A = o ¢%(u) du — (Vo p(u) du)*,
(3-2) Pu) = —f(F@)AF @), 0<ull;
At = I(f) = S ¢X(u) du,

3:3) 7(¢s ¢) = (85 (u)p(u) du) -

Then, by the basic theorems of Chapter V of Hajek and Sidak (1967), it follows
that under (2.4), (2.5) and (2.6) and § = 38 = 0 (where T, = T,(0, 0)),

(3.4) AT, L)) — A0, 4,2diag (1, Q*)), as n— oo

(so that under § = 8 = 0, the two statistics are asymptotically independent,
too). Secondly, from Theorem 3.1 of JureCkova (1969), we have the following
result where K (0 < K < o) is a positive constant.

Under (2.1) through (2.6) and for 8 = 0, as n — oo,

(3.5)  sup {nt|L(n"tb) — L,(0) + n26Q*1(¢, ¢)|: |6] < K} —, 0.

Finally, note that under 6 = 8 = 0, Y, and —Y, both have the same df. Also,
we note that by (2.5), there exists a d (0 < d < o) such that d|t;| < 1 for all
i = 1, so that (1 4 dt,) = O for every i = 1. Moreover, (2.4) and (2.5) insure
that for x, = (1, ¢),i = 1,

n~1 5" x./x —><1 ! > as n— oo
1=1 “*¢ i 1)

I Q* 4+ 72
and also max,g,., {t/ 237, 1.’} — 0 as n — oo. Since the first coordinate of x; is
equal to 1 for all i > 1, it follows that (|I| — [1])(|1 4 dt| — |1 4 dt,|) = O for
alli,i’ =1, ..-,nandn = 1. Assuch, by our (2.1) through (2.6) and Theorem
7.2 of Kraft and van Eeden (1972), we arrive at the following.

Under (2.1) through (2.6) and for § = 8 = 0, as n — o,

(3.6) sup {n}|T (n"¥(a, b)) — T,(0, 0) + n~¥a + bi,)r(¢, ¢)|:
la| £ K, |b] £ K} — 0, in probability,

where K(0 < K < oo) is a positive constant.
From (2.9) through (2.14), (3.4), (3.5) and (3.6), it follows by some standard
computations that under (2.1) through (2.6),

(3.7 L(n¥(0, — 0, B, — B))

= 25 (0: (417, 9 (1 f,-fof ’ ‘ZZI)) ’
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and when 8 = 0,
(3-8) Lk, — ) — A0 A1($, 8) -
Note that the (one-sided) test based on L, in (2.15) is consistent against § > 0,

so that asymptotically, P{¢,* =6,|8 > 0} — 1. Hence, by (3.7), for every
ﬂ >0, as n— oo,

(3-9) L(n}(0,* — 0)) = A05 AK(1 + F[Q*)[rH(¢, 8)) -
Similarly, P{L, < L, ,|B < 0} — 1 as n — oo, so that P{0,* = 4,|8 < 0} — 1

as n — oco. On the other hand, for § == 0 and 7 + 0, ni(én — 6) does not have
any asymptotic distribution, so that for every real x (—oo < x < o),

(3.10) P{nt(0,* — 0) < x|B<0}—-0 or 1
accordingas 7 is < or >0.

For the two-sided preliminary test, (3.9) holds for any g # 0. In either case,
for 8 = 0 or close to 0, the asymptotic distribution will be different. For this
purpose, we conceive of a sequence of alternative hypotheses {K,} where

(3.11) K,: B =B =nti, A real.
Then, we have the following theorem.

THEOREM 3.1. Under (2.1) through (2.6) and {K,} in (3.11), as n — oo,

(3.12) L(nb, — 0, L,)) — 450, 20*1(¢, ¢); Z,),
(3.13) (@, — 0, L)) — A JAF Q*1(¢, 9)); Zo)
Where
— g2 (L +E[Q XS, $), —i[r(¢ 8)
(3.14) =4, < e o )
3, = A¢2<1/72(0¢: ) Q0*>,

OUTLINE OF THE PROOF. Note that both §, and §, are translation-invariant
estimators, and hence, for proving (3.12) and (3.13), we may, without any loss
of generality, assume that § = 0. Also, by (2.11)—(2.12) and (3.4)—(3.5),
nt|B, — B| = 0,(1), while, under (3.11), nig = 1 = O(1l). Thus, under (3.11),
nt|B,| = O,(1). Observe that under 6 = 8 = 0, by (3.5), ntL,(0) = ntf,Q*y(¢,
#) + o,(1), while, by (3.6), niT,(0, 0) = n¥(0, + i, 8)r(¢, ¢) + o0,(1), so that
ni,y7(¢, ¢) = niT (0, 0) — (7,/Q*)niL,(0) + o,(1). Hence, utilizing the conti-
guity of the probability measures under {K,*: § = 0, § = n~*4} to those under
Hy*: 60 = 8 = 0, we obtain from the above that under {K,*}, as n — oo,

(3.15) néénr(gb, ¢) = ntT,(0, 0) — (,/Q*)n*L,(0) + o,(1).
Finally, n#(T,(0, 0), L,(0)), under K,*, has the same joint distribution as n¥(T (0,

n 3

—n~*2), L,(—n"%2)) under Hy*; by (3.4) through (3.6), the latter is asymptotically
normal with mean vector A7(¢, ¢)(#, 0*) and dispersion matrix 4,* diag (1, Q*).
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Thus, under {K,*}, as n — oo,
(3.16)  F(n(T4(0, 0), L,(0))) — A,({Ar(¢, P}, Q*); 4, diag (1, 0%)) -
The proof of (3.12) follows from (3.15) and (3.16). Also, noting that by (2.9),

(2.10) and (3.6), under {K,*}, nif,y(¢, ¢) = niT,(0, 0) + o,(1), the proof of
(3.13) again follows from (3.16). []

Let P, _denote the probability under X, in (3.11). Then, by (2.18), we obtain
that for every real x (—oo < x < o0),

Py {n¥(0,* — 0) < x} = Py [n¥(0,* —0) < x,L, < L,,}
(3.17) + Py (n¥0,* —0) < x,L, = L, .}
= Py {nt(f, — 0) < x, L, < L, ,}
+ Py (n¥(@, — 0) < x, L, > L, ,} .

Note that 4,’, defined by (2.16), converges to A, as n — co. Hence, if we
denote by G(x) (and g(x)) the df (and the pdf) of a standard normal distribution,
from (2.5), (2.17) and (3.17) and Theorem 3.1, we obtain by some routine com-

putations that under {K,} in (3.11) and (2.1) through (2.6), as n — oo, for every
real x,

Py (n}(0,* — O)r($, $)/A, < x}
(3.18) = Py n(0.* — 0) < xA4,/7(¢, ¢)}
— G(x — )G(t, — Av,) + -2, G(x + wuy/v,) dG(w)

= G *(x), say,
where

(3-19) vy =1, 9)/ A, s vy = (Q¥)(¢, 9)/4, and v /v, = 7)(Q*)}.
In a similar manner, it can be shown that for the two-sided preliminary test, the
asymptotic distribution is given by
(3.20) G*(x) = G(x — W ){G(Tyy — Avy)) — G(—7,,, — Avy)}

+ {§2n e 4§24, G(xX + wyyfv,) dG(w)} .

Note that both G,* and G,* depend on «, 2, 7, Q*, ¢ and ¢». Thus, we arrive at
the following

THEOREM 3.2. For the one and two-sided preliminary tests on 8, under (3.11),
the asymptotic distributions of n¥(0,* — 0)r(¢, ¢)/A, are G* and G*, respectively,
defined by (3.18) and (3.20).

We conclude this section with the note that for the density functions g,* and
g,* corresponding to the df’s G,* and G,*, we have :

(3:21)  g*(x) = g(x — W)G(r, — ) + §=_y.. 9(x + wuvy) dG(w)
9:,%(x) = 9(x — W){G(r,, — Av,) — G(—7,,, — Av,)}
(3.22) + {§Zleamrr 4 (2 o, 9(x 4 wyyfv,) dG(w)}
—o < x<L oo,
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4. Asymptotic bias and mean squared error of the estimator. Theorem 3.2
gives us the asymptotic distribution of n¥(6,* — 6)r(¢, ¢)/A4, for both the situ-
ations. We now define for the two cases

4.1) Asymptotic bias of n¥(0,* — ) = &,

= (AJr(), M=o xg4(x) dx}  for j=1,2,
and

(4.2) Asymptotic mean squared error (a.m.s.e.) of n¥@,* — ) = {;

= {(497($, PYHSZa 20,4 (x) dx)  for j=1,2.
We may remark here that the actual bias and m.s.e. of n#(4,* — 6) may not be
asymptotically equal to the expressions in (4.1) and (4.2); such an asymptotic
equivalence demands conditions more restrictive than the ones insuring the con-
vergence in law in (3.18) and (3.20). Nevertheless, (4.1) and (4.2) are important
tools for studying the asymptotic properties of the estimator 6,*.

Note that for a standard normal density g (= GYand a < b,

(4.3) §a xg(x) dx = g(a) — g(b),
(4.4) Ja X’g(x) dx = {ag(a) — bg(b)} + {G(b) — G(a)},
(4.5) (2 (x 4+ B)’g(x)dx =1 + B2, for all real 4.

As such, from (3.21), (3.22), (4.1) and (4.3), we obtain that
$={4y/1(d, HHG(r, — W) + gz, — W) (—vfwy))

(4.6) = AG(t, — ;) — g(t, — W)iA,[7($, $)(Q*)
= H{AG(t, — Av,) — 9(t, — Avy)[vy} s
4.7) & = HA[G(t, — Avy)) — G(—7,, — Av,)]

= %7 [9(Tan — Avy) — 9(—74 — )]}
Also, from (3.21), (3.22), (4.2), (4.4) and (4.5), we obtain that
&= {A4/1(9, ST + ()}G(r, — ) 4§, {1 + (vifve)'w? dG(w)}]
= (/1% VUL + ()IG(e, — 2w) + (1 — G(e, — Auy)
(4.8) + (m/v){1 — G(z, — Av,) + (t, — Ay)g(r, — Av)}]
= {4,/r(¢, $)Y(1 + £/Q*)
+ P{G(r, — A,)(2* — y2‘2) + v N, — Wy)g(t, — Avy)};
G = {A,/r(¢, S)P(1 + 72/Q%*)
(4.9) + P{(G(t, — Av,) — G(—71,, — Av))(A® — v,7%)
+ 297 (T — W)G(Tay — ) + (T4 + A3)9(Tas + Avy)]} -

Note that the asymptotic distribution in (3.8) holds when B = 0 and we need
to study the situation when {K,} in (3.11) holds. Towards this, we define {K.*}
and H,* as in before (3. 15) and note that for every (fixed) reala(—oo < a < 00),

(4.10) Py |{ntT,(n"ta, 0) < 0} = Py {n*T,(n"¥(a, —2)) < 0} .
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Hence, by (2.9), (2.10), (3.6) and (4.10), we obtain by a few standard steps that
for every (fixed) real q,
@.11)  P(d, — O)(g. 94, < a|K,} = P(d, < ntad,j1(¢, 6)|K.¥)

— G(a — 4ir(¢, P)A4,) -
Thus, under {K,} in (3.11), n}(§, — 6) has asymptotically a normal distribution
with mean A7 and variance A4,/y*(¢, #), and hence, the asymptotic bias of
ni(@, — 0) is equal to

(4.12) & = {A¢/T(¢’ )} V2 x dG(x — Atr(¢, ¢)/A¢) = Af
and its a.m.s.e. is equal to
(4.13) & = ASr (¢, ¢) + 2F.

On the other hand, by (3.12), the asymptotic bias and a.m.s.e. of n}(f, — 6) are
(respectively) given by

(4.14) =0 and C = {4} (¢, D)N1 + £2/Q*).
We define the relative asymptotic bias as p; = §,/C}, for j=1,2. The ex-

pressions for 4, and p, can be obtained directly from (4.6) through (4.9). For
the null hypothesis case (i.e., for 2 = 0), #, = 0 and g, reduces to

(4.15) —(T/(@)H9(z){1 + (P/Q*) (& + T 9(za))}* -

Note that (4.15) depends on 7, Q* as well as a. For the special case of the
two-sample location problem (with equal sample sizes), we obseve that (4.15)
reduces to

(4.16) =9Il + a + 7. 9(ro)}* -

For @« = 0.01, 0.05 and 0.10, the values of (4.16) are —0.02, —0.08 and
—0.152, respectively.

Some interesting features of (4.6) through (4.16) are the following. First, for
any 4 (not necessarily equal to 0),
(4.17) Z-‘:O-—:»Eo:El:Ez:Ea:O and

Co = C1 = C2 = Ca = A¢2/7'2(¢’ ¢) .

Thus, for 7 = 0, all the three estimators in (2.10), (2.14) and (2.18) have asymp-
totic bias equal to 0 and a.m.s.e. equal to A’¢2/r2(¢, ¢). Hence, in this case, the
preliminary test of significance (on 8) does no entail any asymptotic difference
in the properties of the three estimators. In fact, f = 0 — v, = 0, so that both
g,*(x) and g,*(x) in (3.21)—(3.22) reduce to the standard normal pdf g(x), insur-
ing the asymptotic normality of n¥(6,* — 6). Secondly, if 7 = 0 but 2 = 0 (i.e.,
H,: B = 0 holds), then §, = §, = §; = 0, while &, = —(#/v,)g(r,) and is negative
or positive according as 7 is positive or negative. Thus, for the null hypothesis
case, the two-sided preliminary test has an advantage over the one-sided test so
far as the asymptotic bias is concerned. As regards the a.m.s.e., we have the
following.
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THEOREM 4.1. Under the null hypothesis (i.e., A = 0), when { = 0,
(4.18) 0<¢ <l <<l < o, for every ae(0,1).
Proor. Note that for 2 = 0,
=AM (¢, 8), & =0C(1 4 7/0%),
(4.19) G =Gl + (B/Q%)a + 7,9(z.)}) »
= (1 + (P/Q*Na + 27.,9(7ap)}) -
Hence,
=% = (Cot_2/Q*)(a -+ Tug(z'a)) >
(4.20) G — & = (G Q*)(270n9(Tap) — 729(74)) 5
G — &= (LPQ*)(1 — a — 27,,9(74)p)) -
Note that for every real x,

1 — G(x) + xg(x) = {7 9(y) dy + xg(x)

(4.21) = [yo)l — §2y9'(y) dy + xg(x)
= {2 y'9(y) dy,

so that

(4.22) 0<a+r,9(t,) = (e )y9(y)dy <1, VO<a<l.

Also,

l —a— 2‘[«/29(70&/2)
(4.23) =1—=2a/2 + 7p0(cep) = 1 — 2182, y'o(y) dy
= {2 yg(y)dy >0, forall 0<a<l.

Finally, for § < a < 1, 7,is < 0 while 7,, is > 0, and hence, 27,,9(7,,) —
7,9(z,) is > 0. On the other hand, for 0 < a < 4, 7,,, > 7, > 0 and
2700 9(Tap) — Ta(Ta) = 2(2)2 + 7, 9(7T4p)) — (2 + 7,9(7.))

(4.24) =285, 790) &y — %, y'9(y) &y

=15, 7900 dy — 222 y'e(y) dy

>t y(af2) — i —af2) =0, O0<a<i.
Hence, (4.18) follows from (4.20) through (4.24). []

From Theorem 4.1, we conclude that from the point of view of a.m.s.e., 6,*

is better than 6, and 6, is better than 6,*; the one-sided preliminary test (on j3)
is better than the two-sided one. In Section 5, we shall consider parallel results

for the case when the null hypothesis is not true. Continuing the study under
the null hypothesis case, we note that by (4.19) and (4.20),

(4.25) LG =1 4 (F/O*)(§2, y'9(y) dy) -

For small «, the integral on the right-hand side (r.h.s.) of (4.25) is small, indi-
cating that the relative increase in the a.m.s.e. is also small. For the particular
case of the two-sample location problem where the ¢, are either 0 or 1, we obtain
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that for the equal sample sizes case, f = } and Q* = £, so that (4.25) reduces to

(4.26) GG =1+ ya(») dy.
For a = 0.01, 0.05 and 0.10, the values for the r.h.s. of (4.26) are 1.073, 1.221

and 1.328, respectively. Finally, for 2 = 0 and 7 = 0, we have noticed that
I€.] = (|f]/v,)9(z,) Where by (3.2), (3.3) and (3.19)

(4.27) Plv, = (E[Q*)( A2 (¢, )

= (2/Q*) A1 (¢, ¢)/ A2 4,77

Now, the first factor on the r.h.s. of (4.27) depends only on the design of the
set of independent variables ¢, - - -, 7,. If the choice of the design is left to us,
we can minimize (#*/Q*) by setting f, — 0 as n — co. On the other hand, if the
t;are given, we do not have much control in this respect, and hence, the prospect

of minimizing (4.27) rests on the minimization of the last factor on the r.h.s. of
(4.27). Towards this, note that

(4.28) (¢, $)JA242 <1,  forall 4,

where the strict equality sign holds when ¢ = ¢. Hence, an optimal choice of
the source function relates to ¢ = ¢.

5. Asymptotic comparison of the estimators when 1 = 0. Here, we shall be
mainly concerned with the asymptotic comparison of the bias and mean squared
errors of the estimators 4, 6,* and §, when 7 = 0 and H,: § = 0 may not hold.

First, let us consider the asymptotic bias for these estimators. For real (t, u),
let us define G and g as in Section 3 and let

(5.1 hy(u) = uG(t — u) — g(t — u) = G(t — u){u — g(t — w)/G(t — u)},

(52) ) = ufG(t — u) — G(—t — w)} — {g(t — u) — g(—1t — W)},
t=0.

Then, h,'(u) = (djdu)h(u) = G(t —u) — tg(t —u) = G(t — u){1 — tg(t — u)/G(t — u)}.
Note that for t = 0, 4(0) = —9(0) <0, h/(4) = G(—u) =0, V real u and h(c0) =0,
so that A,(u) is a monotonically nondecreasing and negative function of u € (— oo,
o). Let us next consider the case of 0 < ¢ < (x/2)}. Then, 4,(0) = —g(r) < O,
forO = u<, h/(u) = G(t —u){l —tg(t — u)|G(t — u)} = G(0){1 — 19(0)/G(0)} =
3l — #(2/7)}} = 0 and A(r) = tG(0) — g(0)is < or > 0 according as 0 < ¢t <
(2/m)* or not. Further, g(x)/G(x)is | in x (— oo < x < o) and |g(x)/G(x) 4 x| -0
as x » —oo. Thus, for every € (0, (7/2)}), there exists an u, = u,(t) (= ), such
that 4,/(u) is < or = 0 according as u is > u, or t < u < u,, while we have ob-
served that A,/(1) = 0 for u < 1; for large u, h,(u) behaves as G(r — u){r + o(1)}
and is positive. Hence, #,(#) monotonically increases from —g(7) (< 0) to h,(u,)
(0 < hy(u,) < uo) as u increases from 0 to u, and then it monotonically converges to
Oasu — oo. Finally, if 1> (7/2), £,(0) = —g(1) (< 0), £,/(0) = G(1) — t9(r) > 0,
hy(t) = tG(0) — g(0) > 0 and #,/(r) = 4{1 — 21g(0)} < 0. Since, for 0 < u < ¢,
1g(t — u)/G(t — u) is T in u, there exists an u, = u,(f) (0 < u, < t), such that ()
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is > or < 0 according as u is < or > u,, whereas as before, 4,'(u) < 0 for every
u = t. Hence, here k,(u)is 1 inu € (—oo, u,) and | in u € (4, oo) where £,(0) <
0 < hy(u,) < uy < tand k(o) = 0. In asimilar manner, it follows that 4,(x) = 0
for every real u, while for r > 0, there exists an u, = u,(f) (0 < #, < o), such
that A,(u) is monotonically increasing in u € (0, u,) and decreasing in u € (4, ).
Besides, /,(x) is symmetric in u, 4,(0) = h,(c0) = 0 and 0 < () < u,.

Let us consider the expressions for the asymptotic bias of the estimators in
(4.6), (4.7) and (4.12). Define 4, by 2,v, = u, where 4, is defined as in above.
Then, from (5.1), (5.2), (4.6), (4.7), (4.12) and the above discussion, we arrive
at the following.

LEMMA 5.1. For 0 < a < & and f > 0, there exist two numbers (2, 2,): 0 <
2, £ 2, < oo, such that (i) &, = &,(2) is < or > 0 according as A is < or > 2, and
(ii) €,(R) is T in A € (— o0, 4y) and | in A € (4, o0) with §,(0) < 0 < §,(4,) < 4,f and
£(o0) =0. For a =%, () is | in Ae(—o0, o) with §,(2) < 0 V real A and
£(c0) = 0. Fora =0, & = &(4) = 0 for all 2 € (— o0, o), while for f > 0 and
0 < a < 1, &(R) is @ symmetric and nonnegative function of 2, £,(0) = &,(c0) = 0
and £,(A) is | in A€ (0, 4) and is | in A € (4, co) where 0 < §4(2,)) < A,f. Finally,
&, =&yA) = A andis | in A when i > 0. For i < 0, all the results hold with the
& /() replaced by —£4,4),j=0,1,2.

Actually, it can be shown along the same line as in above that both
(d/dA){i(2) — £,(2)} and (d/dA){&\(A) — &,(4)} are nonnegative for all real 2, so
that by Lemma 5.1, §,(2) — &,(4) and £(4) — £,(4) both monotonically go to oo
as 1 — oo. Since, for the one-sided preliminary test in (2.15), we are primarily
interested in the set of alternatives 2 > 0, it appears that as regards the asymp-
totic bias, excepting for 4 close to 0, §,* performs better than 9,,. For the two-
sided test, #, has an asymptotic bias never less than that of 4, *.

Let us next compare the a.m.s.e.’s §,, {, and {,. By (4.8), (4.9) and (4.13),
we have

(5:3)  G— G = P{(AHQ* (b, NI — Gy — W) + (£ — Moz, — Auy)]
— 1 — G(z, — W)}

G — & = P{(AS1Q*1H(s P)1 — G(Tap — Avy) + G(—Tun — Avy)
(5-4) + (Tass = W)I(Tass — AV3) + (Ton + A5)9(T s + Av,)]
— A1 — Gt — Avy) — G(—7,4 — )]} .

Though in some neighborhood of 4 = 0 (depending on Q*, 7, & and y(¢, ¢)),
€, — &, is positive, it goes to 0 as 4 — — oo and there exists a 4, > 0 such that
€, <& for 2 > 4. A similar case holds for (5.4): it is symmetric in 2, is positive
in some neighborhood of 2 = 0 and is negative for |2| > 4,. Thus, for the
general case, when 7 and 2 are not necessarily equal to 0, 6,* may have a smaller
a.m.s.e. than that of 4,.

Let us next compare the a.m.s.e. of #,* and 5n. By (4.8), (4.9) and (4.14),
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we have
(5.5) C — & ={G(r, — )2 — v,7%) + v, (T, — A)9(t, — Ay}
(5.6) Co— & = P{(G(tay — Avy) — G(—7T,p — A0,)) (A — v,7%)
+ U (Tas — A)9(Tasy — AV3) + (Taps + AV)G(Tan + Avy)]} -

Note that for # = 0, both the quantities in (5.5) and (5.6) are equal to 0. Also,
for 7 = 0 but A = 0, we have observed in (4.18) that {; < {, < {;,. So that, in
such a case, 6, * has a smaller a.m.s.e. than that of 5n, for both the cases of one
and two-sided preliminary tests of significance (on ). This explains the asymp-
totic superiority of #,* to that of G,. For the particular case of the two-sample
location model (with equal sample sizes), we obtain from (5.5) that for 4 = 0,

(57) 220G =21 +a+r0E) 2 4 0<asi,

where the lower bound is attained for « = { and for small «, it is close to its
upper bound 2; by (4.21), {,/; is > 1 for every a € (0, 1).

The picture can be somewhat different when 2 = 0; the presence of the asymp-
totic bias of 6,* may shoot up its a.m.s.e. and reduce its a.r.e. with respect to .
Note that for the case of the one-sided preliminary test (on ), the a.r.e. of {¢,*}
with respect to {f,} (as judged by their a.m.s.e. in (4.8) and (4.14)) is given by

LA B 1+ t'Z/Q*
5.8 1 0 3 0 — @3/ 1 — T
(5-8) e, 0) = G/C [1 + (7/0*)qx(Tas Av)]

where for —co < x, y < oo,

(5-9) qi(x, ) = y'G(x — y) + 1 — G(x — y) + (x — y)g(x — y)
= y*G(x — y) + \&_,, wg(u)du, by (4.21).

Note that g,(x, y) is nonnegative for all real x, y, and hence, (5.8) can never
exceed (1 + %/Q*). Also, ¢,(x,0) =1 — G(x) + xg(x) € (0, 1) for all —oco <
x < 005 qy(x, x) = (1 4+ X% (> 1if |x] > 1), g,(x,y) > +o0 as y —» —oo (for
a fixed x) and g, (x, y) —» 1 as y — +oco (for a fixed x). In fact, as y increases
from 0, ¢,(x, y) also increases first, attains a maximum at some y and then it
gradually converges to 1 as y — co. Similarly, as y decreases from 0, g,(x, y)
first decreases and then it shoots up to 4-co as y — —oo. This implies that there
exists an interval J = J(a, v,) containing 0 as an inner point, such that

(5.10) Gi(Tas Avy) =1 for every 4e/J

and the opposite inequality holds for ¢ J. Consequently, by (5.8), (5.9) and
(5.10), we conclude that .

(5.11) e (0%, 0) = 1 for every 1€/,

and the opposite inequality holds outside the interval J. Actually, for negative
A, as 4 — —oo, the a.r.e. converges to 0. Of course, for the one-sided test on
8. in (2.15), we are primarily concerned with alternatives on the positive part
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of the real line, and hence, a highly negative value of 2 cases to be of much real
interest.

In a similar manner, it follows from (4.9) and (4.14) that for the two-sided
preliminary test (on g), the a.r.e. of {,*} with respect to {f,} is given by

~ 1 + 70
5.12 (0%, 0) = Gf% = ‘ |
( ) e ) = &/C [1 + (0*)qa(Tayz> Av,)]

where 7,, > 0 for every a € (0, 1) and for x € [0, c0) and y € (— o0, o),

9a(x, y) = y{G(x — y) — G(=x — )} + 1 — G(x — y)

(5-13) + G(—x —)) + (x = N9(x = y) + (x + »9(x + y)
= V{G(x — y) — G(—x — y)} + (ZZ¥ ug(u) du
+ $o, wPg(u)du (> 0).

Note that for all 0 < x < oo, (i) g4(x, 0) € (0, 1), (ii) g(x, x) = x(} — G(—2x)) +
§Zwwlg(u)du + 5 > 4(1 + x*) + (42 — 1)G(—2x) (> 1ifx > 1), (iii) gy(x, y) =
gy(x, —y) for all real y, and (iv) g,(x, y) > 1 as y — +oo. In fact, as y increases
from 0, g,(x, y) also increases, attains a maximum at some y (> 0) and then
gradually converges to 1 as y — co. Thus, there exists an interval J = Ja, v,),
symmetric about 0 (an inner point), such that

(5.14) Go(Tayes Avy) < 1 for every ¢/,

while the opposite inequality holds outside J. Hence, we have the same type of
picture for the a.r.e. as in the case of the one-sided preliminary test, excepting
that (5.12) does not converge to 0 as A — — co.

For the two-sample location model (equal sample sizes), (5.8) reduces to

(5.15) (0%, 0) = 2/{1 + qy(v. )} -

The following table relates to the a.r.e. in (5.15) for some typical a and 2v,.
It appears from Table 1 that the smaller is the value of a, the greater is the

TABLE 1
Table for the a.r.e. in (5.15) for some specific « and ive
e(6*, 6)
Ave
a =0.01 . a=0.05 a=0.10

—1.00 0.997 0.984 0.967
—0.50 1.571 1.483 1.404
—0.20 1.839 1.658 1.534

0.00 1.864 1.638 1.500

0.20 1.745 1.520 1.413

0.50 1.414 1.264 1.217

1.00 0.901 0.906 0.949

1.50 0.620 0.727 0.823

2.00 0.500 0.679 0.805

3.00 0.529 0.806 0.915
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variation in the a.r.e.; in any case, for 4y, close to 0, the a.r.e. exceeds one. By
actual computations we have verified that for 0.01 < « < 0.10, the a.r.e. is
greater than one for every Av,: —0.96 < Ay, < 0.88. A more or less similar
case holds for the two-sided preliminary test of significance, though there the
a.r.e. is a symmetric function of 1v,. We may also remark that if the sample
sizes are not equal, the a.r.e. will be higher or lower than the tabulated values
according as the ratio of the first and second sample sizes is greater or smaller
than one.

For two nonparametric estimators (after preliminary tests on §) 6%, and 65,
based respectively on the score functions ¢, and ¢,, satisfying the regularity con-
ditions of Section 2; we obtain from (4.8) that the a.r.e. of {#*} relative to {0} ,}
(under {K,} in (3.11)) is

(5-16) el (A) = {45,7°(¢> 61)/45,7%(9> }A(E, Q% @, ),
where
(5.17) h(i, 0%, a, 2) = L+ (/0)4:(w Avy)]

[1 + (F/Q*)q:(Tar A¥m)]

and v,; 18 defined by (3.19) for ¢ = ¢,, j =1, 2. When 1 = 0, # = 1, so that un-
der the null hypothesis H,: 8 = 0, (5.16) is equal to {4} 7*(¢, ¢,)/ 45, 7%(¢> ¢2)} =
the Pitman a.r.e. in the conventional location problem. Hence, in this respect,
¢ = ¢ is the optimal score function. A similar case holds with the two-sided
preliminary test of significance. On the other hand, for 2 = 0, (5.16) depends on
2 as well as on 7, Q*, v,,, v,, and «; the Pitman-optimality may not hold therefore
for all 4.
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