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THE ADAPTIVE BIASED COIN DESIGN FOR
SEQUENTIAL EXPERIMENTS

By L. J. WEI
University of South Carolina—Columbia

In comparing two treatments, eligible subjects come to the experiment
sequentially and must be treated at once. To reduce experimental bias and
to increase the precision of inference about treatment effects, the adaptive

" biased coin design, which offers a compromise between perfect balance and
complete randomization, is proposed and analyzed. This new design has
the property that it forces a small-sized experiment to be balanced, but
tends toward the complete randomization scheme as the size of the experi-
ment increases.

1. Introduction. In comparing two treatments 4 and B, eligible subjects come
to the experiment sequentially and must be treated at once. A statistical design
problem is how to assign subjects to different treatment groups. One usually
considers assignment rules which compromise between complete randomization
and perfect balance to reduce experimental bias and to increase the precision
of inference about treatment difference. Efron (1971) introduced the biased
coin design, BCD(n), which can be described in the following manner. Suppose
that each time an eligible subject arrives, one calculates D = (no. of subjects
previously assigned to 4) — (no. of subjects previously assigned to B). Then
the following rule is used: if D = 0, assign this subject to either treatment with
probability 4; if D < 0, assign this subject to treatment 4 with probability ;
if D > 0, assign this subject to treatment B with probability ». A value of 7 is
used so that » = 4. The BCD(y) indeed forces the experiment to be balanced
and also retains some randomization. But neither can it discriminate between
large absolute values of D versus small nonzero values, nor can it discriminate
between large and small numbers of experimental subjects. For example, con-
sider the following two situations:

(i) 2A4’s and 0B have been assigned previously.
(ii) 18A4’s and 16B’s have been assigned previously.

Although in both cases D = 2, the imbalance between treatment groups in (ii)
is much less serious that in (i). The treatment difference is not even estimable
in (i).

In an experiment, usually there are several factors which are known or thought
to affect the subject’s ability to respond to treatment. Each factor has several
levels. A group of subjects which have a particular combination of such factor
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levels is called a stratum. In this paper, we consider treatment assignments
which are performed entirely separately within each stratum. We assume that
the total number of subjects in this experiment is predetermined, but due to
random entry of subjects, the number of subjects who will fall in each stratum
is unknown beforehand. Essentially then, we face a design problem of a sequen-
tial experiment whose size cannot be predetermined. But no special stopping
rule has to be considered.

In Section 2, we propose the adaptive biased coin design which forces an ex-
tremely unbalanced or a small-sized experiment to be balanced, but tends toward
the complete randomization scheme as the size of the experiment increases.

In order to preserve the continuity in the presentation of this paper, all proofs
are placed in the Appendix.

2. The adaptive biased coin design. Because of the symmetry of this design
problem, the first treatment assignment is determined by tossing a fair coin.
The adaptive biased coin design can best be described by considering an arbitrary
stage of the experiment. Suppose after n (> 1) assignments we have N, 4’s and
Ny B’s assigned. Let D, = N, — N, and let p be a nonincreasing function of
D,/n. The possible values of p range from 0 to 1. Then the (n + 1)th subject
is assigned to treatment group 4 with probability p = p(D,/n) and to treatment
group B with probability ¢ = ¢(D,/n), where p + ¢ = 1. The function p(x) is
chosen to be symmetric with respect to the point (0, 1); i.e., p(x) = g(—x), for
xe[—1,1].

The D, form a Markov process with states of all integers, ..., —2, —1,0,
1,2, ..., and the transition probabilities from the nth assignment to the (n + 1)th
assignment are as follows:

P(Dyyy = j + 1| D, = j) = P(j[n),
and
P(D,.,=j— 1|D,=j))=q(jn), where —n<j<n.

We note that the BCD(7) is a special case of the adaptive biased coin design;
i.e., we take

p(x)=77, for -1 <x<£0, and P(0)=%‘

If we take the straight line p(x) = (1 — x)/2, then this is an urn design which
has been shown to yield a generally good design (Wei (1977a)).

3. Experimental bias. If the experimenter is aware of or guesses which treat-
ment a subject will receive before selecting the subject, then he may consciously
or unconsciously bias the experiment by his choice of who is or is not a suitable
experimental subject. The complete randomization scheme eliminates this bias,
but the systematic design (ABAB- .. or BABA...) maximizes it. This kind of
bias is called selection bias (Blackwell and Hodges (1957), Stigler (1969)). A
natural measure of the selection bias of a sequential design is the expected number
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of correct guesses of treatment assignments the experimenter can make if he
guesses optimally. The best guessing strategy against the adaptive biased coin
design is to guess treatment A4 or B on the basis of which has so far occurred
least often in the experiment, with no preferred guess if there is a tie. The
probability of guessing correctly at stage (n + 1) is the expected value of
p(—|D,|/n). The following theorem shows that the selection bias for some adap-
tive designs is almost eliminated as the size of the experiment increases.

THEOREM 1. Let D, be the process which is generated by p(x). If p(x) is con-
tinuous at x = 0, then Ep(—|D,|/n) — %, as n — co.

With respect to the BCD(y), the Ep(—|D,|/n) — % + (r — 1)/4r, where r =
7/(1 — n) (Efron’ (1971)). The BCD(7) balances a large-sized experiment ‘‘too
excessively” and has a high potential of being biased by the experimenter through
his selection of experimental subjects.

Another common kind of bias is accidental bias (Efron (1971)). There may
be nuisance factors known or unknown to the experimenter systematically af-
fecting the experimental subjects. For example, age, sex, time trend, etc. The
following theorem shows that the design which satisfies the condition in Theorem
1 is almost free of any kind of bias as experimental size increases.

THEOREM 2. Let T; = 1 or —1 as the jth subject is assigned to treatment group
A or Bby a design with function p(x), where j = 1,2, ... If p(x) is continuous at
x =0, then o, , = E(T,T,,;,) >0,asn— oo, fork =1,2, ...,

We note that for the BCD(y), the function p(x) is not continuous at x = 0.
Efron (1971) has found the limit of p,, , for the BCD(y). Asymptotically, 7, and
T, for BCD(y) are still correlated. On the other hand, the design with function
p(x) = (1 — x)/2 satisfies the condition stated in Theorem 2. So, it behaves more
and more like the complete randomization scheme as the size of the experiment
increases.

4. The balancing property and robustness of the adaptive design. The follow-
ing theorem shows the asymptotic balancing property of some adaptive designs.

THEOREM 3. The process D, generated by a function p(x) which is differentiable
at x = O has the following property. as n — oo, the distribution of n=*D, converges
t0 a normal distribution with mean 0 and variance 1/(1 — 4p'(0)), where p'(0) is the
first derivative of p(x) at x = 0.

Suppose that X and Y are the responses of subjects treated by 4 and B, with
a common variance ¢* and means x, and p,, respectively. At any stage n of
this sequential experiment, the perfect balance design is robust in the sense that
the design is insensitive to wild observations (Box and Draper (1975)). Box and
Draper gave a suitable measure of design sensitivity to wild observations. In
our case, it can be shown that this measure y becomes 1/N, + 1/N,, which is
proportional to Var (X — ¥), where X and Y are, respectively, the sample means
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of X and Y at stage n. If the number of experimental subjects is preassigned,
say 2m, then we can obtain a perfectly balanced experiment and the measure
7(= 2/m)is minimized. Now if the number of subjects is not known beforehand,
it is interesting to know how many extra observations we need for the adaptive
biased coin design to reduce 7y to be less than or equal to 2/m; i.e., we continue
taking observations until N, and N, satisfy

(4.1) 1/N, + 1N, < 2/m.

If we write N, + N, = 2m + U, then U > 0 is the number of additional
observations required by the adaptive design to satisfy (4.1). For a given value
U = u, let n,* denote the smallest value of N, for which (4.1) holds; i.e.,

Un,* + 1ng* < 2fm < 1/(n,* — 1) 4 1/(np* + 1),

where n,* + ng* = 2m + u. Therefore U < u if and only if, at the (2m + u)th
step, n,* < N, < ng*, where

ng* = [(2m 4+ u 4+ (2m + u)ut)/2]

and [.] is the greatest integer function. A As m — oo, U has a simple limit law.
By Theorem 3, the distribution of (2m + u)~*D,,,, converges to a normal dis-
tribution with mean 0 and variance 1/(1 — 4p’'(0)), asm — co. Since asm — oo,
ng* = (m + uf2) + u¥(2m + u)?/2, it follows that

P(U = 1) = @(((1 — 4p/(0))u)}) — @(—((1 — 4p'(0))u)) ,
u:0,1,2, cee

where @ is the cdf of N(0, 1). Also, since ®(—3.29) = .0005, then it is practi-
cally certain that the adaptive design does not cost as many as 10.8241/(1 — 4p'(0))
extra observations in a large-scaled experiment. For example, if we choose
p(x) = (1 — x)/2, then practically at most four extra observations are needed
to satisfy (4.1). We note that this comparison is unfair to the adaptive design,
as the inequality (4.1) is usually strict and we are obtaining a somewhat more
accurate estimate of p, — .

5. Remarks.

(1) A direct application of the above adaptive biased coin design is in con-
trolled sequential clinical trials. The main difficulty in treating each stratum as
a separate experiment is that the number of strata increases rapidly as the number
of factors increases. For example, in some cancer studies, there are many factors
that are thought to have influence on the responses of patients to treatment. In
this case, very few patients fall in each stratum. Any within-stratum assignment
rule may fail to achieve the aim of baldnce. An example of such a case was
given by Zelen (1974). The problem becomes even more serious when one con-
siders multicenter trials. An overall assignment rule should be considered in
this situation (Zelen (1974), Pocock and Simon (1975), Freedman and White
(1976), Wei (1977b)).
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(2) A very important feature of the design problem of sequential experiments
is the requirement of simplicity for the assignment rule. In practice, we recom-
mend the adaptive design with p(x) = (1 — x)/2, because it is very easy to imple-
ment (Wei (1977a)).

APPENDIX
Several lemmas are needed to prove Theorems 1 and 2.

LEMMA 1. Let S, be the process generated by the function p(x) = %, for —1 <
x < 1. Also, let g(j) be an increasing function of j, j = 0,1,2, -... Then,
E{g(1D.))} = E{9(IS.)},  for n=0,1,2,....

Proor. This lemma is trivially true for n = 0. An inductive proof will be
given for n. Now,

E¢(|1Dyial) = E{g(|1Dal + D)p(IDul/n) + 9(|1Dal — 1)g(|Dul/m)}
= H(E9(1D,] + 1) + Eg(|D.] — 1))
+ E(p(I1Dal[n) — $)9(|1Dal + 1) — 9(1Du] — 1)) -
Since p(x) < 4, for x = 0 and since g is increasing, the second term is <0. Since
the functions g(j + 1) and g(j — 1) are increasing in j, the induction assumption
implies that the first term is bounded by 4(Eg(|S,| + 1) + Eg(|S,| — 1)) =
Eg(|Susil)- O

LEMMA 2. For any positive real number t and n = 1,2, ...,
EID,|' < ES, .
LemMa 3. D,/n— 0, with probability 1, as n — oo.
Proor. Since E|D,|* < E|S,|* = 3n® — 2n, and
Nz EID,nt < 57,307 < oo,
it follows that D, /n —, ; 0, as n — co. []

ProoF OF THEOREM 1. Since D,/n — 0, a.s. as n— oo, |D,/n] — 0, a.s. as
n — co. The function p(x) is continuous at x = 0, then p(—|D,|/n) — p(0) = 1,
a.s. as n — co. By the dominated convergence theorem, Ep(—|D,|/n) — 4, as
n— oo. [] '

PrOOF OF THEOREM 2. Consider g, = E(T, 4, Tpy4y,). LetN, = 37 (T, +
1)2and M= 3734k, (T;+1)/2. Then, E(T, T, 441)=EEE(T, T, .| M, N,).
Consider the third expectation

E(Tp1Toinsa| My = my, Ny = ny)
(A1) = E(To| My =my, Ny = n)E(T, 4 |[My =my, Ny = n,)
= ET,,|M, =m,, Ny =n,)
X 2Py + 1) — n — B)f(n + k) — 1}.
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By Lemma 3 and the fact that p(x) is continuous at x = 0, for any fixed m,,
where 0 < m, < k, p((2(m, + N,) — n — k)/(n + k)) >, %, as n — co. Also,
since the first term of (A.1) is bounded by 1,

ET, Ty |My=my N)—0, as.as n— oo,

and
E(Tn+xTn+k+1|NA) —0, as.as n—ooo.

By the dominated convergence theorem,
Pnire = E(Toi1Tyir) = 0, as n-—oco. a
Several lemmas are also needed to prove Theorem 3.
LEMMA 4. The D, is a symmetric process in the sense that
P(D, =j) = PD, = —)),
where j = ..., —1,0,1, ... andn=0,1,2, ...,
Proor. The result is trivially true for n = 0. An inductive proof will be
given for n. Now, for any integer j,
P(D,y =j)=PDyy, =j|D,=j+ 1)PD, =j + 1)
+ P(Dpyy = j| Dy =j— )P(D, =j— 1)
=q9((j + )/mP(D, =j + 1) + p((j — D/MPD, =j —1).
We assume that p(x) = 0 and ¢(x) = 0 for x¢[—1, 1]. Since g((j + 1)/n) =
p(—(j + 1)/n) and p((j — 1)/n) = g(—(j — 1)/n), by the induction assump-
tion, it follows that P(D,,, = j) = p(—(j + 1)/n)P(D, = —j — 1) + q(—(j —
DimP(D, = —j + 1) = P(D,y, = —)). [
Lemma 5. ED *+' =0, fork =0,1, ..., andn=1,2, ....
LEMMA 6.1 For any ¢, such that 0 < ¢ < 1, and ne* — oo, as n — oo,
i E(DRE | Dy = )P(D, = )
= 2i-n E(DEY| Do = J)P(D,, = j) = o(n*) .
PROOF.
(n + 1)™* E3o0 E(DE| Dy = j)P(D, = j)
= Do EDER(n + 1) D, = j)(n + DP(D, = j)
= E(E(DY(n + 1) D)1 + Dy nz)
(A.2) < ENE(DEZ|(n + 1) D)) E¥lip s + 1)
The second term of (A.2) = (n + 1)E*I;, ;... By Lemma I this quantity
< (n + DE g, a0 S (1 + D(P(S./n) Z o)
< (n + 1)(ES,n'*) = (n 4 1)((3n* — 2n)/n*e?)t = o(1).

! When we put a noninteger ¢n in a position where there ‘“‘obviously’’ should be an integer,
then en is interpreted as its integral part. Empty summation yields 0.
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The first term of (A.2) < EYE(DS8/(n + 1)*+3| D,)
= EY(D)(n + 1)%+7) < EXSUS/(n + 1)%+9) = 0(1) .
Therefore, (A.2) = o(1). []
Lemma 7. 37 . j*P(D,=j) = D, j*P(D, =j)=o(n*™Y), forl=1,2, ..
PROOF.
nT R JUE(Dy = J) = E(D2M[n)nlip, za) S E((S," 1) s, mz)
< EXS,n*nE s,z = 0(1) - 0

LemMma 8. Let v, a, be real numbers for n =z 0 with v,,, = a,v, + b,, where
a, =1+ [d|(b + cn)], b, = ¢n* with ¢ ++ 0 and d > c™*a’ — 1, then

= [¢/(d — (@[c) 4 1)]n*+*.
Proor. Cf. D. A. Freedman (1965), pages 969-970.

LEMMA 9. For each nonnegative integer k, lim,_, E(D,*[n*) = u(2k), where
1(2k) is the 2kth moment of N(0, 1/(1 — 4p'(0))).

ProoF. The result is trivial for k = 0, and ¢(0) = 1. An inductive proof
will be given for k. We lete = n~#in this proof so that the condition in Lemma
6 is satisfied. Now,

EDYN = L E(DYR | D, = J)P(D, = ) -

By Lemma 6, the above quantity becomes

E(D;R| D, = J)P(D, = j) + o(n*)

= L5 ((J + D*p(jIn) + (J — )***q(jIm)P(D, = j) + o(n*)
D5 (I CROY™ + Db G (2p(j[n) — D)P(D, = )

g-—e’n

+ o(n*).
By Lemma 4, the above quantity becomes
(A3) i (””) Zi"_-mJ“P(D =)

Eoo GHD) T4 J2(2p(j M) — DP(D, = j) + o(n*).
By Lemma 7, the first term of (A.3) becomes
lc+1 (2k+2)ED 2l + o(nk)
Since we assume that the p(x) is differentiable at x = 0,
p(x) =% + xp'(0) + xr(x),

where r(x) — 0, as x — 0. The second term of (A.3) can be expressed as

Do GF) Diteea S 2P/ O + 2jr(j[n)[m)P(Dy = J) -
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Now, since
2 .

En

. .2
n e ST (jIN)P(D,, = j)

- ED%2[+2’(D”/n)I[ID |Sen)
n ~=

Il

< 2 sup. [r(9|ED,

< constant - n* . sup,, <. |7(x)|

and sup,, <, [r(x)] — 0, as n — oo (we note that ¢ = n~#). It follows that

ED¥ = Y3 (5)ED,Y 4 2p/(O)nt Ty GHDED, + o(n) .
Let V,(2k) = ED,*, then we have

Va(2k 4+ 2) = (1 + 2p'(0)n~*(2k + 2))V,(2k + 2) + b, ,
where
by = Do (5HED,E + 2p/(O)n~ Tk (HDED, ™+ + o(n*) .
By the induction assumption
b, ~ (%)u(2k)nt .

By Lemma 8, we have V,(2k + 2) = (*47)u(2k)n**'/((k + 1)(1 — 4p’(0))). There-
fore, u(2k + 2) = (*5?)u(2k)/((k + 1)(1 — 4p’(0))). It can be shown that x:(2k)
is the 2kth moment of N(0, 1/(1 — 4p’(0))). O

ProoF oF THEOREM 3. Since the sequence of moments of a normat distribu-
tion uniquely determines the distribution, it follows that the distribution of
n—tD, tends to a normal distribution with mean 0 and variance 1/(1 — 4p'(0)),

as n — oo.
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