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A CONTRIBUTION TO KIEFER’S THEORY OF
CONDITIONAL CONFIDENCE PROCEDURES

By LAWRENCE D. BROWN!

Rutgers University

The “‘procedures” discussed in this paper are of the following type:
The statistician makes a conventional decision (in a multiple decision
problem). He also provides a statement of the guaranteed conditional
probability that his decision will be correct, given the observed value of
some conditioning random variable. Various admissibility criteria to re-
late such procedures are proposed. For example, we say that one procedure
is better (first sense) than a second if the guaranteed conditional confidence
statement using the first is stochastically larger than that using the second,
for all possible states of nature. Some ramifications of these admissibility
criteria are discussed, and some specific admissible procedures are described
for problems with two possible states of nature. In particular, the procedure
having the finest possible monotone conditioning and having equal condi-
tional confidence under both states of nature is shown to have many de-
sirable admissibility properties.

1. Introduction. A “conditional confidence procedure” involves a conven-
tional decision procedure and a conditioning random variable. The decision
procedures to be considered here are multiple decision (classification) procedures.
This is the interpretation given in Kiefer [3]: the statistician makes the conven-
tional decision called for on the basis of the observed random sample. He also
provides a conditional statement concerning the probability of a correct decision
given the observed value of the conditioning random variable, and given each
of the possible states of nature. Such procedures are introduced in Kiefer ([2],
[3]) and form an essential part of Kiefer’s theory.

Both these papers, especially [3], also describe certain partial orderings (notions
of betterness) among such conditional decision procedures and discuss the nature
of the admissible procedures under these orderings. These partial orderings are
based on certain stochastic properties of the conditional confidence statement.

However, the conditional confidence statements described in [3] depend on
the true, but unknown, state of nature. For many plausible applications such a
conditional confidence statement is inappropriate. A statement is required which
is not dependent on the unknown state of nature. In this paper we instead sug-
gest as a conditional statement the guaranteed conditional confidence, which is the
infimum over all states of nature of this conditional confidence (given the value
of the conditioning random variable). Following this, some plausible admissi-
bility criteria for such procedures are introduced in Sections 3-5. Example 5.1
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presents what we feel is a strong case for the use of one of our criteria in a
particular type of classification problem.

One feature shared by our various admissibility criteria is that the admissible
procedures are always conditionally maxmin—that is, for each given value of
the conditioning variable the procedure maximizes the minimum probability of
a correct decision. This feature is discussed in more detail in Section 6. It is
described there how this implies that the admissibility criteria operate on the
conditioning rules of various procedures, and that certain conditioning rules are
better than others. Such a situation is qualitatively different than the one ex-
posed in [3] and [2] for the type of confidence statements and admissibility cri-
teria developed ‘there. (See e.g. [3, Theorem 3.1].) The simple two-parameter
point problem is then discussed in the last section of this paper. Some reasona-
ble, admissible procedures are described, corresponding to the different admissi-
bility criteria proposed. This simple problem does have some possible plausible
applications. (See the classification example in Section 5.) However these ap-
plications alone are not the main justification for the detailed results which ap-
pear in this section of the paper. Rather, we feel that these results are a first
step toward similar results in more realistic multiple decision settings, involving
larger parameter spaces. Also, this careful investigation of such simple problems
has deepened our understanding of the criteria proposed in this paper, and we
hope the reader will find a similar benefit.

2. Basic notation. Consider a statistical problem in abstract form—a meas-
ure space .2, <% and a set of possible probability distributions, {F,: w € Q}, on
2, PB.

A nonrandomized confidence procedure, d, in Kiefer’s theory consists of a de-
cision rule, say 8, making decisions in a space Z; and a <-measurable condi-
tioning random variable, Z, taking values in %7, <%, (or its associated o-field,
By < ). [In[2] and [3] the critical regions of the decision rule, 3, are often
referred to as the “&* partition” of the procedure d, and written as |]. That
terminology is not used here.]

Let D, denote those decisions which are correct for w. For a given procedure

consider
(2.1) r,:(z)=Pr,(feD,|Z=2).
This (measurable) function—which depends also on w—is fundamental in the
theory. [In the nonrandomized case discussed here I' may also be thought of
as a function of x, defined by I'(Z(x)) in the above notation. However, because
I' is written above as a function of z, certain expressions in Section 3 are valid
also in the case of randomized conditioning rules (as described in [3, Section 4]).
In particular the optimality assertions and the proofs of Theorems 3.1 and 3.2
are valid within the class of all randomized rules. ]

If it were possible, it would be desirable to have I', ,(z) large for all w, z.
Since this is not possible it is necessary to compare different procedures by
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considering some sort of notion of goodness in which “larger” Is are better
(larger in some appropriate sense).

As noted in the introduction the statement I', ,(z) may depend on w for given
d, z. It may therefore not be an appropriate summary statement, or estimate, of
the statistician’s conditional confidence in the rule B, given Z = z. A better
summary statement is the guaranteed conditional confidence, defined by

(2.2) £5(2z) = inf, o T, ;(2) .

TecHNICAL CoMMENTS. The simple expression in (2.2) ignores two significant
technical issues.

First, the heuristics of the situation demand that «,(z) should not be influenced
by vaiues of T', ;(z) for which o is a posteriori “impossible” given Z = z. But
since I', , is defined as a conditional expectation, its value is arbitrary at such
values of w, z (subject only to measurability restrictions). An added convention
is required to guarantee that I', , is taken to be large for such impossible values
of w so that the infimum on the right of (2.2) is not affected by such values.
This convention is described below.

CONVENTION 2.1. Let F, < v (or, more generally, F,? <v*) for all weQ,
with v(v%) ¢ finite. Let f,? denote some fixed version of dF,?/dv” and let S, =
{ze 2: f,? > 0}. By convention, alwaysset I', ;(z) = 1 if z¢ S,,.

This convention, possibly in conjunction with (2.2'), below, will serve to
guarantee that « is essentially uniquely defined a.e. (v); and that conditionally
“impossible” values of o (i.e. {w: z¢ S,}) influence £ only on a v-null set.

Note that the dominatedness assumption in the above convention is a fortiori
satisfied if either Q or 2 is countable. We do not know how to proceed in general
if Q and 2 are both uncountable and {F,?: w € Q} is not a dominated family.

Most conditional confidence problems involve finite or countable, decision
spaces. In that case (2.2) and Convention 2.1 serve to define &, uniquely a.e.
(v%). On the other hand, if the decision space is uncountable, and % is also un-
countable, then different determinations of the I', ;, w € Q, may lead to essentially
different determinations of £,. In that case (again assuming that F,* <v%, 0 € Q)
the most satisfactory course is to replace (2.2) by

(2.27) ks =essinf, o T, ;

where the “ess. inf.” is taken relative to the measure v#. (That is tosay, £,/(+) <
T, s(+) a.e. v* V o, and if g satisfies g(+) < T, ;(+) a.e. v V o then g{-) < x,/(+)
a.e. v%.) This definition, together with Convention 2.1, serves to uniquely define
x,’ (a.e. v7). Further conditions are required in order that x,” may be computed
conditionally from suitable versions of I', ;, @ € Q—that is, in order that «,” =
,. Such conditions can often be provided by restricting attention to certain
“smooth” (e.g. continuous) versions of the conditional probabilities.

3. First admissibility criterion. The first notion of goodness (admissibility
criterion) we propose is as follows:
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Let
(3.1) Q,:(r)=Pr, (¢, <7).
Then we say that g, is better than 9, (first sense) if &5, is stochastically larger

than g, for every w. In more formal terms this reads—ad, is inadmissible ( first
sense) if there is a procedure 4, for which

(3.2) Qui(r) £ Qu,(r)  forall o, r

with strict inequality for some o, r.

To justify this notion note first that in any experiment the value of w is unknown.
Hence «, is the best possible conservative estimate of the conditional probability
of making a correct decision, given the value of the conditioning variable, Z.
The experimenter would like to work things out so that his guaranteed conditional
confidence will be stochastically large. This leads to the admissibility criterion
expressed in (3.2), above.

The formal admissibility criteria in [3] are very different. Nevertheless the
discussion there contains a considerable emphasis on describing and discussing
procedures in which for each x e 22" I' (Z(x)) is approximately constant as o
ranges over (). See especially [2, Section 1] and [3, Sections 1.1 and 6D]. We
believe that this emphasis is due in large part to the feeling that the relevant
quantity in many applications is really «, (instead of merely I',), for the rea-
son mentioned above. [Note that, ,(+) is symbolically defined (by ¢(.)) in [3,
Section 1.1].]

Observe that (3.2) is equivalent to
(3.3) § A(r) dQ,,5,(r) = § A(r) dQ,,s,(7)
for all nondecreasing # and all w, with strict inequality for some £, o.

There is a further relation between the above admissibility criterion and those
defined in [3]. Suppose 4, and d, are two procedures each having I, »,(2) constant
for each fixed z. (Hence ,, =T, ,, @€ Q.) It is noted above that such pro-
cedures are recommended in the discussion in [2] and [3]; and it will be described
in Section 6 that our admissibility criteria invariably lead to the use of such pro-
cedures. Then, Kiefer’s first admissibility criterion (see [3 (2.4)]) states that 4, is
better than ¢, if and only if our (3.3) holds for all 4 of the form A(r) = ry,. (1),
0 =< R < 1. For g, as above, the other admissibility criterion of Kiefer’s de-
velopment (see [3 (2.6)]) is equivalent to: d, is better than 4, if and only if our
(3.3) holds for all % of the form A(r) = r for r < R, = 1 for r > R. Therefore,
among the class of procedures having k; =T, ;, w € Q, our notion of admissibility
(first sense) is slightly weaker than the notion referred to in Kiefer’s paper [3]
as “admissibility in the sense (2.4) (2.6).” See also [3, Section 6D].

4. Second admissibility criterion. There is another relevant point raised in
[2] and [3]. It is argued that, other features being equal, a large variation in
I, is desirable. (See, for example [3, Section 0].) Because of our previous ar-
guments we would translate this into a principle concerning . To place this
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argument in more concrete terms consider the following simplified example.
Suppose there are two procedures d, and J, and that their associated functions
satisfy

Q,5(N=0 r<}

=1 r>3 for all @
Q,:(nN=0 r<i$

=1 r=1 for all o .

(Thus, for all w, under 4, the random variable « is § with probability 1, and
under 6, it is 1 and 1 with equal probability.) Neither procedure would domi-
nate the other in the sense of (3.2). If, in addition, both procedures have con-
stant I', ,(z) for each z then they both have Pr, (correct decision) = Pr,(D,) = §
for all w and so they are equally good unconditionally. However the consider-
ation alluded to above would indicate that 4, is preferable to d,.

Suppose this consideration is accepted by the experimenter as reflecting his
goals for the conditional confidence procedure. Then it indicates as a principle

that d, is inadmissible (second sense) if there is another procedure d, with
(4.1) § A(r) dQ,,5,(r) = § A(r) dQ, 4,(r)

for all nondecreasing, convex h and all w, with strict inequality for some » and
some nondecreasing convex /.

PROPOSITION 4.1. Admissibility (second sense) implies admissibility ( first sense).

PrOOF. Suppose 6, is inadmissible (first sense). Then there exists a 9, such
that Q,, (r) £ Q,,,(r) for all , r with strict inequality for some w, r, say for
o', r'. It follows from (3.3) that (4.1) holds for all nondecreasing convex 4 and
all w. It remains to show that there is an appropriate pair w, A such that strict
inequality holds in (4.1).

Suppose ' = 1. Then strict inequality holds in (4.1) for v = o’ and A(f) =
x,(?), which is convex on [0, 1]. If = | then choose v = o’ and A(r) = (r —
r')*. Then (. (1 — Q(r)) dr = § h(r) dQ(r) for any cdf Q on [0, 1]. It follows
from this (and the right continuity of Q) that { 4(r) dQ,,. ; (r) > § h(r) dQ,, ; (7).

5. Third admissibility criterion. Both of the above criteria reflect only a
vague assessment of goals by the experimenter. When these goals can be refined
they result in a third, more precise, criterion. Observe that the function # which
appears in (3.3) and (4.1) plays the role of a gain function. The value of A(r)
can be thought of as representing the “gain”, (“satisfaction”, etc.) to the experi-
menter from making a statement with guaranteed conditional confidence r. Then

(5.1) § A(r) dQ, s(r) = E (h(£,(2))) = By(w, 0)

is the expected gain (to be called benefit) resulting from the procedure d. The
admissibility principles embodied in (3.3) and (4.1) state in this interpretation
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that a procedure is inadmissible if another procedure has benefit at least as great
for all @ no matter what gain function, #, is used among those in a wide class
(increasing functions for (3.3) and increasing convex ones for (4.1)). [This kind
of “robustness” in the gain function is analogous to the robustness in the loss
function considered in Brown [1] for estimating normal means. ]

Suppose, however, the experimenter can settle on a single nondecreasing gain
function, 4, to correspond to his goals in performing the experiment. Then his
ranking of procedures takes on the traditional decision theoretic structure: a
procedure 0, is inadmissible relative to a given gain function, h, if there is another
procedure 9, such that

(5.2) By(v, 9,) = B,(v, d,) for all weQ
with strict inequality for some w.

[The structure here is “traditional” in the sense of being based on a single
real-valued function, B. It is of course really the negative of the usual theory
in that it is based on gain and benefit instead of loss and risk.]

It is now also possible to describe a property stronger than second sense
admissibility. Suppose that for each nondecreasing convex k4, d is admissible
relative to h. Then we say that ¢ is rotally admissible (second sense). (“Total
admissibility (first sense)” could be similarly defined, but the definition appears
to be barren; in certain simple examples where we have investigated this property
it appears that there do not exist any nontrivial totally admissible (first sense)
procedures.)

Minimax (or, rather, maxmin) notions can also be defined. Two useful no-
tions are as follows: 0, is called maxmin relative to h if

(5.3) min, o By(w, 0,) = max, min, ., B,(w, 9) .

0, is called totally maxmin (second sense) if it is maxmin relative to 4 for each
nondecreasing convex k. Theorem 7.2 describes a totally admissible and totally
maxmin procedure (second sense) for a special type of simple confidence problem.

The considerations alluded to in discussing the second sense of admissibility
indicate that in many situations an experimenter who settles on a single gain
function, %, will choose /4 to be convex. An intuitively appealing choice for A
is h(r) = r*. Under this choice of 4, if two procedures have the same expected
guaranteed confidence unconditionally-—that is if

§ rdQMl(r) = rdQMz(r)

for all w—then the procedure with the larger variance of the guaranteed con-
ditional confidence for all w (if there is such a procedure) will be the better
procedure. [These considerations might also motivate one to adopt a variant
of the above admissibility criterion in certain situations, and to base admissibility
on only the two benefit functions B, and B,, where h; = r'.]

However, convex gain functions are not always appropriate. Consider the
following example in which a nonconvex gain function is clearly called for.
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ExampLE 5.1. Consider a simple (nonBayesian) classification situation in
which two types of items are produced. They are labelled by w = O and & = 1.
A given item cannot be directly tested to check which type it is but some sup-
plementary related characteristic(s), X, can be measured. X has known distri-
bution F,. Items which can be classified as @ = 0 or w = 1 with confidence, c,
say, may be sold as “classified items™ at a (premium) per item price, p. Those
items which cannot be so classified must be sold in mixed lots at a lower per
item price, say ¢. It follows that the appropriate gain function to the producer
of these items is

ry=9q r<ec
=p r=c.

There exists an optimal conditional confidence procedure for such a gain func-
tion. It is described in Theorem 7.1.

[Note the symmetry in the above formulation. As given the formulation
guarantees, for example, that if a buyer purchases only those items which are
offered at the premium price and if w = i then at least 100¢%, of such items
will be classified as @ = i; for both i = 0, 1. One might instead wish to require
that under these two conditions a proportion ¢, of such items will be classified
as of type i, with ¢, # ¢,. Although the formulation of confidence problems
which is described in this note is specifically symmetrical, beginning with the
definition (2.2) of «, this asymmetrical situation can be formulated and discussed
in a manner similar to the considerations here.]

6. Importance of the conditioning rule. One surprising (and disappointing)
consequence of the notions of admissibility adopted in [3] is that admissibility
of a procedure rarely, if ever, depends on the choice of conditioning variable
(or subfield). In fact, in any two-parameter problem a procedure is admissible
if and only if the decision rule j is unconditionally admissible, irrespective of
the conditioning variable used. (See especially [3, Theorem 3.1 and Corollary
5.3] or [2, Theorem 3.1].)

The situation is diametrically different for the criteria we have suggested.
Here, for each conditioning random variable, Z, there is usually a best decision
rule—say §,. Since the value(s) of B,, on the basis of which admissibility is
judged, depend on (8,, Z), they are ultimately a function only of the condition-
ing rule described by Z. These admissibility criteria therefore operate in a non-
trivial way on conditioning rules (together with their associated “best” decision
rules). The construction of this “best” rule 3, is sketched below.

Assume the existence for each w € Q of a regular conditional distribution on
& given Z. Thus for each value of Z, {F,(+|z): w € Q} is a family of proba-
bility distributions on £, <. Now, for each fixed z ¢ 2 consider the statisti-
cal decision problem with these distributions F,(.|z) and with gain function
G(d, ») = xp,(d). (Actually, if the F, do not have identical supports then G(d, w)
should be defined as y, (d)if ze S,and 1 ifz¢ S,. See the Technical Comments
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in Section 2.) Let (- |z) denote the maxmin procedure for this conditional
problem. j(.|z) may be randomized but that possibility requires no special
handling in what follows. (If {F,(-|z): » € Q} is a dominated family then the
existence of j(+ |z) is guaranteed by results in Le Cam [4].) (If F, <v, 0 € Q
and the regular conditional distribution of v exists, then F,( | -) may be taken
so that F(+ |2) < y(+|2) for all w € Q, z¢ %)

Define 8,(x) = (x| Z(x)), assuming it is a measurable decision rule. The fol-
lowing is the desired result.

PROPOSITION. Assume 8, exists. Let 3, = (8,, Z) and let &' be any other pro-
cedure with the same conditioning random variable Z. Then Q. , LN = Q,.(r) for
all w, r. It follows that 4, is at least as good as &' in any of the three senses of ad-
missibility described above.

Proor. Consider any procedure ¢’(8’, Z) with conditioning random variable
Z. Then T, is defined by I',(z) = Pr{d e D, |z} = E(G(B, w)|z). Hence «(z) is
maximized by choosing 8 at Z(x) = z so as to maximize min,, E,(G(8, )] 2).
Since 3, does precisely this, it follows that Ko5,(Z(X)) = &, ;/(Z(x)) for all x.
The claimed relation between the cumulative distribution functions of «,, ,  and
of £, , follows immediately.

7. Admissibility in two-point parameter spaces. This section contains some
theorems and examples involving the simplest type of conditional confidence
problem—for a two point parameter space in which Q = {0, 1}, D = {0, 1}, and
D, = w. In such a situation let F, <v and f, = dF,/dv; ® = 0, 1. [Some of
the following results require the use of truly randomized procedures. But these
procedures all have a relatively simple structure so we have not felt it necessary
to introduce the general terminology from [3, Section 4].]

The first result concerns the situation described in Example 5.1. It describes
the admissible (third sense) procedures relative to a given gain function of the
form A(r) = y,5.(r). (Note that here B,(h, ) = P[r,(Z) = c].)

THEOREM 7.1. Let h = y,5,, ¢ > %. Let 0 = (B, Z) satisfy

Z=1 if fO/fl <k, or fO/fl >k,
(1) =1 with probability v, if flfi=k, , i=1,2;

=0 otherwise
where k, < k,, and

g=1 if flfisk and Z=1;
(2) =0 if filfi=zk, and Z=1;
= anything in {0, 1} if Z=0

where k,, 7, are determined by the conditions

3) Pr,(8=w,Z=1)Pr,(f£w,Z=1)=c/(l —c), w=0,1.
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If no solution to (1), (2), (3) exists then let 0 be a solution to (3) satisfying

Z=1 if filfi#k;
4) =1 with probability 7y, if filfi =k ;
=0 otherwise
and
=1 if filfi>k and Z=1;
(5) =1 with probability y, if fi/fi=k and Z=1;
=0 otherwise if Z =1
= anything in {0, 1} if Z=0.

If no solution to either of the above sets of equations exists, let Z = 1 and let § de-
fine the unconditional minimax procedure. Then d, as defined above, is an optimal
procedure.

REMARK. A uniqueness assertion can be added to the above theorem. Except
in the third case above, on the set on which Z = 1, d is essentially (a.e. F, + F))
uniquely defined as a function of the sufficient statistic f;/f;. In the third case
above there can be other choices of Z which also yield optimal procedures and,
in general, on the set where Z = 0 a.e. (F, + F,) the choice of procedure is
irrelevant.

Proor. Let ¢’ = (#’, Z) be any conditional confidence procedure. Let U =
{z: k;(z) = c}. Consider the new procedure ¢ = (f’, Z"") where Z" = y,(Z).
Then

Pr,(8eD,|Z'=1)=inf,.,Pr,(feD,|Z=2)=c.

It follows via the definitions that ¢” is at least as good as ¢’

The above shows that every procedure is dominated by some other procedure
with Range Z = {0, 1}. Let ¢’ = (p’, Z”) be a procedure of this type. If both
£,,(0) = c and #,,(1) = c then B,(w, 0') = 1, o = 0, 1. The fact thatx,.(z) = c,
z =0, 1, implies that Pr, (8 = w) = ¢ for both ® = 0, 1. Hence the procedure
with Z = 1 and with 8 the (unconditional) minimax rule is exactly as good as
¢’. This latter rule is of the third form, above.

Now suppose (w.l.o.g.) that £,,(0) < ¢ and #,(1) = ¢. Then B,(w,d’) =
Pr,(Z'=1)< ¢ 'Pr,(f =, Z" = 1) since £,,(1) = ¢; w =0,1. Consider
the problem of maximizing Pr, (8 = 0, Z = 1) subject to the side conditions
£,(1) = c, that is

(I —)Pr(8=0,Z=1)zcPr,(p=1,2Z=1),
and

(I —¢)Pr,(=1,Z=1)z2cPr,(=0,Z=1).
This is a standard decision theoretic problem, covered by Lehmann [5, Chapter
3, Theorem 5]. The maximizing procedure is any procedure of the form, 4, de-
scribed in the statement of the theorem. This procedure also satisfies Pr, (Z =
1)=c¢"'Pr,(f =0,Z=1) unless Pr,(Z =1) = Pr,(Z=1) = 1. Hence this
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procedure also maximizes Pr,(Z = 1) subject to these side conditions. Sym-
metrically, the same procedure also maximizes Pr, (Z = 1) subject to the side
conditions. This proves the theorem. The uniqueness assertions given in the
remark may also be deduced from the above considerations.

SyMMETRIC PROBLEMS. The next result concerns second-sense admissibility
in the “symmetric” situation. The general definition of the “symmetric” case,
which is treated at length in [2], is that the distribution under F, of the random
variable f,/f, should be the same as the distribution under F, of the random vari-
able f,/fi. One of the simplest such situations is where y ~ N(g,, ¢*), o =0, 1
with py # p,.

An intuitively appealing procedure in this case is that corresponding to the
maximal symmetric monotone conditioning. See [2, Section 3.5]. This procedure,
0,, can be described as follows:

= max (fo, /)/(fo + f1) 3

‘Bozl if fo/f1<1;

=1 with probability 3 if fO/fl =1;
=0 if flfi > 1.

There is a generalization of this procedure to asymmetric problems. This is
described above Theorem 7.4.

N

THEOREM 7.2. Consider the symmetric case and the proceduce corresponding to
the maximal symmetric monotone conditioning. Then, 0 is totally maxmin and totally
admissible (second sense).

REMARKS. Again a uniqueness assertion is possible. If the distribution of
fi/fs is nonatomic then the above procedure is the essentially unique (a.e. F, +
F,) procedure having the given properties and depending only on the sufficient

statistic f/f;.

Proor. Let 0 < ¢ < 1 and let A(r) = (r — ¢)*. The proof begins with a dem-
onstration that g, is “Bayes” relative to 4 and the symmetric prior, which places
equal probability on » = 0, 1.

For any procedure 6 let S, = {z: £,(z) = ¢}. Then the expected benefit of §
under the symmetric prior is

B(0, 8)/2 + B(1, )2
= E(ks — ©)")/2 + Ei((x; — ©)*)/2
(7.1) < E((Pry (8 = 012) — ¢)x5,)/2 + E(Pry (B = 1] Z) — ¢)y5,)/2
=[Pry (8 =0, 8,) + Pr, (f = 1, 8;) — ¢(Pry (S;) + Pry(S,))]/2
< () §r, [max (fo, f1) — e(fo + f)] @,

where T; = Z7Y(S,).
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The right hand side of (7.1) is maximized over arbitrary sets, T, by choosing
T = {x:max(fy, fi) = c(fo + fi)} = {x: Zy(x) = c}.

Compute that £,(Zy(x)) = Z,(x) in view of the symmetry of the problem and
of (B, Z,). See for example [2, Section 1 (following (1.3)) and Section 3.5].
Hence T, = {x: Z(x) = c}.

Furthermore Pr, (8, = 0| Z,) = Pry (8, = 1| Z,) = &, and g, = i: f; = max (f;,
/). Hence equality holds throughout (7.1) for the procedure 4,. This shows
that g, is Bayes relative to A(r) = (r — ¢)* and the symmetric prior.

If h =y, then Bv,d) < Pr,(fy/fi =0o0r o) = By(w, d,) for o =0, 1.
Hence 4, is optimum for this particular 4, and so a fortiori is Bayes for the
symmetric prior.

For any given nondecreasing convex 4 on [0, 1] and any ¢ > 0 it is possible
to write 0 < A — X7, a,h, < ¢ where each a, = 0 and each #, is either of the
form y,, or (r — ¢,)*. By the above, J, is Bayes relative to )7, a4, and the
symmetric prior. Since B(k, d) < k(1) for all d this yields that g, is ¢4(1)—Bayes
relative to the symmetric prior. Hence 4, is Bayes, since ¢ is arbitrary in the
above.

Since J, is Bayes relative to 4 and the symmetric prior and since B,(0, 6,) =
B,(1, 9,) (by symmetry) it follows that 9, is maxmin and admissible relative to 4.
Hence g, is totally maxmin and totally admissible.

It is tempting to believe that d,, as defined above, is actually an optimum
(second sense) procedure. In other words to believe that B,(w, d,) < B,(w, 9)
for all convex nondecreasing 4, all w € Q, and all 6. This proposition appears
to us to be true if the alternative procedures, d, are restricted to be monotone.
However it is not, in general, true. The following simple example shows that
d, is not optimum in the simple symmetric situation described there. Careful
perusal of the example should suffice to convince the reader that for most sym-
metric problems and for many reasonable gain functions g, is not optimum.
(One prominent exception would be the very special case where f/f, takes on
just two values (a.e. Fy + F;).)

ExXAMPLE 7.3 (0, is not optimum (second sense)). Let fi(x) = [x]/6for1 < x < 4
where “[ ]” denotes “largest integer in”. Let f; = £ — f;. This problem is sym-
metric. Let 4(r) = r. Choose constants a, b which satisfy

(7.2) 3a} = b* — 4b + 15
(7.3) (1 — a+ 26)(3(1 — @) + 2b) = b* — 4b + 15

and{ < b < 1,0 < a < 1. The following reasoning shows that a solution exists
to (7.2), (7.3). For every b€ (3, 1), (7.2) always has one solution a ¢ (0, 1). If
b = % and (7.2) is satisfied with 0 < a < 1 (i.e. a = +(3)!) then the left side of
(7.3) is smaller than the right, but if 5 = 1 and (7.2) is satisfied with 0 < a < 1
(i.e. @ = %) then the opposite inequality relates the two sides of (7.3). Hence.
continuity implies that a suitable solution exists to this pair of equations.



70 LAWRENCE D. BROWN

Now, consider the procedure §,, say, defined by

BiZy=(,1) if 1 £x<a;
=(0,1) if 24+b6=<x<3—-(1—-0b)2 or 2Zx<4;
=(1,2) if a<x<2+5b; and
=(0,2) if 3—(1—-0)2<x<}.

The procedure d, is not monotone. It has Range Z = {1, 2}. It is straightfor.
ward to check, using (7.2), (7,3), that Pr, (8, = 0| Z, = i) = Pr, (B, = 1| Z, = i)
i=1,2. Hence B(1,d,) = E,(h(r, (Z(x)))) = E(Pr,(f, = 1| Z,)) = Pr,(, = 1) =
3 + /3 > . Meanwhile B(1, §,) = Pr, (8, = 1) = 2. Hence §, does not domi
nate 9,. (On the other hand B(0, 4,) = § — § < 2 = B(0, §,) so that 4, does not
dominate §,, so this example is consistent with Theorem 7.2.)

THE ASYMMETRIC CASE. The situation in the asymmetric case is not as trans-
parent. The appropriate generalization of the procedure g, of Theorem 7.2 is
the maximal monotone procedure having E(f = 0| Z) = E(f = 1|Z). This pro-
cedure is fully described in [2, Section 3.5]. Briefly, it can be obtained by first
rewriting the problem via a 1-1 change of variables so that f,/f, is a nondecreas-
ing function, then setting Z,(x) = min ({=,, (fy(1)/,()2(d?), {2 (fu(H)fi(1))tu(d1)),
and then choosing 8, = 1 or 0 according to whether the first or second of the
preceding integrals is larger. (Take 3, = 1 with probability } if the two integrals
are equal.)

In this form a special role is played by the value ¢, such that {0, f,(r)f,(f)»(df) < }
and {7+ fo(1)fi(H)v(dt) < 4, since B decides 1 or 0 if x < ¢, 0r x > ¢, respectively.
(If »({c,}) >0 then 8 will be randomized at c,, in order to guarantee E,(3=0|Z) =
E(f=1|2).)

If A(r) = r then B,(w, d) = Pr, (8 = w). It is easy to construct many asym-
metric examples in which v({c,}) = 0 to avoid randomization and Pr, (x < ¢,) =
Pry(x > ¢;). In any such example §, will not be maxmin relative to h(r)y =r.
In general, no matter what the given 4, 4, may not be maxmin relative to A.
Of course this is more than enough to see that §, will not in general be totally
maxmin.

However, it is reasonable to conjecture that g, is totally admissible (second
sense). The following theorem demonstrates a fairly strong admissibility prop-
erty of §,. The property is interesting on its own merit and motivates the con-
jecture that g, is totally admissible.

THEOREM 7.4. Let h(r) = (r — c)*. Then the maximal monotone procedure is
admissible relative to h.

Proor. Fix ¢ = . (The values ¢ < } are uninteresting.) It will be shown
that g, is Bayes relative to a prior which gives some mass p = p(c) to » = 0,
0 < p < 1. The admissibility assertion follows immediately from this fact.
[Note in the following argument that p depends partly on the choice of ¢. For
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this reason the Bayes property described above cannot be used to prove total
admissibility as in the symmetric case of Theorem 7.2.]

For any procedure g let T, = {x: £(Z(x)) = ¢}. (The argument requires trivial
modifications if Z is randomized.) Then

pB.(0, 0) + ¢B,(1, d)
(7.4) < plPro(Ts, B = 0) — ¢ Pro(T,)] + ¢[Pr (T, p = 1) — ¢ Pr(T;)]
= PE((1 — ¢)py — cp)) 4+ gE(—co, + (1 — ¢)p,)
where ¢; = xr, 5-« i = 1, 2. The right side of (7.4) is maximized by choosing

Po = Xiw:fo/fr2zea/p1—c))
Y1 = Vi fo/fis1—cra/ep) *
(Actually ¢, and ¢, are irrelevant at any x such that fi(x)/fi(x) = ¢g/p(1 — ¢) =
(1 — ¢)g/cp, which can occur if, and only if, ¢ = }.)
Suppose z = Z(a) = Z,(b) with a < ¢, < b. Computations then yield that

(7.3) £(2) = fu(@)/(fo(a) + Bfo(0)) + Af(B)/(fi(a) + Afi(6))

where A = (fy(a)fi(a)/fo(b)fi(b))t. Let a, denote the (a) value of @ < ¢, such that
£(z,”) = cand k(z,*) = ¢ where z, = Z(a,) and let b, be the corresponding value
of b = ¢,. The above expression for £(z) yields that

(7.6) fo@)/fi(ae) = (k(z:)/(1 — £(2.)))(fo(b)/f(b.)) -

Now, choose p so that fy(e,")/f(a,”) < (I — c)g/ep and fy(a.")/fi(a,") = (1 —
c)g/cp. By construction f(x)/fi(x) < (1 — ¢)g/cp if and only if x < a,(x < a,) if
£(z,) = ¢ (k(z.) < ¢, respectively). This is precisely the set on which £(z) > ¢
and ‘8 = 1.

It follows algebraically from the above equations that fi(x)/f,(x) = ¢cg/p(1 — ¢)
if and only if x = b, (x > b,) if k(z,) = ¢ (x(z,) < ¢, respectively). This is the
set on which «(z) = cand g8 = 0.

The above facts show that 9, maximizes pB,(0, d,) + ¢B,(1, 6) so that g, is
Bayes, as desired. This completes the proof.
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