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DISTRIBUTIONS RELATED TO LINEAR BOUNDS FOR
THE EMPIRICAL DISTRIBUTION FUNCTION

By JoN A. WELLNER

University of Rochester

X, - - -, X, are i.i.d. Uniform (0, 1) rv’s with empirical df I', and order
statistics 0 < Uy < --- < Un < 1. Define random variables Uy, iy (for
n z 2) by

Uin _ Uipn

maxigisa—1 ", =
i g

> U* = Uiﬁ-l 5

iy + 1 is the (random) index of the order statistic at*which the maximum
is achieved and U, is the value of that order statistic. The distributions
of (Uy, ix) and of Uy and iy are found for all » = 2, extending and com-
plementing earlier results due to Birnbaum and Pyke, Chang, and Dempster.
The limiting distributions are found and related to the corresponding sums
of exponential rv’s by a Poisson type invariance result for the empirical df
T'» and its inverse I'x~1.

1. Introduction. Let X, ---, X, be i.i.d. Uniform (0, 1) rv’s with empirical
df T',; denote the order statistics of the sample by 0 = U, < U, < --- < U, <
U,,, = 1. Define three pairs of random variables (U*, i*), (Uy; ix); (U i55) bY

U, _ U,

min,g; ., —- = 5 U* = Uy,
i i
U, U,
1 1 —
max, g, —4+ = —&#, Ui =Usia>
i iy
U, U
_ YU _
max,g;<, —— = /= Uiw = U,
i 1.

All three pairs are a.s. defined uniquely. These pairs of random variables are
of interest for a variety of reasons, but especially because of their connections
with upper and lower linear bounds for I',: for 0 < g < 1

AB) = {T(t) <t/ forall 0 <1< 1}

. nU.,
= {mmlsisn it = .8} 5

and, for 0 < B < oo,

By(p) = {Tu(1) = pt forall U, <1< (1/f) A1}

= {maxléién—l nU;.“ = l/ﬁ} a.s.
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It is of some importance that for each ¢ > 0 one may choose 8 = §, so that
P(A4,(B) n B,(B)) > 1 — ¢; see Shorack (1972) for another statement of this fact
(Lemma A3) and applications. Although the pair (U, i) is not connected
with a linear bound for T',, it is a natural counterpart to the pair (U*, i*), and
we include it here for completeness.

Our main purpose is to find the distribution functions of (U,, i,) and (U, i)
as well as the related marginal distributions. Dempster (1959) has found the
corresponding distributions of (U*, i*). We also obtain the limiting distributions
for all three pairs of random variables, and relate the limits to the distributions
of the corresponding functionals of a standard Poisson process via an appropriate
functional limit theorem. Our method is essentially that of Dempster (1959);
we also use results of Chang (1955) and Eicker (1970). For related material we
refer the reader to the excellent review by Durbin (1973).

2. The main results. For n > 2 and u ¢ [0, 1] set
G, ) =PU* s, i* =j), Gy j) = AUy St iy = j)»
H*(u) = P(U* < u), "Hy,(u) = P(U, < u),
Pr(j) = PE* =), P+j) = Blixy = J)
Gox(s ) = P(U** Shi=])
P**(]) = P(’** = ]) >
where j€ {1, -+, m}for G*(s, J), p*(j)s Gua(+» )> Panlj)s and je{l, -, n — 1}
for G.(+, j), p«(j); we have suppressed the sample size n in this notation. We
also refer to G*, G,, and G, as distribution functions even though they are
clearly subdistribution functions; the corresponding distribution functions are
easily obtained by summing on j. As a point of reference and for purposes of
comparison we state the result of Dempster (1959) for (U*, i*) as Theorem 1.
Theorems 2 and 3 give the corresponding results for (U,, i,) and (U, ixyx)-
Theorems 4, 5, and 6 give the asymptotic distributions of (nU*, i*) (nU,, i),
and (nU,,; i,,) respectively. Theorems 7 and 8 relate these limiting distribu-
tions to those of the corresponding functionals of a standard Poisson process,
N, and its inverse (or sum) process, N~*. Proofs of the theorems are given in
Section 3.

THEOREM | (Dempster). For n = 1 the distributions G*, H*, and p* are given by

G*(u, j) = i. OunL) (1= (er L))
H*(u) Za 1_}_(7»)( ) <1 - (u A 'Jl>> s

ro =<0 (=47
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THEOREM 2. For n = 2 the distributions G, H,, and p, are given by
Gutin ) = L= it ) —
= B () LG 0 s @ (S )

k=j+1\j

x(l——kTu/\ly_l,
J

H,(u) = 2121 G J) s

and,
pm—ﬂfg—» Tt (I — 1k — f)ik*,

0<u<l,j=1,..,n—1.

(Here and in the following we use the convention that a sum from an in-
teger [ to a strictly smaller integer k is zero: for example, G, (u,n — 1) =
((j — 1)/ j))u; the second sum, from k = nto k = n — 1, is zero.)

~ THEOREM 3. For n = 1 the distributions G, H,,, and p,, are given by
. 1
Gox(s J) = n Zii (U — uyrt

1 ik — 7)k-i-1 k 1
= B @ o S B0 (S n)

x(l—_]fTuAl)”_l,
J

H**(u) = Z?=1 G**(u’ 7>

and,

' l itk — j)k—i-t
Pxx()) = 'J— — k=i (§ ) it k’{) )

0<u<l,j=1,---,n

THEOREM 4. Foru >0andj= 1,

1 n—»oo G* < , j> — _1. .1_ (u A )Je—(u/\g)
lim,,,_.oo H* <_u_> Za—l _1_ _l_ (u A ])je—(ul\j)
" i

and

*(7 J i *(7
m,_. p*(j) = ~j—'_e_J = q*(J)) -
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THEOREM 5. Foru = 0andj = 1,

. . .  — 1)i-t 1
llrnn__oo Gy (_Z_ y ]) = (j—jﬂ)—— Z;‘;“_l F ule—*
o oy (= DYk — it o, 1 (kN
SRR USSR Al Ll Y LAY
N J
X e—kuw/i
and
. . j — 1)1 i 1Yk — j)yk-i-t
tim, . p,() = U= D7 ye gy U= DR =)
J k
= 9x()) -
THEOREM 6. Foru > 0andj = 1,

lim, . Gy (L) )2 1 Ep, L utemr
n j l

- 1 jitk — jrit . 1 [k \
— %=+ (§) F—1 il kkj) pIEE <"‘ u)

X ek,
and

. , 1 1 itk — j)k-i-t .
lim, ., pys(J) = 7 — 2=t (® k— 1 A k’{) = Gxx()) -

The following theorems interpret Theorems 4, S, and 6 in terms of a Poisson
limit theorem for the empirical df T', and its (right continuous) inverse I',~*.
Define processes N, and N,~' by

M@:M%GJ 0<r<n,
n

and

N0 =l (£

=1 n<t<L oo,

Let N denote a standard Poisson process (with parameter 1), and let N-!denote
the sum (right continuous inverse) process associated with N. The processes
N,, N,”, n = 1, N, and N-' are all in D[0, co), the class of functions on [0, o)
which are right continuous and have left-limits everywhere. It is well known
that

(A) N,= N and N, = N1! as N— oo

where — denotes weak convergence in the Skorohod topology on D[0, T], for
any 0 < T < co. In this context, convergence of finite-dimensional distributions
suffices for weak convergence (cf. Straf (1972), page 212; Miller (1976) has some
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related results). Also, it should be noted that the convergence of the inverse
processes N,~* also holds (almost trivially) in the stronger uniform topology on
D[0, T] since all of the processes N,”* and N-! have all their jumps at the
integers.

But more is true (and does not follow directly from (A); it will be seen in the
proof of Theorem 7 that what is needed is roughly that the convergence in (A)
hold when T increases with n): by virtue of the strong law of large numbers

—1
lim,__ LVEL) —1= 1immitﬁ)_ a.s.

Thus the natural metrics for convergence to the processes N and N~'in D[0, o)
involve the weight function

w(t) =1/t Vv 1), te[0, ).
Let B denote the subset of bounded functions in D[0, o), and set
D, = {f e D[0, «0): wfe B}.
Define metrics p,, and d,, on D, as follows: For f,, f,€ D,, set

Pu(fi f2) = SUPusi<w [fi(1) — F(OIW() -

Let A denote the class of strictly increasing continuous mappings of [0, co)
onto itself, and denote the identity function on [0, co) by I: I(t) = ¢, t € [0, o).
Denote the composition of fe D, and 2e A by fo 2 and set

d,(fi fo) =inf{e > 0: 0,2 1) <¢ and p,(f}, fo0d) < ¢ for some AeA}.

The metric d,, is one natural modification, for D[0, co), of the Skorohod metric
on D[0, 1] (cf. Billingsley (1968), page 111 ff.); for other modifications, see
Lindvall (1973), and Whitt (1972). Clearly d,,(f,, /) — 0 as n — oo if and only
if 0,(fu © 245 f) — 0and p,(4,, I) > 0 as n — oo for some sequence of functions
2,€A.

THEOREM 7. There exist versions of the processes {N,},,, N, and{N, '}, 5, N7!
such that

(B) d,(N,,N)—,0 as n— oo,
and
© PN, N)—,0  as n—oco.

The proof of Theorem 7 relies on Theorem 1 of Chang (1964); it is related
to some results of Runnenberg and Vervaat (1969) concerning the asymptotic
independence and exponentiality of the sample spacings of uniform rv’s.

Now let E,, E,, - - - denote the i.i.d. exponential (1) random variables associ-
ated with the processes N and N-*, andset Y, = E, + ... + E, = N-}(k—) for
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k = 1. Define three pairs of rv’s (Y*, k*), (Y, k), and (Y, k,4) by

Yk *

min1§k<oo kk = k¥ ’ Y* = ka’
Y, Y,
maX;<i<e kH = *—];"il— s Yo=Y
*
Y, Y,
maxlék(oo—k— = X e, Yie = Y05
o

again all three pairs are a.s. defined uniquely. Also note that the strong law of
large numbers (which guarantees that k=Y, — 1 a.s. as k — oo) together with
the law of the iterated logarithm (which guarantees that oscillations about 1
occur a.s. so the approach to one is a.s. not monotone) imply that P(k* < oo0) =
Pk, < o©) = P(k,, < o) = 1.

Theorem 7 now implies the following reformulation of Theorems 4, 5, and 6:

THEOREM 8. Asn— oo,

(nU*, i*) -, (Y*, k*) ,
(”U*’ i*) 4 (Y*’ k*) ’
and,

(MU s Bss) =0 (Yo ki) 3

hence the distributions of (Y*, k*), (Y, k), and (Y, k) are given by Theorems
4, 5, and 6 respectively.

The discrete distribution ¢*, which is the distribution of k* and the limiting
distribution of i*, is a Borel-Tanner distribution (cf. Haight and Breuer (1960)).
The distributions ¢, and g¢,, are apparently new. A table of the probabilities
9*(j)> 9.(j), and ¢, (j) for j =1, ..., 20 is given in Section 4.

The distribution of

, Y, Y*
min, << T = —kT

was found by Pyke (1959) (take 2 = 1 in the expression at the top of page 571);
also note that

P<minlsk<w % > ﬁ) = lim,_., P(4,(8)) = 1 — B

with the second equality holding trivially since P(4,(8)) = 1 — g for all n > 1.

Pyke’s Theorem 2 is related to max, .., (Y;:/k) = Y, /k,. In that theorem
Pyke studied P(N(t) > at + x,0 <t < T) where N denotes a Poisson process
(with parameter 1 for our purposes). This probability is obviously 0 when x = 0,
but the probability P(N(f) > at, Y, <t < T), where Y, is the first jump point
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of the process, is not zero and in fact

P(N(f) > at, Y, < 1 < o0) = P<max1§k<w YI';H < a—l>

. nU,
= lim, P(maxléig,,_1 i‘“ < a“)

k—
e 3 L ey
this distribution was found by Chang (1964).

3. Proofs. Theorem 1 may be found on page 597 of Dempster (1959); related
results are contained in Dwass (1959) and Eicker (1970). Theorem 2 is proved
by using the conditional independence of the first j and the last » — j — 1 order
statistics given U;,, (cf. Rényi (1973), page 291) to write

G(u, J) = Soo,u1 Pliy —]|U1+1—U)P( 41 € AV)

=S<o,u]P<F U<t<’_—/\11Ug+1—’U>P( 141 € dV)
J
(1) =S(0,u]P< 1 =S ,_H—’l)>
><P< } §t§~__/\l{U]+l_v>P( o€ d)
J

= S(O,u] P1P2P(U,-+1 € dv) .
The conditional probability P, may be evaluated using a result of Chang
((1964), page 29):

t,U <t<v|UJ+1—v>
2) = PT(t) = ¢, U1 <tL])

. T.(t . P

= P<mfrj<t)>o ]t() = 1) = (= ).

To evaluate the conditional probability P, first note that when j=n — 1,
P,=1forall 0 <v<1. Forj<n—2, P, may be evaluated by means of
results of Dempster (1959) or Eicker (1970) depending on whether v > j/n or
v < jfn: by replacing ¢t by 1 — ¢, using (U,, ---,U,) =, (1 = U,, ---, 1 — U)),
and rescaling, one obtains

P_P<I‘(t)> tv<t<ﬁA1Uj+1:v>
nv J
=P(T o+ =20 LN D < p < 1)
1 —¢ 1 —w
=P(Tuso+ = nogi<), vz
1 —¢ n
1 -9 | — nv
=P(T,,(h<4 t, J grgl), <,
<”“()— T iy = E Y=
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where
5:1_1_)/(1_]_1_1, 1-0 _Jj q_ /1_L:|'_1_.
( nv n ) 1 —¢ m)( v)( n )

In the case v > j/n (0 = 0), the probability may be evaluated using equation
(5’) of Dempster (1959):

— 0

P< ,‘_“(t)<5+ t,0<t<1>

=1 {j(—’_—l ) m e

3) x (=2
=1-{ 7(1—1’_—”7} e (o + 1)
< (1 — v) >n o 1(0'1'/(.1'+i+1)(?))

where j, is the largest integer strictly smaller than (j(1 — v)/v) — landn — j — 1.
Note that although the argument above required v > j/n, the resulting expres-
sion in well defined for 0 < v < j/n as well (with all n — j — 2 terms of the
sum entering for v € (0, j/(n — 1)). We now show that the above expression also
gives the probability P, for v < j/n.

In the case v < j/n (6 < 0), the probability P, may be evaluated using equa-
tion (1.4) of Eicker (1970): by writing

=

—J=m gy Y 1-29
j(1 — v) j( — ) 1 —¢

one obtains, since 6 + ya =0, and d + 8 =1,
P( na1(t)<6+7t,a<t<l)_P(I‘n]l(t)<5+rta<t</3)
=1 =g+ 7)1 -5

= {5 =] T = gy

That this equals the last expression in (3) for 0 < v < j/n may be seen by means
of the following Abel-type identity (cf. Eicker (1970), page 2081, (1.21)): for
any real number b,

o () + D7 — 1 — i)t = b*

The asserted identity follows by choosing k =n — j — 1, b = j(1 — v)/v, and
rearranging. Hence, in all cases (recall the convention following Theorem 2)
the conditional probability P, is given by the last line of (3).
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Finally, G, and p,-are obtained from (1), (2), and (3) by straightforward
integration:
“ Gy J) = Sou1 PP P(U; 4, € dV)

= (.]———.71)H"P(U‘1+l é u) —_ n! (.I - l)j_l Z;_'b;oj—ZA .

J Jtn—j—1ntjp
where
. N . ; 1 _ A n—j—1—1
Ay = )6+ Do (OS2 )T @ e
Now

P(U;, s u) = P(B(n, u) = j + 1) = 27, (Hu'(1 — n)*~t,
where B(n, u) denotes a binomial rv with parameters n and u, and, for
0sigsn—j-—-2,

. 1 — A n—g~1—1
§g ot <% -1 l> Lo,iritiann(v) AV

S AN —j =1 =D 5 m(J+i+1 '

Bl (j + i + 1)i*+i+1n! Dimirin () (F————u A1

S(EEILIPP
J

Upon using these last expressions to replace P(U;,, < u) and A4;, in (4) and
changing variables of summation by setting k = j 4 i + 1 one obtains G (u, j)
as given in Theorem 2. Letting u — 1 in this expression yields the probability
p«(j) given in Theorem 2. That the p,(j)’s sum to one may be seen by reversing
the order of summation of the second term and using the identity (cf. Lemma
2 of Birnbaum and Pyke (1958))

i GG — )77k — j)Fimt = (k — 1)*.

The proof of Theorem 3 is similar to the proof of Theorem 2 given above,
and therefore we omit many of the details. Here and in the proof of Theorem
7 it will be convenient to denote the order statistics of the sample of n Uniform
©,1)rv’'sby 0=0,,<U,, < ---<U,,<U,,,; =1. Again the condi-
tional independence of the first j — 1 and last n — j order statistics given U, ;
is used to write, for je{l, .- -, n},

Gyuu(us j) = S(o.u] P(i** = ]l Un,f = v)P(Un.j € d’”)

:S(O,u]P<Uﬂ,i§—?-i,i:1,---,j-l,j-{-l,---,n Un,j=v>
J
(5) X P(U, ;€ dv)
:S(O,“P<U,,'i§1_i,i=1,---,]'—1'U,m~=7)>
J
XP<Un,i§%l]).‘i’l:j+l’ » I Un,j:v P(U,,,]»Gd’l))

= Yo,u1 P/ PYP(U, ; € dv)
where, for j = 1, P/ = 1; and, for j = n, P,/ = 1.
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Now, forj > 1,

Pl=P(U= %ii=1, 5] = 1|0, =)
J
:P<Ui——1,i§i.’ i=1""’j“‘1>
J
_1
J

from Rényi (1973) (page 294, (2.20)) and a combinatorial identity, or, alterna-
tively, by noting that U;_,, = >}i_, D, where D, = U,_, , — U,_, ,_, are sym-

metrically dependent, and hence by a result of Anderson (1953) (see also Pyke
(1959), page 575),

Pr=P(Uusbi=t - 1)
J
©) =P(Zia(De— 3) S0 i=1 - 1)
J
=1
j

The computation of P, is similar to that of P, above, again using the results
of Dempster and Eicker; some manipulation yields

Pg’:P(U”,iéﬁ.“i,i:j—l—l,...’n Un'j:7)>
J
4 1—¢ }
= P(Unsi 2 (= 9) Li=1, e n—
(7) < nJ,z_(n_j — i n ]>
=1- A—W——}H 251 ("7 1i-1<L(L—_”)*1*.n-,»_i
e AR (U ))
X I(O,j/(j+i+1))(v)
where
p=litv—j  1=0 _ (=)o

(n—jp 1—e  (1—w)

G, and p,, as given in Theorem 3 are obtained from (5), (6), and (7) by
straightforward integration and letting # — 1; again Lemma 2 of Birnbaum and
Pyke (1958) may be used to show that the p,,(j)’s sum to one; we omit the
details.

Theorems 4, 5, and 6 follow directly from Theorems 1, 2, and 3 respectively
by application of Stirling’s formula. Note that the terms in the expression for
4:(J)(qx+(j) are asymptotic to ((j — 1)-"e=5/(j — 1))k=*((jée~7/ j1)k=?) as k — oo,
and hence the sums converge.

ProoF oF THEOREM 7. We first prove (C). Suppose {T,} is a sequence of
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integers such that T, — oo and n~'T,(log n)* — 0 as n — co. Then

Pu(No™h N77) = SUPygico [N, (1) — N7I(0)[W(7)

= InUn,l - 1| + maxlskST” nU?I:kH - Y;:H
+ MaXy, cpgn- L’I‘("“— - 1' + max; <., YZﬂ _ 1,

=R +R,+ R, +R,.

By the strong law of large numbers R, — 0 a.s. as n — oo and T, — oo in any

way. Using Theorem 1 of Chang (1955) (cf. (4), page 20) together with T, — oo,
and setting

M, = max,gc,y (nU, 11 /k) ,
nU, . | K+ 1 _ k+1
k + 1 k nUn,k+1
r.(
=M, {0(1) ~+ SUP(r, /m<r )51 1 — thl }
= 0p(1)op(1) = 0p(1) as n— oco.
To handle R, and R,, set D, =n(U,, — U, ), i=1,-..,n 4 1 and con-

sider the explicit construction of the D,,, and hence the processes I',, N,, T,
and N, %, as (cf. Pyke (1965), Section 4.1)

Ry = max; icn1

DniEnEi =n E; s i=1,...,n+1.
Yn+l E1+ e +En+l

Then,

1
R, +R,=|D,, — E| + maX,g,<r, ” i D, — Ey

S 3maxX,gop 14 |Dys — Eif

—50 as n— oo,

since, letting ¢, = 1 + logn for n = 1, for any ¢ > 0,

P(D,, — E|>¢) = P(E,|_" —1|>e

(1D~ Bl > 9 = P(E |5 )
gP(YLH-——l‘>€>+P(Ei>c”)

n 2c,

= O(n~'(log n)?) ,
and hence,
P(max,g;cr 41 [Py — Ef| > €) < it P(D,, — E| > ¢)
= (T, + 1)O(n"* (log ny)
—0 as n—oco.

Alternatively, R, 4+ R, could be handled by using the results of Runnenber
y y g g
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and Vervaat (1969), which give the asymptotic independence and exponentiality
of the first T, uniform spacings when T, — oo and n~'T, — 0 as n — oo.
To prove (B), define a sequence of (random) functions 4,, n > 1, in D[0, co) by

Zn(yk):nUn,k: k:O,...,n+1

with 2, linear between these points for0 < ¢ < Y, ;andset,(f) =n+ (t — Y,,,)
forY,,,<t< oco. HereY, = N'(k—)=E, + --- + E,. Thati,e Aa.s. for
all n > 1 is clear. From the discussion preceding Theorem 7, it suffices to
prove

8) 0u(N, o4, N)—,0 as n-— oo,
and
&) 0uw(Zy 1) 5 0 as n— oo.

But (8) follows easily since N,(4,(f)) = N(#) for 0 < ¢t < Y,,,, and hence
Pu(N o Ay N) = SUDPy . <ico [4,(1) — N(B)|W(?)

S SUPy,, sice [1 — E7IN()| +

n _1}
n+1

—0 as. as n— oo,

since Y,,, — oo a.s. as n — oo, and t~!N(f) — 1 a.s. as t — oo, both by the strong

law of large numbers.

The proof of (9) proceeds in much the same way as the proof of (C) given
above, using the same construction of the Uniform spacings, and hence we omit
many of the details: by a similar argument,

pw(z'n’ I) é max1§k§n+1 |nU'n,k - Yk‘/Yk

U Y, . Y, ™
et = e 54

= 0p(1)05(1) , n— oo,

= MaX;gpcnir

and this completes the proof of Theorem 7. []

Theorem 8 follows directly from Theorem 7 and the a.s. uniqueness of the
rv’s k*, k,, and k,,; we omit the proof.

4. The probabilities ¢*, ¢,, and ¢, ,. Table 1 gives the values of ¢*, ¢g,., and
Guy for j=1,...,20.

Acknowledgments. I wish to thank the referee, who pointed out several er-
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helpful discussions, and T. Lin for assistance in calculating the probabilities
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TABLE 1
j q*(Jj) qx(J) Gex(J)
1 .3679 .5430 .2308
2 .1353 .1069 .1106
3 .0747 .0543 .0697
4 .0488 .0345 .0495
5 .0351 .0245 .0378
6 .0268 .0185 .0302
7 .0213 .0147 .0249
8 .0175 .0120 .0210
9 .0146 .0101 .0181
10 .0125 .0086 .0158
11 .0109 .0075 .0139
12 .0095 .0066 .0125
13 .0085 .0058 .0112
14 .0076 .0052 .0102
15 .0068 .0047 .0093
16 .0062 .0043 .0085
17 .0057 .0039 .0079
18 .0052 ' .0036 .0073
19 .0048 .0033 .0068
20 .0044 .0031 .0063
> 20 .1759 .1249 .2977
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