The Annals of Statistics
1977, Vol. 5, No. 5, 969-983

ON SELECTING A SUBSET CONTAINING THE BEST
POPULATION—A BAYESIAN APPROACH

By PreM K. GOEL! AND HERMAN RUBIN?

Purdue University

The problem of selecting a subset of k populations zy, - - -, 7k, which con-
tains the ‘‘best’’ population, is considered. The unknown values 6, - - -, O
are the characteristics associated with 1, -- -, 7z and the unknown popu-
lation associated with frx; = max; 6; is called the *‘best.”” It is assumed
that, given @ = (61, - -, 6x) the pdf of the independent random variables
Xi, -+, Xj; belong to a monotone likelihood ratio family, the prior distri-
bution of @ is exchangeable, and the loss function is a linear combination
of two components, namely the subset size |s| and the distance between the
““best” and the “‘best’ in the selected subset s, i.e., L(8, s) = c|s| + [0px] —
maxjiz;es 41

It is shown that the Bayes rule depends on af most (k — 1) computable
expressions. Some lower and upper bounds on the differences of Bayes risks
are given to help reduce the amount of computation for the Bayes rule. If
X: has a normal distribution with mean 6; and known variance o2, then it
is shown that (i) for k = 2, the Bayes rule with vague prior knowledge and
the classical rule are the same if the probability of correct selection, P*, is
chosen as a suitable function of ¢, and (ii) if ¢/c = 1/x%, then the Bayes rule
selects only one population and if .2821 < ¢/s < 1/x%, then it selects at most

" two populations. The tables for implementing the Bayes rule for normal
populations are also given.

1. Introduction and summary. During the early fifties, it was pointed out by
several researchers, e.g., Bahadur (1950), that testing the homogeneity of popu-
lation means or variances is not a satisfactory solution to a comparison of the
performance of several populations. One would, generally, want to either rank
them according to their performance or select one or more from among them
for future use or further evaluation. These problems are known as ranking and
selection problems.

Let X, - - -, X, be random variables representing the k populations x,, - - -, 7,
respectively, with X, having the pdf f(+, 6,), #,€ ® c R. In many cases X, are
sufficient statistics for 4, based on a random sample from 7, i = 1, - .., k. The
population z; is characterized by the unknown parameter ¢, and the ranking or
selection is based on the information contained in X, - .-, X,. The population
7y, associated with the largest 6 value will be called the best.
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Two formulations to these problems have been suggested in the classical
framework. The first one, proposed by Bechhofer (1954) and known as the in-
difference zone formulation, allows the experimenter to select one population
which is the best with a fixed probability P*, whenever the unknown parameters
are outside a zone of indifference. The second one, proposed by Gupta (1956)
and known as the subset selection formulation, allows the experimenter to select
a subset of random size which contains the best population with a probability P*
or more. The event that the subset contains the best population is denoted by
CS. The idea underlying the classical subset selection procedures is to choose
a rule satisfying P,(CS) = P* for all 8 = (0,, -- -, 6,) € Q = O, such that the
size of the subset has some desirable distributional properties. Extensive tables
are available to implement these procedures for various parametric and non-
parametric families of distributions.

In the decision theoretic framework, most of the literature in this area is de-
voted to (i) ranking the populations, (ii) selecting the “best” or selecting the ¢
“best” populations and (iii) comparing all the population with a standard. The
pioneer work in this direction is by Bahadur and Robbins (1950), where the
problem of selecting a population with greater mean from two normal popula-
tions is discussed. Bahadur and Goodman (1952) assumed that the loss function
is a linear combination of L,(#), i = 1, ..., k, where L,() is the loss if the ith
population is selected in the subset. Similar loss functions were assumed by
Lehmann (1966), Eaton (1967) and Alam (1973). Dunnett (1960) compared the
operating characteristics of various rules for selecting the largest of k normal
population means in the Bayesian setup with the loss L,(8) = ¢/(8,; — 6,), i =
1, ..., k. The problem of choosing a single population, when the utility func-
tion is equal to the probability of coverage in a specified interval, is discussed
in Guttman and Tiao (1964).

It is generally agreed that there are two components of loss in the subset se-
lection formulation. The first depends only on the populations selected in the
subset and the second depends on whether or not the selected subset contains
the best population. We believe that the classical subset selection rules are hard
to justify in a decision theoretic framework because these procedures are chosen
such that the second component of the loss is fixed at a value which is difficult
to link with the loss in real problems, and the first component of the loss is
minimized. The decision theoretic procedures mentioned above do not seem to
be appropriate in situations where a subset is selected for further evaluation of
the selected populations mainly because they ignore the second component of
the loss and secondly because all these procedures specify the subset size in ad-
vance, whereas it should depend on the information available from the sample.

Deeley and Gupta (1968) proved that the Bayes rule for selecting a subset of
k normal populations selects only one population if the loss functions is a linear
combination of L,(8) = 0, — 6,,i = 1,---, k. It follows that a linear loss func-
tion does not represent the loss of an experimenter who wants to examine one
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or more populations. This leads us to believe that one has to consider nonlinear
loss functions which consider both the components of loss simultaneously. The
optimal procedures corresponding to this kind of loss functions will not be as easy
to implement in practice as the ad hoc rules. But this should be a secondary con-
sideration in this age of computers, since one should be willing to use “optimal”
procedures if they depend on “computable” expressions.

Studden (1967) assumed that 6;;; < ... < 6y, are k fixed known values but
the correct pairing of the populations and the parameters are unknown. For
the loss function which is a linear combination of two components, namely (i)
the sum of L,(6) over i 57, € 5, and (ii) the function 1y, ,,, he obtained the best
invariant rule which depends on a computable expression.

We assume that the loss function is a linear combination of the two compo-
nents, the first one being the size of the selected subset s and the second one
being [0y, — max,;.. ., 0,]. This loss function is reasonable when the cost ¢ of
further evaluating each population is equal, and the loss due to the incorrect
selection is proportional to the difference between the “best” and the “best” in
the selected subset. We shall now present a summary of the results obtained in
this paper.

In Section 2, it is assumed that the density function f(x, ) possesses a mono-
tone likelihood ratio property and that, a priori, the random variables 6,, - - -, 0,
are exchangeable. In Theorem 1 it is proved that the Bayes rule is obtainable
by computing at most (k — 1) differences, A,,, m =1, ---, k — 1 between the
posterior risks of the decision rules d,,,, and d,, where d,, selects the subset
containing the m largest observations. An easily computable lower bound for
A, is given, which is useful in obtaining the Bayes rule. Next it is assumed that
the prior distribution is a mixture of i.i.d. random variables and a simplified
version of the Bayes rule is given in Theorem 2.

In Section 3, it is assumed that the observation vector x is a location parame-
ter in the posterior distribution and the Bayes rule is given in Theorem 3. The
relationship between the cost ¢ and the maximum size of the subset is given in
Theorem 4.

In Section 4, it is assumed that X, has a normal distribution with mean 6, and
known variance ¢® and that the prior of @ is exchangeable multivariate normal.
Some more simplification of the Bayes rule is done. If y denotes the posterior stand-
ard deviation of 6, then it is shown that (i) for ¢/y = 1/z%, the Bayes rule selects
the population corresponding to the largest observation and (ii) for .2821 <¢/y <
1/x%, the Bayes rule selects the populations corresponding to the largest two ob-
servations. Furthermore, for k = 2 the classical selection rule is the same as
the Bayes rule with vague prior knowledge provided ¢ and P* satisfy (4.6).

2. Notation and formulation of the decision problem. Let 6, < --. < 6,
denote the ordered values of 6,’s and x,; denote the unknown population asso-
ciated with 6;,;. It is assumed that, given 8 ¢ Q = O, the random variables
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Xy, - -+, X, are independently distributed and that the pdf f{(x, §) possesses the
monotone likelihood ratio (MLR) property.

Let x;, < x, < .-+ < x, denote the ordered observations where the ties for
a label are broken at random, and #;, and 6,;, denote the = and the 6 associated
with x,,, i=1, ..., k.

The elements of the action space % are all possible nonempty subsets of
Ty, - -+, T,. Let these subsets be denoted bys,j=1,2,...,2* — 1. ForfecQ
and s ¢ %7, the loss function is assumed to be of the form
(2.1) L8, 5) = c|s| + [0uy — b1a]
where |s| denotes the number of populations in the subset s, 6, denotes
max;. ., 6; and ¢ > 0 is to be interpreted as the relative cost of further evalu-
ating a population versus being one unit away from the best population. We
believe that one can determine the cost ¢ more realistically than the P*-value
for a classical procedure in most practical problems.

Since only Bayes decision rules will be used in this paper, one only needs to
consider nonrandomized decision rules; see DeGroot (1970), Section 8.5. The
set Z of all nonrandomized decision (selection) rules containing the functions
di(xp, + -5 %), j=1,--.,2% — 1, is defined as follows:

Forj=1,2, ..., k, the decision rule d; chooses the subset s;* with proba-
bility 1 where s;* = {7, T _1)» - = > Ty_j4p}and forj =k + 1,...,2¢ — 1, the
d;’s and the remaining subsets in % are associated one to one arbitrarily.

Given x = (x;, - - -, x;), the posterior risk of a decision d ¢ &, which selects
the subset s ¢ %" with probability 1, is denoted by

(2.2) r(d, x) = c|s| + E[0y, — 0, |x] .

The following result reduces the number of decision rules to be compared for
the Bayes rule from 2¥ — 1 to k.

. LeMMA 1. If the prior distribution of @ is symmetric on Q then the Bayes rule d*
is given by
(2.3) r(d*, x) = min;_, .., r(d;, x) .

Proor. Let us partition the action space % into k components .57, m =
1,2, .- -, k, where %7, contains all the subsets of size m. Now the mth decision
problem with the observation vector x, the action space %7, and the loss func-
tion L(8, s) = cm + (0, — 0,,)) for s € 7, is equivalent to subdividing z,, - - -, 7,
into two subsets (7, 7,) where 7, is of size m and 7, is of size k — m.

Given the above structure, the mth decision problem is invariant under the
permutation group and the loss function satisfies the monotonicity and invari-
ance conditions (3.4) and (3.5) in Eaton (1967). It follows from his Theorem 4.1
that the rule which assigns the populations 7, « -, T _p41, t0 7, a0d Ty _pys « - -5
Ty tO 7, is Bayes against a symmetric prior distribution of # on (, i.e.,

rd,, X) < r(d, X) forall de<w,,
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where &, is the set of all nonrandomized decision rules associated with .97,.
Hence one only needs to compare the decision rules d,, - - -, d, to obtain the
Bayes rule in this problem.

REMARK 1. This result holds for every loss function which satisfies the con-
ditions (3.4) and (3.5) in Eaton (1967). However, this specific loss function is
being considered to get some insight into the nature of the Bayes rule.

REMARK 2. For Lemma 1 to hold, the assumption of MLR property of f{(x, ¢)
can be replaced by stochastically increasing property (SIP). However, one needs
an extra condition that the posterior distribution of @ has the SIP property. This
proof of Lemma 1 is valid, if we use Theorem 2.2.in Alam (1973) in place of
Theorem 4.1 in Eaton (1967).

REMARK 3. After this paper was submitted for publication, two more papers
came to our attention that consider nonlinear loss functions. Bickel and Yahav
(1977) assume that 6,,, - - -, 0;,; are known and consider the loss function of the
form ‘ '

1 .
(24A) v T Z(i:x~€x) (0[/0] - 0.1) + rI(ﬂ[kjfﬂ :
Is] !
They obtain the best invariant rule for the normal pdf and then digress from
the decision theoretic approach to simplify this rule as k — co. Chernoff and
Yahav (1977) consider the loss function of the form
1

(2.4B) 0y — 04) — T

Z(i:ajes) 01’ *
They obtain the result in Lemma 1 for the normal means problem with an ex-
changeable normal prior distribution of #-and then compare the operating char-
acteristics of the Bayes procedure with those of fixed subset size procedures of
Desu and Sobel (1968) and Gupta (1965) by means of a Monte Carlo study.
Since the computation of the risk r(d;, x), j = 1, - - -, k is a difficult task, we
further analyze the problem to simplify the computation of the Bayes procedure
in the remainder of this section and Section 3. It should be noted that the tech-
niques used here may not work for loss functions that are more complicated.
Unless otherwise mentioned, all the expectations below are with respect to the
posterior distribution of # on Q, given the observation vector x = (x;, - - -, x,).

LemMA 2. Form =1, ...,k — 1, let A,, denote

(2.5) A, = r(d,s, X) — r(d,,, X) .
If the prior distribution, §(8), of @ is symmetric on Q, then
(2.6) A,=A4,.,, m=23,.---,k—1.

Proor. Let me{l, 2, ...,k — 1} and let z* denote the positive part of z. ‘It
follows from (2.2) that A, can be written as

2.7) A, =c— E@O4-_n — 6"8;‘,)*] .
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Let 7,* = (Opm) — Oz, _ )" a0d 9y = (Opomin) — Ops )"+ Since Oy = 010 )
it follows from (2.7) that
Am - Am—l ; E{’?m—l - 7/7)1,*} ’

= b5 (Ina — 2a™)f(x, 0) d€(0) ,

= b5 (Iur — 7.7)f(X, ) — f(x, 0")) dE(6) ,
where b is a normalizing factor, B = {6: 0,_,, < 0_n.,} and &' is obtained
from @ by interchanging the components 6,_,, and 6,_,,,. For all 8 ¢ B,
Nm-1 = N and f(x, 0) — f(x, ') is nonnegative by the MLR property of f(x, 8).

Therefore, A,, — A,,_, = 0.

REMARK 4. It follows from (2.7) that the selection of z_,, in the optimal
subset depends on a symmetric function of the distances between x,_,,, and 7,
i=k—m+1,..., k. This property is also satisfied by the rules obtained in
Studden (1967) and Chernoff and Yahav (1977). This suggests that the ad hoc
subset selection rules, in which the selection of r;, in the subset depends on the
distance between x;, and x,, only, cannot be optimal in a decision theoretic
framework for any loss function in which both the components of loss are con-
sidered.

The next result now follows from Lemmas 1 and 2.

THEOREM 1. Let the prior distribution of @ be symmetric on Q. If the set A =
{j: A; = 0} is empty then the Bayes rule d* = d,, otherwise d* = d,, where m is the
smallest number in the set A.

It follows from Theorem 1 that one needs to compute at most k — 1 expres-
sions A,,, m = 1, ..., k — 1 for a complete specificatjon of the Bayes rule. Since
these expressions involve multiple integrals, it will be worthwhile to obtain some
easily computable lower and upper bounds on A,, which will eliminate the com-
putation of some of these integrals. One lower bound on A,,, which will also be
used in obtaining an “approximate” Bayes rule is given below.

LeMMA 3. Forme{l, 2, ---, k — 1}, A, satisfies the relationship

(2.8) v Bz — E{(O0p-m — Ou)*}-

Proor. The éxpression (2.8) follows from (2.7) and the fact that 0,,,, = 0,

No further simplification of the Bayes rule is possible unless we make some
more assumptions about the prior distribution of 4.

In the remainder of this paper, we assume that, given W = w, 0,, - - -, 0, are
i.i.d. random variables with density &(+, ») and the distribution of W is known.
We shall call this prior as a mixture of i.i.d. random variables.

It follows that given X = x and W = o, the random variables 4,, - - -, 0,, are
a posteriori, independently distributed and we denote the pdf and the cdf of
6. given x;, and @ by 9,(0,) = 9(0y | xu» @) and Gy(8,)) = G(0y; | Xy @)-
Furthermore let Q(w | x) denote the conditional cdf of W given x. With this
specification of the prior, we have the following result.
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LemMA 4. Let I,,(w) denote the integral

(2.9) I(®) = §2u Iltct-mi1 Gi(2)(1 — Gy_n(2)) dz,
then A, is given by
(2.10) A, =c— = I (@) d0@|x), m=1, -, k—1.

Proor. Let Z denote the random variable (6,_,, — 0, ))* and let H(1) denote
the posterior probability of the event Z > 1. We have

HQRA) = P[(O ey — Ou))t >4 for i=k —m+1,...,k].
It follows that, for 2 > 0
(2.11) HQA) = P[0_py > A+ 0y, for i=k—m+1, ..., k].
Let H(A|w) = P[Z > 2| W = o), it follows from (2.11) that

(2.12) HQR| ) = §2, [Thb-mis Gi(DGu_n(z + A) dz.
Since Z is a nonnegative random variable, we have
(2.13) E(Z|o) = \¢ HA|w) dA .

Assuming that the posterior risk is finite for every x, it follows from (2.12),
(2.13) and a change in the order of integration that

(2.14) E(Z|w) = (2o [Tick-m+1 G(2)(1 — Gy ,(2)) dz .

The result now follows from (2.7) and (2.14).
Since, it can be proven that, for i < j

(2.15) I —Gyz) <1 —Gy2) for all =z,
the next result follows from (2.8) and (2.10).

LEMMA 5. For me{l, 2, ..., k — 1}, A, satisfy the inequalities
(2.16) ¢ — min (a,, v,) <43, <c—u,,
where
217) = §%0 17 G — Gyon(2)) dzdQ(w]X) ,
(2.18) Uy = (% 2. G™(2)(1 — G,_(2)) dz dQ(w |X),
and

ap = E[(04-m) — O))*] -
It can be proved that
(2.19) a, = (%, (% G,(2)(1 — G\_,(2)) dzdQ(w | x) .
Some interesting properties of a,,, #,, and v,, are (i) @, = u, = v, and therefore
A =c—a,=c—v,=c—u, (i) form > 2, u, < a, andu, < v,, however,
there is no clear relationship between a,, and v,,, and (iii) a,, and u,, decrease as
m increases.
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We let r;, denote the min (a;, v,), and i =1, ---, k — 1 and let r, = 0. The
next result now follows from Theorem 1, Lemma 4 and Lemma 5.

THEOREM 2. If the prior distribution of @ is a mixture of i.i.d. random variables,

then the Bayes rule d* is given by
(i) c=zr=d*=d,

(i) n<e< rn=2d*=d, and

(iii) fori=3, .-, k,r,<c<r_andc < u; forsome]e{Z e i — 1=
d* = d,,, where m is the smallest number € {j + 1, - . -, i} which satisfies A,, = 0

REMARK 5. Since the computational time for A, increases as i increases, one
should start the computations with A;,, and continue it until m is found.

COROLLARY 1. For k = 2, the Bayes rule is given by
d*=d, if ¢=a,, otherwise d* =d,.

An “approximate” Bayes rule R, which will select bigger subsets than d*, but
is the Bayes rule for k = 2, is suggested by Theorem 2.

Rule R. If ¢ = a,, select s,*; ifa,, < ¢ < a,_,, select s, *, m =2, ..., k.
The next result follows from (2.10) and (2.11).

COROLLARY 2. If w is a location parameter in the posterior distribution of 6,
given x,;, and W = w, then A, is given by
(2.20) A, =c—1,0).

In this case the integrals in (2.9) and (2.17) to (2.19) are univariate. Further-
more, since ,,, v,,, and a,, are functions of only two variables, they can be tabu-
lated in order to reduce the computational time needed to obtain the Bayes rule

via Theorem 2. However A, is still a function of m -+ 1 variables and hence it
cannot be tabulated.

3. Location parameter posterior distribution. In this section, it is assumed
that the posterior cdf of 4, can be written in the form

(3.1) G(04)] Xy @) = G[(03) — bixi) — byw)/b], i=1,.-,k,

for some b, b, > 0. We say that x;, and o are location parameters in the pos-
terior distribution of 6. Since o is a location parameter in this posterior dis-
tribution, it follows from Corollary 2 that the Bayes rule does not depend on
Q(»). However, the Bayes risk will certainly depend on Q(w).

LEMMA 6. If the posterior distribution of @ satisfies (3.1) then
(@) A, is a symmetric function of vy, ; = Xgpomy — Xgp j=k —m 4+ 1, ..,
k, which is increasing in each argument.

(b) The expressions u,, and a,,, defined by (2.18) and (2.19), are increasing func-
tions of v,_,, , and furthermore v, defined in (2.17), is an increasing function of

”k—m,k—m+1'
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Proor. It follows from (2.9), (3.1) and a change of variable that .

(2) 1) = 5% Mk (¥ + 5 ¥im) (1 = GO

where b = b,/b,.
Now, let ¢,(z) denote

(3.3) 1(2) = §7. G0 + 2)(1 — G)) du,
then it follows from (2.17) to (2.20), (3.1) and a change of variable that

3.4)  a, = by, (% Yews)s U= bty (% Vymiomin),  and

1
u, = byt, (—b— "'k—m,k) .

The results in (a) and (b) now follow from (2.10), (3.2) to (3.4).

COROLLARY 3. t,(2) is a nonnegative increasing function of z, and a decreasing
function of m.

The following representation of the Bayes rule follows from Theorem 2 and
part (b) of Lemma 6.

THEOREM 3. If the prior distribution of @ is a mixture of i.i.d. random variables
and the posterior distribution of @ satisfies (3.1), then the Bayes rule d* is given as
follows:

Fori=2,...,k,leta; = max [x,,—b0;, xy_,.,,—bd,], where 6, = —t,7'(c/b,),
and let x, denote — oo, then

(i) X1y = Xy — bo, = d* = d,,
(1) x4y < ay < X4y = d* = d,, and
(i) Xy < @ < X_gpn) and x4, — b0; < x,_;) for some je{2, -+, i— 1},
and let m be the smallest integer e {j + 1, ..., i} satisfying A, = 0= d* = d,;
i=3,.., k.

COROLLARY 4. For k = 2, the Bayes rule d* is given by:

If xu < xg — bd,, then d*—=d,, otherwise d* =d,.
The rule R can be simplified to
Rule R. Select x, if x;, > x,,,, — 0b, where 6 = §,.

This rule is the classical subset selection procedure for the location parameter
problem, Gupta (1965), where the value of d is selected such that P(CS) = P*.
Therefore 6 depends on k and P* both in the classical case, whereas 9, depends
only on the cost per population. In effect, the user of the classical rule assumes
that either the cost ¢ depends on the number of populations or else the P* de-
pends on k. Both of these assumptions seem unreasonable to us. This repre-
sentation of the “approximate” Bayes rule, part (a) of Lemma 6 and the results
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in Chernoff and Yahav (1976) strengthen our belief that the classical selection
rules are not optimal with respect to nonlinear loss function, even though they
are close to the optimal rule provided P* is chosen suitably.

An important consequence of Theorem 3 is the following result, which relates
the maximum possible size of the subset to the cost c.

THEOREM 4. If t,7(c/b,) = 0, for some je (1, - .., k) then the maximum subset
size corresponding to the Bayes rule d* is equal to j.

4. The normal distribution. Let us now assume that, given 6, - .-, 0,, the
random variables X;, - . -, X, are independently and normally distributed with
mean 6, and known common variance ¢°, and that the prior distribution of & is
an exchangeable normal distribution. One way to specify this symmetric multi-
variate prior distribution is as follows.

Given W = w, (0,, - - -, 0,) arei.i.d. with 6, having a normal distribution with
mean o and variance %, and W has a known distribution function Q(w).

Another way of choosing an exchangeable multivariate normal prior is to as-
sume that, given W* = o*, (6,, ---, 8,) have a multivariate normal distribution
with E(0,) = w*, V(0,) = B, cor (0,, 0;) = o where p > —1/(k — 1), and W*
has a known distribution. If o > 0, then this prior can be reduced to the first
type.

If the prior distribution of @ is the mixture of i.i.d. normal random variables
then given W = w, the random variables @,, - - -, 0, are, a posteriori, independ-
ently distributed with 6,,, having a normal distribution with mean a0, = (x;,/0* +
/Br* and the variance y* = 1/(1/¢* 4 1/3%) [see DeGroot (1970), Section 9.5].
Clearly the posterior cdf satisfies (3.1) with b, = y and b = ¢*/y. If the prior
knowledge is assumed to be vague, i.e., f? — co, then y =¢. It follows from
(3.2) that

1

@) A== T @ (24 o ven) () d

where @ denotes the standard normal cdf. Furthermore, it follows from (3.3)
that ¢,(x) can be written as

(4.2) ' () = (=, O™(z + x)D(—z) dz .

We will determine the function #,(x) by using the following result.

LEMMA 7. Let Z be a normally distributed random variable with mean p and
variance 6. Then

(4.3) E[Z*] = d1()0) ,
where the function t is defined by
(4.4) t(x) = x@(x) 4+ o(x) .

Here ¢ denotes the standard normal pdf.
Since, a posteriori, the 6,,’s are independently and normally distributed, it
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follows from Lemma 7 and the definition of #,(x), that
(4.5) t(x) = 2%(x/2%) .

The Bayes rule d* is given by Theorem 3 with A, and ¢, m = 2, -- -, k de-
fined in (4.1) and (4.2) respectively and 1,(x) defined in (4.5).

Clearly ¢, (x), m= 1,2, -.., k are increasing functions of x, and it can be
verified that

() r'(x) = D(x),
(ii) 17(x) = ¢(x),
(iii) #(0) = 1/(2x)* and
(iv) t(—o0) =0, t,(c0) = oo for all m.

The next result follows from Theorem 4 and the above properties of #(x).

CoROLLARY 5. Ifc/y = 1/at = .56419, then the Bayes rule d* selects s;* = {n,},
and if 1, (0) < ¢[r < .56419 for some m, then the maximum size of the selected sub-
set is m.

The values of #,,(0), m = 1(1)30 are given in Table 2.

It should be noted that, for k = 2, the Bayes rule with vague prior knowledge
and the classical rule are the same except for the choice of §. In the classical
case, given a value of P*, the value of § satisfies

P* = (> ®(z + 0)p(2) dz = D(6/2%) .
Hence, for k = 2, the two rules are same if ¢ and P* satisfy
(4.6) P* =1 — @Q[t~Y(c[a2})].

If a user insists on using the classical procedure and the choice of P* does not
depend on k, then expression (4.6) will help determine the value of P* for a
given value of ¢/s. The values of ¢/o satisfying (4.6) for P* = .75, .90, .95, and
.99 are given in the following table. For other values of ¢/s, the implementation
of the classical rule will also require some computations.

clo .210774 .066932 .028312 .005684
P* .75 .90 .95 .99

The expression (4.6) makes sense intuitively in that for large (small) values
of c¢/o, one should choose a small (large) P*.

At this point, some comments about the computational aspect of d,’s are in
order. Since ¢, satisfies (4.5), the values of d, were obtained by using the bisec-
tion method on the function #(x). For m = 2, the values of ¢/y which are of
interest to us satisfy ¢,,~(c/y) < 0. It follows that

(4.7) * O™z + d)D(—2) dz < O"Ya) {2 D(2) dz = D"(a)t(a),
and

(4.8) {5 @™(z 4 d)O(—2) dz < (52 O(—2) dz = t(—b¥).



980 PREM K. GOEL AND HERMAN RUBIN

For 2 < 0, it can be proved that
(4.9) tu(R) — §4im, O™z + )P(—2)dz < 1.0 x 10728,

a(m)
if b* = 9.0 and a(m) are given by:

m 2 3 4 5 67 811 12-17 18-23 24-30
a(my —6.0 —5.0 —4.0 —3.5 —3.0 —2.5 —2.0 —1.5 —1.0

These limits of integration are given to facilitate the computation of A,, if re-
quired by Theorem 3. The function ¢,(2) for m = 2 was evaluated by Gaussian
quadrature method over intervals of length D = 0.25 starting from a(m) to 9.0.
The bisection method was used to find the solution to

(4.10) tu(2) = ¢y
in such a way that the two final values of 2 were within 1.12 % 10-7 or else
(4.11) [tn(R) — ¢c/y] < 1.0 % 10-%.

For one case, t,(4) was within 1.5 « 10-% of ¢/y. The computation was done
for ¢/y = .001, .005, .01(.01)7,(0). The final values of §, are tabulated to 5
decimal places in Table 1. The next result now follows from Theorem 3,
Corollary 5 and Table 2.

CoROLLARY 6. For .2821 < c¢[y < 1/x*, the Bayes rule d* is given by:
if Xypoyy < X4y — 0,0 then d* =d,, otherwise d* =d,.

The values of §, for ¢/y = .29(.01).56 are also given in Table 1.
Finally if the choice of P* is independent of k and the cost c is related to P*
according to (4.6), then it follows from Corollary 6 that

(i) d* =d,if P* < &, and
(i) d* =d, or d, if } < P* < .8389.
whereas the classical procedure may select larger subsets for these P*-values.

Acknowledgment. We would like to thank three referees, an associate editor
and the editor for valuable comments and suggestions which have greatly im-
proved the presentation of the material.
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TABLE 1
Table of om = —1t;Xclr), where, tm(x) = {2, O™z + x)D(—z)dz
el
m
.001 .005 .01 .02 .03 .04 .05 .06
1 3.99091 3.26957 2.92398 2.55085 2.31718 2.14330 2.00325 1.88514
2 3.00589 2.35515 2.04207 1.70298 1.49002 1.33125 1.20315 1.09497
3 2.56281 1.93821 1.63728 1.31101 1.10590 .95285 .82930 .72491
4 2.29134 1.68076 1.38640 1.06706 . 86621 .71628 .59522 .49290
5 2.10063 1.49896 1.20877 .89387 .69575 .54784 .42837 .32739
6 1.95583 1.36039 1.07314 .76137 .56518 .41868 .30035 .20031
7 1.84025 1.24946 .96441 .65497 .46023  .31480 .19732 .09799
8 1.74471 1.15755 .87421 .56662 .37301 .22842 11161 .01284
9 1.66368 1.07944 .79750 .49139 .29870 .15479 .03852
10 1.59359 1.01178 .73098 .42611 .23419 .09084
11 1.53201 .95224 .67243 .36859 17732 .03445
12 1.47723 .89921 .62023 .31730 .12658
13 1.42797 .85149 .57324 .27108 .08086
14 1.38330 .80816 .53055 .229Q9 .03930
15 1.34249 . 76855 .49151 . 19066 .00125
16 1.30496 .73209 .45557 .15527
17 1.27025 .69836 .42230 .12250
18 1.23801 .66699 .39135 .09201
19 1.20792 .63770 .36245 .06352
20 1.17973 .61025 .33535 .03681
21 1.15322 .58443 . 30986 .01167
22 1.12823 . 56007 .28580
23 1.10459 .53702 .26304
24 1.08218 .51516 .24144
25 1.06089 .49438 .22091
26 1.04061 .47458 .20134
27 1.02126 .45568 . 18266
28 1.00276 .43761 .16480
29 .98505 .42030 .14768
30 .96806 .40370 .13126
el
m
.07 .08 .09 .10 1 12 .13 .14
1 1.78248 1.69135 1.60915 1.53410 1.46491 1.40061 1.34046 1.28389
2 1.00083 91716 .84162 77257 .70886 .64961 .59413 .54191
3 .63403 .55321 .48022 .41349 .35188 .29457 .24090 .19036
4 .40380 .32455 .25296 .18750 .10726 .07081 .01814
5 1 .23940 .16120 .09052 .02587
6 .11317 .03566
7 .01147
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TABLE'1 (cont.)
el
m
.15 .16 17 .18 .19 .20 .21 .22
1 1.23042 1.17968 1.13136 1.08520 1.04098 .99850 .95762 .91819
2 .49253 .44563 .40093 .35820 .31724 .27787 .23996 .20337
3 .14255 .09713 .05384 .01244
el
m
.23 .24 .25 .26 .27 .28
1 .88009 .84321 .80747 .77277 173904 .70622
2 . 16800 .13374 .10051 .06824 .03687 .00630
clr o clr o clr o clr 01
.29 .67425 .36 .47017 .43 29241 .50 .13340
.30 .64307 .37 .44339 .44 .26868 .51 11191
.31 .61263 .38 .41710 .45 .24531 .52 .09070
.32 .58289 .39 .39130 .46 .22229 .53 .06975
.33 .55381 .40 .36595 47 .19960 .54 .04906
.34 .52535 .41 .34103 .48 .17723 .55 .02861
.35 .49748 .42 31652 .49 15516 .56 .00840
TABLE 2
Values of tn(0) = {2, @™(2)D(—2) dz
m  tn(0) m  tn(0) m  tn(0) m  tw(0) m  tn(0) m  1n(0)
1 .5642 6 .0850 11 .0428 16 .0280 21 .0205 26 .0161
2 .2821 7 .0714 12 .0388 17 .0261 22 .0195 27 .0154
3 .1831 8 .0614 13 .0354 18 .0245 23 .0185 28 .0148
4 .1336 9 .0537 14 .0325 19 .0230 24 .0176 29 .0142
5 .1042 10 .0477 15 .0301 20 .0217 25 .0168 30 .0137
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