The Annals of Statistics
1977, Vol. 5, No. 5, 899-908

APPROXIMATE BEHAVIOR OF THE POSTERIOR
DISTRIBUTION FOR A LARGE OBSERVATION

BY GLEN MEEDEN AND DEAN ISAACSON
lowa State University

Let X be a real valued random variable with a family of possible dis-
tributions belonging to a one parameteter exponential family with the
natural parameter 6 € (@, + o). Let g be a prior probability density for ¢
with unbounded support. Under some additional assumptions it is shown
that for large values of x the posterior distribution of ¢ given X=x is ap-
proximately normally distributed about its mode. If d, denotes the Bayes
estimator for squared error loss of some function y(¢) against g then the rate
at which d4(x) approaches infinity as x approaches infinity is found. The
rate is shown to depend on the behavior of the prior density g(6) for large
values of 6.

1. Introduction and summary. Let X be a normal random variable with
mean @ and variance one. Consider the problem of estimating ¢ with squared
error loss. For the prior distribution which is normal with mean 0 and variance
o® > 0 the corresponding Bayes estimator is (¢%/¢* + 1)X. Since a sufficiently
large observed value of x indicates that the prior was inappropriate it might be
hoped that the difference between the posterior mean and x is negligible for
large x; however, this difference x — (¢*/0* + 1)x = x/(¢* 4 1) approaches in-
finity as x aproaches infinity. From the modern subjective Bayesian point of
view this property of the estimator for large values of x is often considered un-
fortunate. See Lindley (1968) for further discussion.

If 0, denotes the Bayes estimate for ¢ with respect to the prior density g
then Dawid (1973) showed that if g is approximately uniform for large ¢ then
lim, ., (0,(x) — x) = 0. This proved a conjecture of Lindley (1968). In addition
Dawid showed that the posterior distribution of ¢ for large x is approximately
normal with mean x and variance 1. For example if g(f) = 1/6* for ¢ suffi-
ciently large where « = 1 then Dawid’s results follow.

This paper studies the general problem of the relationship between the tail
behavior. of the density g and the behavior of the posterior distribution for large
values of x. Under certain regularity conditions it is shown that the posterior
distribution is approximately normally distributed about its mode. In addition
the rate at which a Bayes estimator approaches infinity as x approaches infinity
is found for a large class of estimators. The results are developed in the context
of the one parameter exponential family.

More specifically, let # be a o-finite measure defined on the Borel sets of the
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real line. Assume that p{(c, co)} > 0 for each real number c. Assume that
{ exp(fx) dp exists for § € (6, + co) where —co < 6 < + co. (For notational con-
venience let exp(8(f)) = { exp(fx) du.) Let X be a real valued random variable
whose family of possible densities with respect to y is given by exp(6x — 5(0))
for @ € (8, o0). For this family of distributions belonging to the one parameter
exponential family let g(d) = exp(—»(f)) denote a prior density (possibly im-
proper) for §. If 2(6) = B(f) + 7(f) then the posterior distribution of § is given
by

1) [exp{fx — 2(0)}]/\7 exp{tx — A(t)} dt .

Assume that 2'(9) exists and is strictly increasing for # sufficiently large. If 4
is well behaved elsewhere, then for x sufficiently large, the mode of the posterior
distribution will be given by L(x) = [2]7'(x). This suggests that the posterior
distribution is centered about L(x) for large x.

In Section 2, Theorem 1 gives conditions under which the posterior distri-
bution (1) is approximately normal with mean L(x) and variance 1/2"(L(x)) for
large x. Let d(x; g) denote the Bayes estimator for ¢ against the prior density
g with respect to squared error loss; i.e., d(x; g) is the conditional expectation
of @ given x. Theorem 1 also yields the approximate behavior of d(x; g) for
large x, that is

(2) lim, ., [A"”(L(x))]}[0(x; 9) — L(x)] = 0.
Since one of the assumptions of Theorem 1 is that 2”(f) stays away from zero
for large ¢ it follows that
() lim, ., [6(x; ) — L(x)] =0
and equation (2) gives a bound for the rate at which the limit (3) approaches
zero. Section 2 concludes with several examples illustrating Theorem 1.

In Section 3 the rates of growth of Bayes estimators as x approaches infinity

is studied more generally. For example Theorera 3, under different assumptions
than those in Theorem 1, states that

lim, .. [3(x; g) — L(x)] = 0 .
Theorem 2 gives conditions under which the cruder approximation
4) i, [3(x; 9)/L(x)] = 1
holds. Let d(x; 7, g) denote the Bayes estimator of the function y(¢) against the
prior density g with squared error loss. In Theorem 4 the cruder approximation
(4) is extended to d(x; 7, g) for a wider class of y’s. That is, conditions are given
so that

lim,_, 3(x; 7, 9)/r(L(x)) = 1.

2. Asymptotic normality. In this section the relationship between the tail
behavior of the prior density g and the behavior of the posterior distribution
for large values of x is studied. Actually the natural correspondence is between
the posterior and the function 1(f) where 2(6) = B(6) + n(f). (See Section 1
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for the definitions of g(#) and »(4).) Hence the theorems will be stated in terms
of 2(f). In what follows it will always be assumed that 1 statisfies the following
two regularity conditions.

(A) There exists a real number N, such that for x = N,
Pa0]%) = exp{Ox — A(O)}/15 expex — A1)} ar
is a probability density over (8, co) whose finite expected value is denoted by
hy(x) = {7 0pa(0] x) 4O .
Note that #,(x) = d(x; g), the conditional expectation of ¢ given x.

(B) There exists an N, > max {0, N,} such that for w = N,, A’(w) is continuous
and is strictly increasing on [N,, 4 co) with lim,__, (W) = co.

Now for fixed, x, sufficiently large, condition B implies that p,(¢|x) as a func-
tion of ¢ on [N,, +oco) is strictly increasing when 2'(f) < x and strictly de-
creasing when 2’(f) > x. This suggests that under suitable regularity conditions
[#]7(x) will be the mode of p,(f|x) and that most of the probability under
(0] x) will be concentrated in a “small” interval about [4’]-*(x). This is the
key idea behind the proofs that follow.

For notational convenience consider the reparameterization y = [2']7(x) or
x = A'(y). Note that consideration of p,(f|x) for large x is equivalent to con-
sideration of

Pi*(01y) = exp{04'(y) — 2(O)}/\7 exp{tX(y) — A(1)} dt
for large y. In what follows it will be necessary to consider for large y the
integration of exp{m,(6)} with respect to 6 where

m,(0) = OX(y) — X(6) .

Note that on the interval [N,, co) m,(6) is a concave function with m/(y) = 0.
In order to facilitate the integration, m(f) = m,(f) will be approximated by
straight lines that lie below m(f) near y and lie above m(f) away from y. In
particular if & = y then the natural line to use is the line going through (b, m(b))
and (y, m(y)); that is, in the (0, ¢) plane, the line is given by

¢ = {[m(y) — m()]/(y — )} — b) + m(b) .
For technical reasons, however, the approximating line is chosen to be the line
passing through (b, m(b)) with slope y = [2'(y) — A([y + 6]/2)]/2. For the case
b < y it is now shown that y lies between zero and [m(y) — m(b)]/(y — b).
Note that

[m(y) — m@®)]/(y — b) = [y¥(y) — bX(NI/(y — b) — [2(y) — 2B)/(y — b)
= 2(y) — [A(y) — A0y + 8)/2)V/(y — b)
= [A(y + 61/2) — 2(0))/(y — b)
= X(y) — W2 = 2(y + 0]/2)/2
>0
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by the mean value theorem and the fact that A is strictly increasing.
The above discussion yields the following lemma, which will be used re-
peatedly in what follows.

LemMA 1. Let A(0) satisfy condition B. Let y > N, be fixed and let
m(6) = m,(6) = 62(y) — A(6) .
Then
m(0) < m(b) + (6 — b) for Ny<O0<b<y and for y<b<
and
m(0) = m(b) + r(0 — b) for N, <b<O<y and for y<0<b
where
r=M0 -2y + b)/2)/2.

The following theorem gives sufficient conditions for the approximate nor-
mality of the posterior distribution for a large observation.

THEOREM 1. Let 2 satisfy conditions A and B. Suppose 2"(y) exists for every
real number y > 6 and inf,.y 2"(y) > 0. Fory > N, let

P(01y) = exp{0Z(y) — A(0)}/§5 exp{t2'(y) — (1)} dt

denote the probability density of a random variable 6,* on (6, oo). Let [, denote the
probability density of the random variable Z, = [2"()]¥O0,* — y). If for each

c>0

) lim, .. {2'(y + a)[F'O) )20} = 1
where |a(y)| < ¢ for all y then

(6) lim,_, f,(z) = (2m)~texp(—2*/2)

© for each real number z. In addition,

O lim, ., [2"()1[§7 6p,*(0]y) d6 — y] = 0.
Proor. Without loss of generality assume N, = 0. If the density of 6,* is
given by p,*(0|y), then the density of Z, is given by
® £ = FPEXOXON +y2 () — AW + )
[ N1 §7 exp {ed'(y) — A(r)} @t

for ze ([#”()]*(6 — y), ). By making the change of variable r = [2”(y)]¥(t —
») in the integral in the denominator and cancelling and adding factors depend-
ing only on y one finds that

©)  fe) = PO WI + () — A1 + )}
Vexp{r@(NIA"(MI7F + Ay) — ([ ()] + y}ar

Upon expanding A(z[2”(y)]~* + y) in a Taylor series about z — 0 one finds that
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the numerator of f,(z) is given by

(10) exp{—2"(y + £z, N WMIHI"N](Z/2)}

where £(z, y) is between 0 and z. Note that for a fixed z expression (10) converges
to exp{—z*/2} as y approaches infinity by assumption (5). From this it follows
that (6) will be proved if it can be shown that lim,_, liminf,__ §%. f,(2) dz =1
or alternatively

(11) lim,_ limsup, .. §.sx fo(2)dz=0.
To this end note that by an appropriate change of variable in (8) one finds that
(12) {2 f,(2) dz < $oe exp{tA'(y) — 4(9)} dt

@ exp{12(y) — A(n)} dt
where b(y) = y + K[2"(y)]*. The next step is to use Lemma 1 to find suitable
approximations for the above integrals. Note that for r > b(y) > y it follows
from the lemma that
w(y) — A1) = mb(y) — [F(y + K["N]42) — XD — 6(»))/2
= m(b(y)) — K[ (EDN( — b()/4
where by the mean value theorem y < §(y) < b(y). Hence by assumption (5)
it follows that for ¢t > b(y)
(13) ' (y) — A1) = m(b(y)) — (K[8)[F" (N — b(y))

when y is sufficiently large.
Turning now to the denominator of (12) one has from the lemma for the case

y < t < b(y) that
2 (y) — A1) = m(b(y)) — [X(y + K[2"(Y]7}/2) — X (DI — b(y))/2
= m(b(y)) — K[X' ()] 2" (EW)( — b(y))/4
where by the mean value theorem y < &(y) < b(y). Hence by assumption (5) it
follows that for y < t < b(y).
(14) A (y) — A1) Z mb(y)) — (K[B)[" ()] — b(y))
when y is sufficiently large.
Upon substituting equations (13) and (14) into equation (12) it follows that
(2 /() dz < Vi SPL= (IO ()] dr
§y @ exp{—(K/8)[2"(y)]H1} dt
< [exp (K*/8) — 1]

From this it follows that lim, _, limsup, ., {3 f,(2) dz = 0.

The expression for (.., f,(z) dz may be split up into two parts corresponding
to the ranges of integration 0 < ¢t < y — K[4”(y)]"* and 6 < ¢t < 0. The first
of these is handled in a way entirely analogous to the above argument where the
integral in the denominator is over the interval (y — K[4”(y)]™%, y); the second
of these will be considered now.
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Hence to complete the proof of (11) and hence of (6) it remains to show that

§o exp{t2'(y) — ()} dr _
17 exp{td'(y) — A(¢)} dr

Note that for y > a > 0, where 2'(a) > 0 it follows that

{5 exp{t2'(y) — A(9)} dt = (5 exp{td(y) — tA'(a) + tA'(a) — A()} dt
< (g exp{i¥'(a) — (1)} dr
< oo

by assumption A. On the other hand for y > 0 the denominator of (15) is
greater than y exp{—4(0)} and hence (15) follows. )

Assertion (7) of the theorem follows from lim, , lim sup, .., § .52 f,(2) dz =
0. This can be verified in a fashion analogous to the proof of (11) and will be
omitted. This completes the proof.

The assumptions on 2 in Theorem 1 loosely interpreted imply that for large
», 4 is a reasonably behaved convex function which grows at least as fast as )*
but not too fast. For example, if for large y, 1 is a polynomial of degree =2
whose leading coefficient is positive or if A(y) = e¥ for large y, then the assump-
tions are satisfied. The assumptions are not satisfied when for large y, A(y) = e’
It is not known to the authors if the results of Theorem 1 hold when A(y) = e**
for large y.

In Theorem 1 let x = 2'(y), L(x) = (X)™%(x) and 7&,(x) = §*=6p,*(O|y =
L(x)) df, Then equation (7) can be rewritten as

fim, ., [2(L(x))Ji(hy(x) — L(x)) = 0.

This section is concluded with several examples illustrating Theorem 1.

(15) limsup,

ExampLEs. Let X be Normal (6, 1). Then A(6) = 6*/2 + () when g(0) =
exp(—7(f)) is the prior density. In what follows, »(f) will only be specified
for larger values of §. We assume, however, it is defined in such a way that
the regularity assumptions of Theorem 1 are satisfied.

Suppose g(f) = 1/6° = exp(—CIn ) for 6 > K > 0. Then for large x,L(x) =
(x + (x* — 4C)})/2 which is approximately x and A”(L(x)) is approximately one.
Hence for large x the posterior distribution of ¢ given x is approximately Normal
(x, 1). For C > 0 this result was given by Dawid (1973). For a similar mul-
tivariate result see Hill (1974).

Suppose now g(f) = exp(—C0) for 6 > K > 0 where C > 0. Then for large
x, L(x) = x — C and the posterior distribution of # given x is approximately
Normal (x — C, 1).

Suppose now g(f) = exp(—C6%) for § > K > 0 where C > 0. In this case it
follows for large x that L(x) = x — 3C[4x 4 9C*/4]}/4 4 9C*/8 and the posterior
distribution of ¢ given x is approximately Normal (L(x), 1/2”"(L(x))). Note that
the variance 1/4”(L(x)) is approximately one for large x.
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Now suppose g() = exp[(— C6*/a) + (6°/2)] for § > K > 0 where C > 0 and
a > 2. We have for large x that L(x) = (x/C)¥“~ and the posterior distribution
of ¢ given x is approximately Normal ((x/C)¥*=, 1/(a — 1)C(x/C)ta=»/ta=D),
Finally

limx—.m x(lx—ﬁ)/ﬂt(tx—l)[a(x; g) — L(x)] =0.

Suppose now g(f) = exp{—e®® + 6%/2} for § > K > 0 where C > 0. Asimple

calculation shows that for large x, L(x) = (1/C) In (x/C) and
lim,_,, (Cx)}[d(x; 9) — (1/C)In (x/C)] = 0.

Now consider the case where X is Poisson (1) where 1 € (0, 4-00). Letting
6 = In 2 one finds that f,(x) = exp{—exp(0) + x0}1/x!) for x =0,1,2, ---
where 6 € (— oo, +00). Letting g(f) = exp(—7(6)) denote the prior density it
follows that 2(f) = 5(f) — e’. If the prior density is uniform over the real
numbers, then the posterior is identical to the posterior in the previous example
when C = 1.

3. Rates of growth for estimators of ¢ and y(6). In this section the single
question of the rate of growth of Bayes estimators as x—oo is considered. Note
that no assumptions about 2”(y) are needed for these theorems.

The first theorem gives sufficient conditions for the ratio #,(x)/(4")~"(x) to
approach one as x approaches infinity.

THEOREM 2. Let A satisfy conditions A and B and let L(x) = (A')~(x) for x =
X(N,). If for all 6 > O there is a K = K(3) and an N, = N,(8) such that X[(1 +
0)y] — A (y) = K(9) > 0 for y = N;, then lim,_, h;(x)/L(x) = 1.

Proor. Let x = A'(y) and consider

mIX(N)] _ \7 0 exp[64'(y) — 4(9)] db

b y §7 exp[07(y) — 4(6)] 40
(Note that as in Section 1 § = —oo.) Let ¢ > 0 be given and rewrite (16)
as a sum of four terms as follows where m,(0) = m(f) = 04'(y) — A(6) and
D(y) = {7 exp[m(6)] d6. (As in Theorem 1 we take N, = 0.)

for y > N,.

(16)

() §5 6 exp[m(6)] d6/yD(y) +
17y (i) §8°-2 6 exp[m(0)] db[yD(y) +
(i) §3ats 0 exp[m(6)] d6/yD(y) +
(iv) $5ss 0 exp[m(0)] db/yD(y) .

First it is shown that parts (i), (ii), and (iv) go to zero as y — co. For part (iv)
let 5 = (1 + e)yso y < b < 6. By hypothesis y = r(y, ¢/2) = 4[2(y) — ¥(y +
¢/2)] < K < 0 for y = N;. Hence by using Lemma 1 it follows that
(i) < SE0exp[m(b) + (0 — )] o
Y $i-tesaror expm(b) + r(6 — b)]do
_ —byebr |- e 0
T el — e ]
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as b— oo since y < K < 0 for y = N,. For part (ii) let b6 = y(1 —¢)soy =
K>0fory=N,.
(i) < S0 exp[m(b) + 7(6 — b)] 9
=y §ireba-o exp[m(b) + (0 — b)] db
rbe’r — ebr 4 1

yrerbesbr/(l-—e) _ yrebr
< (rb + Df[yret”*=2 — yr] -0

as b—oco since y=ZK>0 for y=N;.

For part (i) lete, = A'(a + 1) — #'(a). From the fact that |f exp[¢,0]| =< B, < o
for # < 0 and assumption A, it follows that for y = a + 1 where a is such that
A(a) >0,
15 10] exp[02'(y) — A(0)] O = (5 |6] exp[04'(y) — OX'(a) + 0% (a) — A(0)] 40
< B, {jexp[04'(a) — 4(0)]d0 < oo .
In the proof of Theorem 1 it was shown that D(y) — co as y — oo so (i) — 0

as y — co. The above arguments can also be used to show that (i), (ii) and
(iv) — 0 as y — oo without the term 6/y so it follows that

lim, ., juats exp[02(y) — A(O)]d0 _ |
D(y)

Hence
1 — ¢ < lim inf (iii) < limsup (iii)) < 1 4 ¢.

But since ¢ is arbitrary the proof is complete.

In Section 2 sufficient conditions for lim,_, [A,(x) — [4']7}(x)] = O were given
as a consequence of proving asymptotic normality. Now it is shown that
lim,__, [#;(x) — [#]7%(x)] = O under a different set of conditions. These new
conditions put no upper bound on how fast 4 can grow, which was the case in
Theorem 1.

THEOREM 3. Let 2 satisfy conditions A and B and let L(x) = (2")7(x) for x =
AN (N,). If for every ¢ > 0lim,__[¥(y) — X(y — €)] = oo, then

Clim, . [Ay(x) — L(x)] = 0.

Proor. The proof is similar to the proof of Theorem 2 except that in this
case the integral in the numerator of /,(2(y)) is considered over the intervals
@, 0], 0,y —¢l, (y — &,y + ¢, (¥ + & +oo) separately where ¢ > 0.

The conclusion of Theorem 3 is the desired conclusion yet Theorem 2 has its
value. Inthefirst place the hypotheses on 2’ are weaker for Theorem 2. Secondly
from a practical standpoint Theorem 2 is easier to use, as the subsequent remarks
illustrate. Let

hy(x) = (2. 0 exp[— (0 — x)"[2]9(0) 40§ =, exp[— (0 — x)*/2]g(0) dO
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where () = e-!%®*/3+%%2 js the prior distribution. In this case () = + |0]°/3 so
2(0) = ¢*for & > 0. Hence L(y) = y*solim,_,, h,(x)x~} = 1 and lim,_,, &;(x) —
x* = 0. This example was made easy by the fact that the inverse function for
X'(0) was easy to calculate. If in fact for 6 > 0, g(f) = exp[—|0|*/3 + 6*/2 +
log 4] then A'(9) = 6* + 1/6; the calculation of L(y) becomes much more dif-
ficult. Fortunately the smaller order terms of 1(f) can often be ignored when
applying Theorem 2, as the following lemma shows.

LeEMMA 2. Let 2 satisfy the conditions of Theorem 2 and assume that
lim,_, 2'(0)/6 = K for some > 0and0 < K < co. Thenlim,_,, k,(x)/(x/K)"* = 1.

Proor. Using the fact that lim,_, 2'(6)/6? = K it is possible to show that
lim, .., [¥]-(0)/(0/K)¥* = 1. Hence lim, . hy(x)/(x/K)"* = lim,_, [,(x)/[X]"(x)]
lim,_, [A]~Y(x)/(x/K)"? = 1.

RemMARK. The condition lim,__ 2'(6)/6f = K in Lemma 2 can be replaced by
the condition lim,_,, 2'(f)/e*’ = K where p(6) is a polynomial in 6 and the result
still holds. However, 2'(6) = log 6 and f"(f) = log [0 log 6] shows that it does
not always follow that [2']=%(0)/[ f']7'(6) — 1 when 2'(6)/f"(6) — 1.

REMARK. Lemma 2 can be used to simplify the problem of finding the asymp-
totic growth of 4,(x). In particular if () = 6* — 30 + log @ it is nontrivial to
find [#']7'(f). However, it is sufficient to find the inverse of f'(f) = ¢*. Un-
fortunately the smaller order terms cannot be ignored when using Theorem 3.

Theorems 2 and 3 yield the growth rate of the expected value of ¢ given x
for large x. Next the growth rate of the expected value of y(0) given x for large
x for some function 7 is considered. A partial result is given in the following
theorem.

THEOREM 4. Let A(0) be a real valued function satisfying the conditions of Theo-
rem 2. Assume that y(0) is a polynomial in 6 such that §7 y(6) exp[0x — 4(0)] dO
exists for large x. Then

1 {5 7(0) exp[fx — A(0)]d60 1
L] {7 exp[0x — A(6)] df

Proor. The proof is similar to that of Theorem 2.

lim

£—>00
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