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A CONDITIONAL CONFIDENCE PRINCIPLE

By JAMES V. BONDAR
Canadian Radio-Television and Telecommunications Commission

A conditional confidence property is examined in the context of in-
variant statistical models, for set estimators of equivariant functions of
the parameter. Set estimators deduced from likelihood considerations are
then identical to Bayes credible sets induced from a right invariant prior.
It is shown that amenability of the group ensures that these intervals satisfy
a betting interpretation of confidence sets due essentially to Buehler and
Tukey. As a corollary, a level « Bayes set estimator is of level at-most-a
as a Neyman-Pearson confidence interval if the group is amenable.

0. Introduction. Stone (1976) has given examples (see the counterexample
of Section 2 of the present paper) of problems in which the Bayes credible in-
terval of level « based on a right invariant prior turns out to be a confidence
interval (in the Neyman-Pearson sense) of rather less than level « for all pa-
rameter values; in one particularly amusing example, the Bayes probability of
the interval covering the parameter is 259, for all x, while the confidence co-
efficient is at least 759, for all #. Such bad behavior (related to Stone’s concept
of “strong inconsistency” of decision rules) is shown to be impossible in a class
of statistical problems as a corollary of work on conditional confidence levels
which we now describe.

Following on a discussion of conditional confidence properties by Fisher,
Buehler (1959) considered a statistician, Peter, who after an experiment is per-
formed, calculates a level « set estimate for an unknown parameter ¢; it may
or may not be a confidence set. Paul, knowing the observation x, bets with
Peter at a to 1 — a odds that this set fails to cover the true value of @ if x lies
in some given subset 7' of the sample space 22°. Let the conditional expectation
of Peter’s winnings given the subset 7' be called e,(f); T is called a relevant
subset for the set estimator if there exists ¢ > 0 such that either e,(6) < —e¢ for
all 6, or e;(0) > +¢ for all §. Buehler (1959) and Tukey (unpublished Wald
lectures 1959) independently proposed what may be loosely called a consistency
principle (as opposed to an optimality criterion) for level a set estimates: use
no set estimator for which there is a relevant subset.

Buehler’s principle is of interest in connection with certain difficulties of non-
Bayesian, nondecision-theoretic inference, which often appear in the literature
in connection with conditioning on ancillary statistics. See Cox (1958), and
especially Birnbaum (1969). In particular the principle is strong enough to
eliminate the conditionality “paradox” of Cox (Buehler (1959), Example 3.2):
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a fair coin is tossed; if heads occur, one observation is taken from an inde-
pendent N(y, 1) distribution; if tails, a N(x, 100) observation is made. The
criterion of shortest expected length leads us to discard the “obvious” 409,
interval in favor of one of the form: @ lies in an interval of zero length if tails
occur; @ lies in an interval X + 1.28 (an 809 interval) if heads. This procedure
seems not to be “sensible,” but unless Neyman-Pearson inferential criteria are
supplemented by some other principle (such as that of Tukey and Buehler), it
seems impossible for a Neyman-Pearsonian to avoid this paradox.

Regrettably, the relevant subset principle is foo strong: the example of Buehler
and Feddersen ((1963), also Brown (1967)) shows that this principle eliminates
the usual interval for the normal mean based on Student’s ¢, which we all know
to be a Good Interval (“everyone is born with the normal and ¢ distributions
inside him,” Miller (1966)), and this has in some circles been taken to mean
that the relevant subset principle is hopelessly faulty (this conclusion is drawn
in, e.g., Durbin (1969), page 647). Stronger forms of the principle, considered
by Tukey and by Wallace (1959) are subject to the same difficulty.

There are two ways around this difficulty. The first is due to G. K. Robinson
who points out that while it is true that one would think poorly of the estimator
if e,(0) were less than —¢ for all 6 (T is then called a negatively biased subset),
nevertheless e,(¢) > ¢ is not upsetting, since this shows that the estimator is
“doing at least as well as its nominal level in that part of the sample space.”
Such behavior on the part of an estimator is commendable, and yet the relevant
subset principle rejects estimators which have this property! Consequently,
Robinson proposes the consistency principle: use no set estimator for which
there are negatively biased subsets. Robinson (1976) proves that this principle
does not reject Student’s interval for the normal mean, thus rediscovering an-
other of Stein’s unpublished results (Stein (1961)), and also shows that the
Behrens-Fisher interval is not rejected. This (which we shall call Robinson’s
principle for convenience, even though it is not the only one of Robinson’s con-
tributions to this field) is thus not too strong and yet it is strong enough to
eliminate Cox’s paradox, at least in the form above.

The present paper considers a second approach to Buehler-Feddersen’s objec-
tion to the relevant subset principle. It has been pointed out obliquely by Stone
(1972, page 236) that a relevant subset 7' may have little probability for “most”
values of #, in which case x is most likely to fall in T° which may not be a rele-
vant subset at all, indeed e, may be close to zero. This suggests that we replace
conditional by unconditional expectation to arrive at the following consistency
principle III: use no interval estimator for which there is a subset 7 of 27 and
an ¢ > 0 such that Peter’s expected gain is less than —e for all ¢ in Q. This
principle is weaker than both Robinson’s and the relevant subset principles, but
is strong enough to eliminate the Cox paradox, at least in the form given above.
Moreover, if we set T = .27, our principle is just the condition that the strong
inconsistency of Stone’s example does not occur. The theorem of this paper
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shows that the class of Bayes credible sets based on right invariant priors will
conform to principle III (in both the one-sided form given above and also the
corresponding two-sided form) if the model is invariant under an amenable
group. A forthcoming paper, Robinson (1975), defines and discusses a class of
related but more complex principles; the chief difference between these and our
principle III is that the amount bet by Paul need not be zero or one; a confi-
dence interval rejected by our principle IIT has a super-relevant set in Robinson’s
nomenclature, and will also be rejected by the principles of Robinson (1975).

For one of the above principles to provide a satisfactory resolution of the
difficulties of statistical inference mentioned earlier, it must at least give us
reasonable answers to the question of whether or not to condition on an an-
cillary (and if so, which one). The principle will have to compete with ad hoc
rules of the form “always condition on ancillaries” (more general rules of this
sort are suggested in Barndorff-Nielsen (1973)), and must succeed in a wide
class of statistical problems. Only time and further study can tell if any of the
above approaches will lead us to our goal.

1. The theorem. In the following, G denotes a locally compact group of
transformations with the identity element e, acting on a Euclidean space &7
Let the model be invariant under G, i.e., the data X is a random vector taking
values in 2 and having the probability distribution P(+; 8), 6 € Q; if X has the
distribution P(.; 6) then gX has the distribution P(+; gf) for some ¢’ = g6 € Q.
We shall later assume that G is transitive on the parameter space Q (i.e., for
any 6,, 0, Q there is at least one g € G such that g6, = 6,), and that G is free
on & (i.e., for any x,, x, € 22 there is at most one g € G such that gx, = x,).

We shall say a second countable group is amenable if there is a sequence {P,}
of probability measures defined on G such that for every measurable B c G and
geG, |P,(Bg) — P(B)| — 0 as n — oo. This is well known as the condition of
the Hunt-Stein theorem, and is equivalent to the usual definition of amenability
which is to be found in the literature of pure mathematics (see Bondar and
Milnes (1976)). It is also known (see Bondar and Milnes (1976), Section 2, or
Stone and von Randow (1968)) that the class of amenable groups includes every
compact group, translation groups, the triangular matrix groups, the location-
scale group given by (¢, s)x = sx + ¢, and the group of the Behrens-Fisher
problem. However, the group of nonsingular m X m matrices (m = 2) is not
amenable, which rules out some multivariate applications.

If f(.; 0) is the density of P(.; #) w.r.t. some o-finite measure, then the Bayes
posterior for ¢ given x with the measure m as prior gives probability

(1) K §o f(x; 0) dm(0)

to the (measurable) set ©® ¢ Q; provided the norming constant K is nonzero
(1/K = (o f(x; 0) dm(0)). We shall call (1) “the m-Bayes posterior distribution”—
if 0 < K < oo. For any x e 2, let C(x; +) be the (measurable) indicator func-
tion of a set estimate for § given x. If C is an exact level « m-Bayes set estimator
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(i.e., the estimating set given x contains « of the posterior probability (1)), then
(1) yields

) fo (C(x; 0) — a)f(x; 0) dm(0) = O .

In Buehler’s betting interpretation of set estimators, as explained in the in-
troduction, the (unconditional) expectation of Peter’s gain is

®) $r(0) = §z (C(x; ) — a) dP(x; 0) .

We shall show in our theorem that if m is a right-invariant prior for ¢, if G is
amenable and transitive on Q, and if our model satisfies the regularity condition
R (see below), then there is no set T in 22” for which ¢.(6) is bounded uniformly
above zero for all @ (or below zero for all ).

REGULARITY CoNDITION R. G is a locally compact second countable complete
metric topological group, and the multiplication law (g, x) — gx is measurable
on G X &£°. Also, the action of G on 27 is a free product action, i.e., Z° is
isomorphic (where isomorphic means existénce of a measurable one-to-one map
commuting with the action of G) to the cartesian product G X 4 of G with
some second countable locally compact space A, such that g(k, a) = (gh, a) for
all g, h in G and a in A4; also that each P(-; ) is dominated by p# X « where p
is a left invariant measure on G and « is a ¢-finite measure on A such that, for
any integrable F,

4) Vo F(h, a) du(h) da(a) = {4 {o F(gh, a) dp(g) da(a) .

Here and henceforth, the isomorphism between 27 and G X A is written
x — (h, a); da(a) will be written as da. The function f(x; 6) = f(&, a; 6) shall
denote the density at x of P(+; f) with respect to ¢z X a.

Although this condition seems very specialized and restrictive when formally
stated, most of the continuous models one encounters in parametric statistics
satisfy regularity condition R if the group acts freely on 227, For example, the
group actions of classical multivariate analysis are product actions (see Wijsman
(1967) and (1972), Theorem 7.1); a more general and abstract result of this sort
is Bondar (1976).

We now assume that G is transitive on Q. It will be useful to reparametrize
the distributions on 2 as follows: choose some fixed 6, in Q; if g6, = 0, we
shall identify the group element g with the parameter value 6 (at least one
such g exists by transitivity of G). In particular, 6, will be associated with e in
G. The same P(.; §) may be parametrized by more than one g; it also means
that after reparametrization, our new Q is G, and each @ is a group element,
permitting us to speak, for example, of 6-* and 6x.

We shall write v for the right-invariant measure on G corresponding to g,
and A for the modulus of G. See Nachbin (1976), Chapter 2. If we use v as
our prior m, use the reparametrized Q, and write x as (#, ) then the posterior
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(1) becomes
(1a) k(@)A(H) $o (1, @3 0) d(6)
where 1/k(a) = A(h) (¢ f(h, a; 0) dv(6) does not depend on k. It is shown in, e.g.,

Dawid, Stone and Zidek (1973) that if G has a free product action on 27, and
f is the density of x w.r.t. ¢ X «, then

(3) f(h, a; 0) = fl9h, a; 90) almostall a, h; all g.

From this it follows that 0 < k(a) < oo for almost all x (since 1 = P(2Z7; 0) =
VS (B, a3 €) du(h) da =1 fle, as h) dpu(h) da=S§ f(e, a; 0) dv(0) da= , k=X(a) da.
Thus k~'(a) < oo a.e.); hence the posterior distribution (1) is well defined. We
note that (1a) is identical to D. A. S. Fraser’s structural distribution for 4 given
x (Fraser (1968), page 64), hence our results also apply to structurally derived
set estimators. When G is the translation or translation-scale group, these set
estimators are associated with the name of E. J. G. Pitman.

For any subsets B and C of G, we define BC = {bc; be B,ce C}and B[C] =
MNoec B = {95 9€ G and gC C B}. We say G has the property H, if there is
an infinite sequence {G,} of closed subsets G, of G with »(G,) < co such that
w(G,[C])/¥(G,) — 1 as n — oo for all compact C — G. It follows from these
definitions that for all compact C and D + @ in G, (G,[C])[D] D G,[DC],
w(G,[C])/¥(G,[P]) — 1 and also {v(G,) — »(G,[C])}/»(G,[D]) — 0. It is known
that H, is equivalent to amenability (Bondar and Milnes, Theorem 1; the proof
is essentially in Emerson and Greenleaf (1967)).

We now have the machinery to state and prove our

THEOREM. Let (Z, G, Q) be an invariant statistical model under the group G,
satisfying the regularity condition R, and for which G is transitive on Q and is amena-
ble; if a set estimator is exact a-level Bayes W.r.t. right Haar measure, then for
any ¢ > 0 there is no set T in 27 such that ¢,(0) > ¢ for all € Q, and no T such
that ¢p(0) < —e for all 6.

Proor. First we note that there is an increasing sequence of compact B; C G
and an increasing sequence of compact K, C 4 such that 2= U7.. B; X K; (a
proof is obtained by observing that -2~ is a union of an increasing sequence of
compact sets C;, and that the projections 7,: 27— G and r,: 22— A are con-
tinuous, hence 7,(C;) X 7,(C,) will suffice for our B, X K,). Therefore for any
6 > 0 there are compact B C Gand K C Asuchthat P(B X K; 0 =€) > 1 — 9,
and e ¢ B. Next, consider

A(H) S $15m ik, a3 0) do(0) da
= A(h) $x $np-1 f(07'h, a; €) du(f) da by expression (5) .

Set y = 6~'h, and since dv(hy~") = A(h)~* dp(y), this becomes

— A(h) $ § /(9 @5 ©) du(hy™) da
=« $af(y, @ €)dp(y)da >1—0.
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Hence

(©6) A(R) $x Vugor f(h, @3 0) du(0) da > 1 — 5.
Integrating (2) w.r.t. da,

) 0 =\ Vs (C(h, a; 0) — a)f(h, a; 0) dv(f) da .

Now,

IS Sus-1 (C(h, a5 0) — a)f(h, a; 0) dv(0) da|
= |k §6 (C — a)f dw(0) da — §x §15-1,:(C — a)f dv(0) dal .

By (7), the first term of this expression is zero, so the.expression is

= !SK S(hB—l)c (C - a/)fd"'(a) dal
< Sk Sas-ve flO'R, a5 €) du(0) da .
After the transformation g = §~*hand using the fact that dv(hg~") = A(k)~* dp(9),
this becomes
= A7 & Sins—ve-u (9, a; €) dp(g) da
= AR P(((hB7Y))"'h X K; e)
®) = A(h)7'P(B° X K; e)
< A(B)'P((B X K)*; e)
= 9/A(),
the latter step by (6).
Using property H, we choose a sequence {G,} of closed subsets of G such that
¥(G,) < oo and ¥(G,[D])/v(G,) — 1 for all compact D C G.
Define 4 = {(h,a;0): 0 G,ac K, he 0B},
C,=1{(h,a;0): 0cG,[B]},
Ay ={(h,a;0): (h,a;0)e A, he G,[B'B]},
Ap=4,nC, — A4, and Ap=C, — A4,.
Now consider
9 0) dv(0
) (Gn[B]) !SG (8] ¢T( ) dv(0)|
-1
»(G.[B])
where ¢ is the characteristic function of T. Now 4,, ¢ C, (since B~'B D B
implies G,,[B*IB] c G,[B]), hence C, = 4,, U 4,, U A4,;. Thus expression (9) is

156, (C(h, a; ) — a)f(h, a; O)e(h, @) dpu(h) da dv (0)|

< g IS (€ — @ lh) da O] 4 1, U, @3 0) ) da 0}

The integral over 4,, is of a bounded function over a set of finite measure, so
Fubini’s theorem applies; the second integral is of a nonnegative function, so
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Fubini’s theorem again holds. If 2 is the product measure with element
diA(h, a; 0) = dp(h) da dv(6), the above bound for expression (9) becomes

10 L (C— Q)fdA] + $uua. fdA}.
(10) .1 1 (€ = O iy [0

By the remarks after the definition of property H,, G,[B~'B] c (G,[B])[B],
so that the section through A4, of points with a given A-value & = h,is (h,B~?) X K.
Therefore

L (C = a)fda
u(Gn[B])IS w ( )f d2|

equals (Fubini again):

1
SAT) S¢,5-151 Y& San-1 (C — @)f du(0) da dp(h)|
R TT SG.IB]) [B]) So,8-121 A & Su5-1 (C — a)f dv(0) da du(h) .
By (8), this is
1
é m SG,,,[B—lB] 0 du(h)
(11) :wa_,a as n— oo
v(G,[B])
(the last step by a remark after the definition of H.).
Next,
1 ) .
SG.[B]) Vu,, S @3 0) dA(h, a3 0)
1 .
= m_) SGn—Gn[B_lB] VBT f(h, a 0) dv(&) da dy(h) .

The inner double integral (over 4 and G) can be written
$4 56 f(07'h, a; e) dv(f) da ;
after the transformation g = 64, this double integral becomes A(#)~*, hence
our integral over A, is

! .
= m $¢,-c, 15151 A(h)~* du(h)
(12) _ G, —G,[BB])
¥(G,[B])
(the last step by another remark after the definition of H,).
Lastly,
h, a; 0) di(h, a; 6
(13) S rgg; S s @ 0) b 0)
1
£ —— SG%[B] $Swmxxre [, a; 0) dp(h) da dv(0) .

w(G.[B])
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Now the inner double integral of this last expression is 1 — P(0B X K; 0) =
1 — P(B X K;e) which, by definition of B and K, is < 6. Hence, expression
(13) is
1
< -
< 6]

Taking this last inequality together with (10), (11), and (12), we find that ex-
pression (9) is less than or equal to a quantity which converges to the limit 20
as n— oo, and d may be made arbitrarily small. But if the theorem were false,
there would be an ¢ > 0 such that ¢, > ¢ for all 8, or ¢, < —e¢, all 6, hence
(9) would be greater than e for all n. This establishes the theorem by contra-
dicting its negation. ] )

dadv(8) = 5.

2. Consequences and examples. Given a set estimator with indicator func-
tion C(x; §) = C(h, a; 6), we define 5(0) as the probability (in the usual Neyman-
Pearson sense) that the set covers § when the latter is the true value of the
parameter. Define y(x) as the probability under the Bayes posterior derived
from a right invariant prior, of all the § values which are included in the con-
fidence set when x is observed, that is to say 7(x) = Pr ({C(x, #) = 1}|x) where
Pr is the Bayes posterior probability. Now we can set 7 = -2” in the theorem
and get the

COROLLARY. Under the assumptions of the theorem, if C(+; ) is any set estimator
for 8 of v-Bayes level exactly a (in the sense that y(x) = a for all x), then

infy.q (0) < a < sup,.q B(9) -

In an important class of cases it has long been known that equality of « and
B holds:

PROPOSITION (Stein (1965)). Under the assumptions of the theorem, if C(h, a; 0) =
C(gh, a; g0) for all b, g in G, a in A, then:

(1) C is the indicator function of a v-Bayes set estimator with y independent of x.

(2) This set estimator is also a Neyman—Pearson confidence set whose B is inde-
pendent of 6.

G B=r"

The condition in the statement of the proposition may be restated: if C, is
the confidence set given x, then gC, = C,, for all x and g. This equivariance
of C, occurs in many simple problems; in particular, Bayesians using right in-
variant priors, and Fraserian structural inference types will want to use a set
containing that part of Q which has the highest density for ¢ given x (the HPD
estimator), and since this density is itself equivariant, the HPD estimator for 6
will also have this property.

The proposition tells us that the level of the estimator when considered as a
v-Bayes credible set is equal to its level as a structural set estimator (in the sense
of D. A. S. Fraser) which in turn equals the confidence level of the estimator
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considered as a Neyman-Pearson confidence set—a happy circumstance causing
these three schools of inference to agree in their assessment of the set estimator
(formally at least; they may differ in their interpretation of 8 and y). In other
situations (such as the Behrens-Fisher problem (Example 2 below)) the function
of the parameter being estimated is not equivariant, but is torn apart by the
group action; there is then no nontrivial equivariant C. It is in these situations
that the Neyman-Pearson and v-Bayes schools of thought may differ in their
assessment of a set estimator. The above corollary may be viewed as a limitation
on the degree of conflict between these assessments—if G is amenable.

ExampLE 1. x,, ---, x, are i.i.d. N(u, o); the usual confidence interval
X + t,,5/nt for p satisfies the conditions of the proposition where G is the
location-scale group. Thus by the proposition, this is both a v-Bayes credible
set and a Neyman-Pearson confidence interval of level a. By the theorem, it
satisfies principle III. As mentioned in the introduction, it also satisfies
Robinson’s principle, but not the relevant subset principle.

ExaMPLE 2 (Behrens-Fisher problem). -x,, - - -, X, are independent N(y, ;)
(i=1,2). G is the set of all g such that gx,; = s,x,; 4+ ¢, where 5; > 0 and
—oo0 < t; < co. The parameter function g, — p, is not equivariant, and no
nontrivial interval estimator based upon X, — X, can be equivariant. The Behrens-
Fisher interval is well known to be a v-Bayes interval and thus satisfies principle
III by the theorem. Robinson (1976) showed it also satisfies his principle. The
statement in the corollary may be proved directly in this case: g(f) equals
when ¢, = 0, ¢, = 1, hence inf, 8(f) < a < sup, () directly without using the
corollary. Extensive numerical calculation by G. K. Robinson (Savage (1976),
page 470, footnote) establishes the stronger result that sup g(f) = «a to five deci-
mal places for a wide range of n,, g,, and «; i.e., the Behrens-Fisher interval is
a Neyman-Pearson confidence interval. The Welch-Aspin interval for g, — p,
was shown by Fisher to have a negatively biased relevant subset, namely
{0 < a< s/s, < b< oo} However, using this set as our T’ does not violate
principle III (since |¢,(0)| < P(T; 6); by making o,/o, arbitrarily large, P(T; )
can be made arbitrarily close to zero); if it could also be proved that no other
set T did so, then we would have an example of an estimator rejected by
Robinson’s principle but accepted by principle III.

ExampLE 3. Letx,, - -, X, bei.i.d. observations from a bivariate N(0, o,, g, p)
distribution. The problem is invariant under the group of nonsingular triangular
matrices (Fraser (1964), page 846; in Fraser’s language, G is the “progression
group”). When a structural distribution for (g,, g;, p) is found (or equivalently
when a Bayes posterior is induced from right Haar measure on G) and the mar-
ginal distribution for p is calculated from this joint distribution, one gets precisely
the fiducial distribution of Fisher for p given the x’s (Fraser (1964), page 853).
This means that fiducial (= structural = Bayes-with-right-invariant-prior) in-
tervals for p satisfy principle III.
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That some ergodic condition such as amenability is necessary for the theorem
is shown by the following:

COUNTEREXAMPLE (Stone (1976), Example A). Let G = 27 = Q be the free
group on two generators a and b, acting on itself by left multiplication. Then
p = v is counting measure (z(g9) = 1). Let P(x; e) be % if x = a, b,a™! or b7},
and be zero otherwise. Let d(x) = xa~! if x = a"b™ ... b%a” with r > 0, and
d(x) = xa if x has this form with r < 0. Let d(x) = xb~! if x = a"b™ ... a®b"
with r > 0 and d(x) = xb if r < 0. Moreover, let d(e) = a. The interval
C(x; 8) which equals 1 if 6 = d(x), 0 otherwise, is a 259%-level Bayes credible
interval (invariant prior), but ¢4(a) = {,(C — H)f(h; a)du(h) = (1 Cf) — + =
P(d(x) = a; 0 = a) — } = 3. Similarly, ¢4(e) = 2, and ¢4(0) = § for 0 # a or
e. Therefore ¢,(0) = § for all 6. Stone observes that as a Neyman-Pearson
confidence interval, this has level > 75%, very different from its Bayes level.
Of course, this G is not amenable.

Acknowledgments. To G. K. Robinson for much discussion; to University
College, London for hospitality. Some kné)wledgeable and patient referees and
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