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MAXIMUM LIKELTHOOD ESTIMATES IN
EXPONENTIAL RESPONSE MODELS!

By SHELBY J. HABERMAN

University of Chicago
Exponential response models are a generalization of logit models for
quantal responses and of regression models for normal data. In an expo-
nential response model, {F(0): # € ©} is an exponential family of distribu-
tions with natural parameter ¢ and natural parameter space ® C ¥, where
V is a finite-dimensional vector space. A finite number of independent
observations S, i€ I, are given, where for i e I, §; has distribution F(6;).
It is assumed that § = {0;: ie I} is contah}ed in a linear subspace. Proper-
ties of maximum likelihood estimates & of @ are explored. Maximum
likelihood equations and necessary and sufficient conditions for existence
of 8 are provided. Asymptotic properties of 6 are considered for cases in
which the number of elements in I becomes large. Results are illustrated

by use of the Rasch model for educational testing.

1. Introduction. Models often arise in statistical practice in which obser-
vations have distributions belonging to an exponential family and the corre-
sponding natural parameters satisfy a linear model. Such models, which may
be called exponential response models, are considered by Dempster (1971) and
Nelder and Wedderburn (1972).

To define an exponential response model, let 7 be a measurable space with
associated c-algebra .7~ and o-finite measure v. Let V' be a finite-dimensional
vector space with inner product (., +), and let Y be a measurable function from
T to V. Let O consist of § € ¥ such that

1/a(0) = § exp(0, Y(s)) dv(s) < oo,
and for 6 € O, let F(0) be the probability distribution on 7" with density
p(@,s) = a(@) exp(d, Y(s)), seT,

with respect to v. Let ¥ be the family of distinct distributions F(6), 6 € 0.
Assume that .~ contains more than one element. Let ©° be the interior of 0,
let C be the convex support of vY~*, and let C° be the interior of C. Note that
the family % may be generated by V, (-, ), and Y chosen so that ©° and C°
are not empty and so that Y has range in C. See Berk (1972) or Barndorff-
Nielsen (1973) for justification of this claim. Given this observation, it is as-
sumed in this paper that ©®° and C° are not empty and Y has range in C.
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816 SHELBY J. HABERMAN

In an exponential response model, independent observations S;, i € 1, are given,
where [ is a finite and nonempty index set. For each i€, S; has distribution
F(0;) and 6,¢ ©. Tt is assumed that § = {6,: i ¢ I} is in a linear subspace Q of
the vector space V'’ consisting of vectors v = {v,: ie I} such that v,e V for
iel

Likelihood equations are readily derived for the maximum likelihood estimate
0 of 6. This estimate is unique if it exifts. Necessary. and sufficient conditions
are readily obtained for existence of #. These results are found in Section 2
by use of the general theory for exponential models developed by Berk (1972)
and Barndorff-Nielsen (1973).

Asymptotic properties of 6 are relatively easy to derive if the number of ele-
ments of / becomes large and the dimension of Q is constant; however, results
are much harder to obtain if both the number of elements of I and the dimen-
sion of Q become large. Both situations are examined in Section 3 within the
following context.

Let {I(n): n = 1} be a sequence of distinct finite nonempty index sets with
union J. For n = 1, assume that I(n) — I(n + 1). For ieJ, letf, c © and let S,
be a random variable with distribution F(6,). Assume that the S;, i € J, are mu-
tually independent.

For n > 1, let Q, be a linear subspace of ¥?™, Assume that the linear sub-
spaces are compatible in the sense that for m < n,

x = {x:iel(m)}eQ,
if and only if for some y = {y,: i e I(n)} € Q,,
X, =Y iel(m).

For x = {x;:ieJ}eV’, let p,x = {x,: i€ I(n)}. Let Q_ consist of all x = {x;:
ieJ}e V7 such that p,x e Q, for all n > 1.

For all n > 1, let 5% be the maximum likelihood estimate of 8, = {0,: i € I(n)}
under the assumptions that 8, € Q, and that the S,, i € I(n), have been observed.
Let g be a linear functional on Q. If xe Q_ and p,x = é,, then g, = 9(x) is
a maximum likelihood estimate of g(@). If g(x) = O whenever p,x = 0 and
x € Q,, then §, is uniquely defined for n = m. i

In Section 3, conditions are provided under which the probability that @,
exists approaches 1 as n — co. Conditions are also provided under which g, is
asymptotically normal with asymptotic mean g. Other conditions are provided
under which §, is a consistent estimate of g. Expressions are derived for the
asymptotic variance ¢,(9) of §,, and conditions are provided under which the
maximum likelihood estimate G,(g) of 7,(9) is a consistent estimate of 4,(g). As-
ymptotic confidence intervals are considered in cases in which §, is asymptot-
ically normal and asymptotically unbiased and 4,(g) is a consistent estimate of
0,(9). Results of Section 3 rely on fixed-point theorems found in Kantorovich
and Akilov (1964, pages 695-711).
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The following examples help illustrate the problems considered in this paper.

ExXAMPLE 1. The Rasch model. Rasch (1960, 1961) considers a family of
models for use in educational tests in which subjects i, 1 < i < r, have inde-
pendent responses S;; € T to testitemsj, 1 < j < ¢. For some unknown o, e V,
I1<i<r and B;eV, i <j<c, it is assumed that each S;; has distribution
Fla; — B;), 1 <i<r,1<j<c. Among cases considered by Rasch are the
Poisson and the Bernoulli cases. In the Poisson case, F(6), 6 € R, is the Poisson
distribution with mean e¢’. In the Bernoulli case, if S has distribution F(6),

f# e R, then
Pr{S = k} = e’*/(1 + &), k=0 or 1.

In both examples, ¥ = R and (x, y) = xy for real x and y, and Y,; = S;;. The
parameter a; — a, may be used to compare the relative abilities of subjects i
and k, while 8, — $, may be used to compare relative difficulties of items j and
I. To ensure that parameters have unique estimates, it is convenient to impose
an arbitrary linear restriction. In this paper, it is assumed that 8, = 0.

In cases in which the S;; are Bernoulli random variables, considerable
uncertainty exXists concerning the appropriate manner for estimation of the
parameters «, and 8;. The conditional maximum likelihood approach of
Andersen (1970, 1972) is impractical unless the number ¢ of items is small. A
similar problem is encountered by the Bock and Lieberman (1971) model in
which the a, are assumed to be independent identically distributed normal ran-
dom variables. On the other hand, maximum likelihood estimates &, and f§; are
readily computed. Unfortunately, the asymptotic properties of these estimates
are little understood. Andersen (1973, pages 66-69) has shown that 5, is not a
consistent estimate of §, in the case in which ¢ = 2 and r — oo. Lord (1975)
suggests that Andersen’s result does not hold in the case r — co and ¢ — co.
Lord’s suggestion is supported by a recent Monte Carlo study of Wright and
Douglas (1976). For the case r = 500 and 20 < ¢ < 80, they found B, to be very
similar to the conditional maximum likelihood estimate, and they found that the
distribution of 3, was well approximated by use of standard asymptotic theory.

Some explanation for these results is provided in Section 3. Let {r,: n = 1}
be a strictly inceasing sequence, and let {c,: n > 1} be an increasing sequence
such that ¢, — co as n— oco. Let {@,:i =1} and {B;:j = 1} be bounded
sequences. Let r, > c, for each n > 1. Let &, be the maximum likelihood
estimate of a;, 1 < i < r,, and let BM be the maximum likelihood estimate of
B;y 1<j=<c, for the Rasch model for S;;, 1<i<r, 1=j=<¢c,. If
¢, 'logr, — 0, then for each i and j, &, converges in probability to a; and
B, converges in probability to ;. Conditions are also given for asymptotic
normality of maximum likelihood estimates.

EXAMPLE 2. The Dempster model. Dempster (1971) considers models in which
forl <i<n,
0, = Z?L"x) Bj%Xi;
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for some unknown 8, eV, 1 < j < p(n), and some known x;;, 1'<i<n, 1=
J =< p(n). Asymptotic properties of likelihood estimates (3;, of the §; are not
difficult to derive if p(n) is constant for all n and n — co. On the other hand,
the situation is more difficult if p(n) — co and x;; = 0 for j > p(i). In this paper,
asymptotic results are obtained for both cases. Under relatively general condi-

tions, each f;, is asymptotically normal and asymptotically unbiased.

2. Maximum likelihood equations. Derivation of the principal properties of
maximum likelihood estimates is straightforward. Results follow from general
theorems of Berk (1972) and Barndorff-Nielsen (1973), so details are omitted.
To state results, let Y, = Y(S,) foriel, and let Y = {X,: ieI}. Let

(2.1) ¥ 2); = 2ier (Vo> 20) 5 y.zeV?,

and let P be the orthogonal projection onto Q with respect to (-, );.
Let O, consist of all § € © such that

1Y (9)p(0, 5) du(s) < oo,

where ||x|| = (x, x)} for xe V. As noted by Berk (1972), ©®° — ©, c ©. For
0 € ©,, let E(f) be the expected value of Y(S) when S is a random variable on
T with distribution F(¢). Thus

(2.2) E@@) = § Y(s)p(8, 5) dv(s) .

Given these definitions, the log-likelihood function [(Y, §) satisfies the
equation x
I(Y, 0) = Zie[ (Yi’ 01:) + Ziel 10g a(ai)

2.3) = (Y, 6), + Tierloga(d)

= (PY,0); + Y., loga(bd,) .

In the language of Barndorff-Nielsen (1973) or Andersen (1974), PY is a canoni-
cal statistic, @ is a canonical parameter, and PE is a mean value parameter,
where E = {E(0,): i e I}. The canonical parameter space A = Q n ©7 has non-
empty interior, and the convex support D = PC” of the distribution of PY has
nonempty interior D° = P(C°)’. The function [(Y, ) is strictly concave on
the convex set A.

Given these preliminary observations, the following theorems may be derived:

TurorEM 1. Let @ = {,: ie e Q, and let §,¢ O, foricl. Let E = {E(@f):
iel}. Then @ is a maximum likelihood estimate of 0 if and only if

(2.4) ‘ PE = PY .
Proor. See Berk (1972).

THEOREM 2. Assume that A° = (©°)7 n Q is equal to ©," N Q. A maximum
likelihood estimate 6 of © exists if and only if for some z;€ C°,iel,z = {z,: iel}
satisfies the equation Pz = PY.
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Proor. Note that A° = 0, n Q if and only if the following condition is
satisfied:

If x,eA°, t = 0, and x, —» x ¢ A° as r — oo, then
Dier |[E(X)|| = oo .

Given this observation, the theorem follows from Barndorff-Nielsen (1973,
Theorem 6.8). [

ReMARK. The condition A° = 8,7 n Q holds if ®° = ©,, which is the case
if © is open. Barndorff-Nielsen (1973) calls .5 a regular exponential family if
© is open. The natural parameter space © is open if Y has a bounded range.
This condition also holds for exponential families associated with the normal,
gamma, Poisson, beta and noncentral ¢ distributions.

THEOREM 3. Assume that A° = O, N Q. A maximum likelihood estimate 0 of 6
exists if and only if no x € Q satisfies the following conditions:
(2.5) x,=0 for iel suchthat Y ,eC°,
(2.6) (x, Y, —¢)=0, ceC°, for iel suchthat Y,gC°,
(2.7) (x5 Y; —¢) >0, ceC°, forsome jel suchthat Y;gC°.

PrOOF. Assume x ¢ Q satisfies (2.5), (2.6) and (2.7). If z;e C° forie I, then
z = {z,: i e I} satisfies the inequality

(%Y —2); = Y (X Yy — 2) > 0.

Therefore, Pz = PY. By Theorem 2, & does not exist.

Assume now that & does not exist. Let Q*, the orthogonal complement of
Q, be defined as {xe V': (x,y), =0,yeQ}. Let A={z — Y:ze(C°’}. By
Theorem 2, 4and Q* are disjoint. Since 4 is open and convex, it follows from

Rockafeller (1970, page 96) that for some x € Q, (x,y), < 0 for all y € 4.
Consider aniel. Letz,, e C°, kel, t = 0, be defined so that as t — oo,

zkt—")Yk> k+1i.
Let
z, =ceC°, t=0.

Such a sequence of z, = {z,,: k € I} can be found since Y has range in C. Since
2iker (Xis Zoe — Y3) <O, t=0,

it follows that (x;, ¢ — Y;) < 0. Thus '
(X, Y; —¢) =0, ceCe°.

If Y, ¢ C°, then (2.6) holds. If Y, e C°, then for some e > 0, Y, + ¢x, € C° and
—e(x;, x;) = 0. Thus (2.5) holds. Since

2uier (X ¢, — Y)) <0, c,eCe° for iel,
(2.7) must hold for some j e I such that Y; ¢ C°. []
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THEOREM 4. If there exists a maximum likelihood estimate 6 of 6, then 6 is
uniquely defined.

Proor. The result followssince /(Y, «) isstrictly concave. See Berk (1972). []

To illustrate results, consider the following examples.

EXAMPLE 1. The Rasch model (continued). Let E,; = E(0,;), 0,; = &, — B;,
Y, =Yy, l1<i<r,
Y, =21.7Y 1<i<e,
EH:Z;I‘H, 1<igr,
E Z i=1 zy ’ 1 g ] § c.
The subspace Q in this example consists of all x = {x;: 1 ZiZr, 1 )= ¢}
such that
Xy =Y+ Z;, lIgigsrnlgj=sec,
forsomeyteV1<z<r,andzeV1<J<c By 2.4),if y,eV,1 i<,
and z;e V, 1 £ j < ¢, then
2itar D= (s + 25 Ep) = T (o ) + Zoa (25 Eﬂ')
=Dl (o Yip) + 252125 Yyy) -
Equivalently,
Ei+:Y£+’ lsigr,
E, =Y, l1<j<ec.

To obtain conditions for existence of &, note that 0,/ n Q includes all x =
{x;:12i<r1<j<c}suchthatx,; =0,1<i<r,1<j<c andfec0O,.
Therefore, 0,7 N Q = (©°)" n Q if and only if ®, = ©°. By Theorem 2, if
0, = ©°, then & exists if and only if for some z,;€ C°, I <i<r, 1 <j< ¢,

z,, =Y., 1<igr,
z; =Y, I£jgc.
Thus a necessary condition for 0 to exist is that
Yi,:%_YHeC", l<i<r,
1 o .
Y.j:TY+jeC’ I<j=sc

In the Poisson case, this condition on Y;, and Y, is also sufficient. Note that
= [0, o0) and C° = (0, c0). If

(2.8) Y. >0, 1
(2.9) Y.; >0, 1

IIA
A
~

A

~.

IIA
o

then it is well known that
Ez‘.o‘ =Y YiilYis
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where
Y, =2 Y.
As already noted, 0 cannot exist unless (2.8) and (2.9) hold.

In the Bernoulli case, the necessary and sufficient condition for existence of
é is more complex than in the Poisson case. Here C = [0, 1] and C° = (0, 1).
The estimate @ fails to exist if and only if sets 4, B, C and D exist such that
the following conditions hold:

(2.8) A+ @ and C+ @, or B+ @ and D=+ @,

(2.9) ANB=CnD=gp,
(2.10) AUB=",
(2.11) cCub=¢,
(2.12) Y,=0, icd, jeC,

=1, ieB, jeD.

In these conditions, if s > 1 is an integer, then § consists of all integers i,
1<is.

To verify this condition, assume first that 4, B, C and D satisfy (2.8)—(2.12).
Let

Xi; =g, + hy, I<igsrnlgj<e,
where
9, =—1, icd,
=1, icB,
hi=—1, jec,
=1, jeD.

Note that for all de (0, 1), ie 7, and je¢,
x;j(Yi; —d) 2 0,

with strict inequality for ie 4 and je C or for ie Band je D. Sinceno Y,;can
be in C°, Theorem 3Aimplies that @ does not exist.

Assume now that @ does not exist. By Theorem 3, there existsg;, 1 < i < r,
and #;, 1 < j < ¢, such that

@9, +h)Y; —d)=0, de(0,1),ieF and jec,
with strict inequality for some i and j. Thusg, + #; > 0if Y,; = 1 and g, +
h; <0ifY,; =0. Forsomek,1 <k <r,andsomel,1 <I<e¢, g, + h #0.
Without loss of generality, let k and / be chosen so that
9+ >0,
9, +h =0, 9: < 0>
gk+hj§0, hj<hl.
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Let A={ief:9,<9,), B={ief:9, =9}, C={jec:h; <Mh},and D =
{jeé: h; = h}. Clearly (2.8)—(2.11) hold. To verify (2.12), letie Aandje C.
Note that

9;+h; =9, +h)+(h; — 1) <O,
sothatY;; = 0. Ontheotherhand,ifie Bandje D, theng,+h; = g, +h > 0.
Thus Yij = 1.

This necessary and sufficient condition for the Bernoulli case implies that o
does not exist if Y,, =0 or Y, —=c for some i, 1 <i<r,orif Y, =0o0r
Y,; =r for some j, 1 <j<c. These cases essentially involve inability to
estimate subject abilities or item difficulties.

EXAMPLE 2. The Dempster model (continued). The maximum likelihood equa-
tions for this model may be written

2ii=1 xijEi = DX Y, IL<j<p(n,
as noted in Dempster (1971). If ©, = ©°, then 0 exists if and only if for some
z,eC°, 1 <i<n, ,
2iiea X2 = i X Yo I<j=<pn).

3. Asymptotic properties. In this section, asymptotic behavior of maximum
likelihood estimates is examined. As noted in Section 1, a sequence {I(n):
n = 1} of distinct finite nonempty index sets is given such that I(n) C I(n + 1)
for n = 1 and such that

U l(n) = J. ’
The following conditions are assumed to hold: For ieJ, 6, € © and S; has dis-
tribution F(0,). The S,, i € J, are mutually independent. Forn > 1, 8, = {0;:
iel(n)}eQ,, a linear subspace of /™. If m < nand x = {x,: ie [(m)}eQ,,
then for some y = {y,: ie I(n)} e Q,,

xizyi’ teI(m)

The space Q_, consists of x € ¥/ such that p,x = {x;: i e I(n)} e Q, for all n = 1.

Forn>1,let 6, = {6, i € I(n)} be the maximum likelihood estimate of @,
under the assumptions that 8, ¢ Q, and that the S,, i € I(n), have been observed.
Let Q_* be the space of linear functionals of Q_, and let Q% consist of all
g € Q_* such that

g(x) =0 if xeQ, and 0.X=0.
Note that if 8, exists, g e Q¥,, and p,x = 8, then §, = 9(x) is the unique
maximum likelihood estimate of g(@). If m < n, then QX c Q..
For g € Q_*, let n(g) be the smallest n > 1 such that g e Q. If no such n
exists, let n(g) = oo. The major objective in this section is determination of

conditions under which

3.1y 9 =90 _, No,1).
7,(9)
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Here g€ Q.*, n(g9) < oo, 0,(g) is the asymptotic standard deviation of §,, and
— , signifies convergence in distribution. Conditions are also given under which

(3.2) 74(9) >0,
and the maximum likelihood estimate &,(g) of 7,(g) satisfies
(3.3) G.(9)/0,(9) —p 1,
where —, signifies convergence in probability. These results permit construc-
tion of two-sided level-(1 — a) asymptotic confidence intervals
3.4 Ua9) = @n — Zaps9u(9)s §n + Zan.(9)) »
where Z,, is the upper-(«/2) point of the standard normal distribution. Note
that (3.1) and (3.3) imply that

Pr{g@)e U, (9)}—>1 — a, 0<a<l.
Also note that (3.2) implies that §, is a consistent estimate of g(8).

To define 0,(g) and 4,(g), the covariance operator ¥(f) must be defined for
0 c 0, Here

0, = {0 0: {||Y(5)|[ exp(6, ¥(s)) du(s) < oo}

satisfies the inclusion relationships 8° < ©, 0, ¢ ©. For 0 ¢ 0,, let £(¢) be
the covariance operator of a random vector Y(S), where S e T has distribution
F(6). Thus

(3:6) (@, X(OW) = { (v, Y(5) — E@))(w, Y(s) — EO)p(6, 5) duls), v, we V.

As noted in Berk (1972), £(0) is positive definite.
ForieJ, let X, = X(6,). Fory,ze V'™, let

3.7 [¥: 2], = Xierm (Vs £:2)
and
(3.8) Iyl =¥, ¥l -

If g e Q* , then the asymptotic standard deviation ¢,(g) of g, is the supremum
of |g(x)| for x € Q, such that ||o,X||, < 1. Note that g,(g) < oo if g€ Qf,

If 8, exists and 4, € ©, for ic I(n), then ¥,, = X(d,,) is uniquely defined for
iel(n). Let

(3.9) ¥’ = Dicrm Vo> L yi) 5 yevie.
The maximum likelihood estimate é,(9) of g,(9) is the supremum of |g(x)| for
x € Q,, such that |p,x|, < 1. Computation of ¢,(g) and 4,(g) is discussed later

in this section.

To provide conditions for (3.1), (3.2) and (3.3) to hold, consider a subset A4
of Q. *. Let 4, = An Qf, for n = 1. Assume that if x ¢ Q, and g(x) = 0 for
all g e 4,, then p,x = 0. Let ||+||,(4) be the norm on Q, defined so that for
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y e Q,, ||y||.(A4) is the smallest nonnegative number such that
(3.10) o) < I¥ll(Don(9),  xeQ, ged,, pXx=y.

Note that [|¥]],(4) < [I¥]l(2-*) = [[¥].-
LetY, = {Y,: i e I(n)}, and let

(3.11) E, = {E;:iel(n)} = {E®,): icl(n)}
denote the expected value of Y,. Let Z, € Q, be defined by the equation
(3.12) [X, Z,] = Dierm (X0 Yy — E), xeQ,.

Much of the analysis of this section depends on the possibility that é, may be
approximated by @, + Z,. The accuracy of this approximation depends on
U,(+, +). Here for ye 0,/ n Q, and zeQ,, Uy, 2) € Q, is defined by the
equation

(3.13) [%, Uu(¥, 2)]n = Dieram Koo [B(0:) — £i]2) -
The fundamental condition required in this section is the following:

CONDITION 1. A subset A — Q_* and constantsn’ = 1,¢ >0,d, =0, n = n',
and f, = e, n = n', exist such that the following conditions hold for n = n':

(a) IfxeQ, and g(x) =0 forge A, = AN QF,, then p,x = 0.

(b) Ify,zeQ, and ||y — 0,|[.(A) < [, then

(3.14) yi€0°, iel(n),
and
(3-15) UL, 2)[la(A) = dully — 8allo(AD]]Z]](4) -

(C) As n— oo, Pr {”Zn”n(A) < %f'ﬂ}—) L.
(d) AS h— oo, d'nfn_)o'

Procedures for verification of Condition 1 are discussed later in this section.
Given Condition 1, the following theorems may be derived.

THEOREM 5. Assume Condition 1 holds. As n — oo, the probability approaches
1 that 0, exists.

Proor. Fixed-point theorems of Kantorovich and Akilov (1964, pages 695~
711) are used to establish this result. The initial step required is construction
of a function M, on A,; = Q, n ©,7™ with a fixed point é,.

Let L,(y) € Q, be defined for y € A,; by the equation

[Z, Ln(y)]n = Ziel(n) (zi9 Y’(, - E(yz)) ) Zc Q” .
M,(y) =y + L,(y) .
Note that M, has a fixed point w e A, if and only if
Diierm (2o Yo — E(w)) = 0, zeQ,.

and let
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By Theorem 1 and Theorem 4, w exists if and only if 5,, exists. If 5,, exists,
W = é‘”.

The fixed-point theorem used here requires construction of the sequence
{Vue: k = 0}. Here

Vno - 07; ’
vn(k+1) = Mn(vnk) ’ k ; 0 .
Note that
v'nl = 07» + Z'n N

To determine whether the sequence is well defined and converges to 5,,, the
differential dM,,, of M, at y € A,° = (0°)'™ n Q, must be examined. This dif-
ferential satisfies the equation :

dM'ny(z) = —Un(y9 z) ’ [AS Qn .
To verify this claim, note, as in Berk (1972), that E(-) has differential £(0) at
#ec®°. Thusfory + zeA,°,
[x, M,(y + 2) — M,(¥)]. = Zicrem [(xo) L.2) + (x5 E(y;) — E(ys + 2))]
= —[x, Uy, 2)], + o(2) ,
where o(z)/||z||, — O as ||z||, — O.
Let ||dM, y||.(A) denote the smallest nonnegative number such that
ldM,.,(2)|[(4) < [|[dMy, || (A)]]2]]a(A) » zeQ,.
Then

ldM,,[[(A) < dlly — Oulla(4), YeQu, Iy — Oull(A) = /-

As shown in Kantorovich and Akilov (1964, pages 695-711), if ||Z,|[.(4) < 3.
and d,]|Z,||.(4) < %, then @, exists. Since Pr {||Z,|],(4) < 4f.} — 1, the prob-
ability approaches 1 that @, exists.

THEOREM 6. Assume that Condition 1 holds. As n— oo, the probability ap-
proaches 1 that
116, — Bulla(4) — |1 ZWll(A) £ dLI|Z.]I(ADT

and .

Proor. Define v,,, k = 0, as in the proof of Theorem 5. Let z, = ||Z,|[,(4)-
Let t,, = 0, and for k = 0, let

Loty = Zn + 3dulhy -
Let
r, = 2z,[[1 + (1 — 2z,d,)}] .

As Kantorovich and Akilov (1964, pages 695-711) have shown, if z, < }f, and
z,d, < %, then

(3.16) Var — Oulln(A) < 70 — ts s kz=0.
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For k = 0, (3.16) implies that
16, — Oulla(4) < ..
For k = 1, (3.16) implies that
16, — 0, — Z,||.(A) < 1\ — 2,
Thus (3.16) implies
116, — B.ullu(4) — [1Zul[o(A) = 7 — 2,
Note that
_ z,[1 — (1 — 2z,4d,)]

PR T T (1= 22,d,)1

Examination of derivatives of the function [1 — (1 — x)!]/[1 4 (1 — x)*] for
0 < x < § shows that

r, — zn é dnzn2
whenever d,z, < 4. Since Pr{z, < f,} - 1 and 4, f, — 0, the conclusions of
the theorem follow. [] '

3.1. Consistency of estimates. To obtain consistency results, a further con-
dition is required to supplement Condition 1. This new condition is defined in
terms of b,, the smallest nonnegative number such that

[1%|] < b,l[X]]a » ieln), xeQ,.

The coefficient b, is positive if and only if Q, contains a nonzero element. Thus
b, is the maximum asymptotic standard deviation ¢,(g) for g € Q * such that
for some ic I(n)yand ce V, ||c|| = 1 and '

g(X) = (C9 xi) ) Xe an .

Consistency results for §, require Condition 1 and the condition d,b, — 0. The
following theorems may be derived.

THEOREM 7. Let g e Q.* and n(9) < oo. Then for some y(g) = 0, 0,(9) =
7(9)b, for n = n(9). If b, — 0 as n — oo, then o,(9) — 0.

Proor. For some unique ¢ € Q,,,,

g(x) = Ziel(n(g)) (cia xz) s xeQ.
Let
7(9) = Diermwn llil] -
Then
lg(X)l = bnr(g)”x”n s Xe Qm, nz= n(g) .

Thus 0,(9) < 7(9)b,, and ¢,(9) — 0 if b, — 0. ]

THEOREM 8. Assume Condition 1 holds and b, f, — 0 as n — co. Let geQ_*
and n(9) < oo. Then §, —p 9(0) as n — co.

Proor. For n = n(g), let X ¢ Q_, satisfy the equation p,x™ = 5n. Then
g, = g(x™) and g, — g(0) = g(x* — 0).
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Let ,(g, 4) be the supremum of |g(y)| for y e Q_ such that [0, ¥]].(A4) < 1.

By (3.10) B :

Given the definition of ||+||,(4) and Theorem 7, for some d(g, 4) = 0,
w9, A) = 3(9, A)b,, 1 = n(g).
By Theorem 6 and the condition f, b, — 0, it follows that |g, — 9(0)] -5 0. []
THEOREM 9. Assume Condition 1 holds, and assume that forsomed,’ = 0,n>1,
| Bz (o [B(y0) — Tdx)| < d/|XILAlY — Oall(4),  x,¥eQ,,
Iy — Gullu(4) < /-

Assume that d,'f, — 0. Let geQ,* and n(g) < co. Assume g(x) + 0 for some

xe Q.. Then
Gu(9))on(9) —p 1.

REMARK. If 4 = Q_*, then one may let d,’ = d,, so that Condition 1 implies
that d,’f, — 0.

PrOOF. Let W, = ||6, — 0,]|.(4). If W, < f, and x e Q_,, then
[ Zierim (o EiuXs) — ez (Xis Lx) < d,/W,|x|], .

Since g(x) == 0 for some xeQ, 0 < 0,(9) < co for n = n(g). The definitions
of ¢,(9) and 4,(g) imply that

l0,%(9)/8,%(9) — 1| < d/W,,,
provided W, < f,. By Theorem 6, d,(9)/7,(9) —p 1. []

3.2. Asymptotic normality. Asymptotic normality results are most readily
derived if g € 4, n(g) < oo, and g is not identically zero. In other cases, results
are harder to obtain. The following theorems are available.

THEOREM 10. Assume Condition 1 holdsand d,, f,? — 0. Let g c¢ Aand n(g) < oo.
Assume g(x) + 0 for some x € Q. Then

(9. — 9(0))/o.(9) =2 MO, 1) .
Proor. For n = n(g), let ¢, € Q, be defined by the equation

g(x) = [€,s PuX], > XxXec Q..

Thus
gn - g(o) = [cn’ én - on]n = [cn’ én - 0» - Zn]n + [cn’ Zn] .
Since 7,(9) is the supremum of [c,, x], for ||x||,? < 1, ¢,(9) = ||c,||,- Note that
“:cm én - on - Zn]nl = oﬂ(g)”é‘n - 0» - Zn”ﬂ(A) .
Since d, f,* — 0, Theorem 6 implies that
(05 — 9(0)]/74(9) — [€n> Za]u/lle]]n — O.
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To complete the proof, it suffices to show that
W = [w Z,]/lClln = Zicrm (Cins Yi — E/|l€a]ln —5 N0, 1) .

To do so, note that W, has a moment generating function ¥, with logarithm

(3.17) log W,.() = Xicrm [loga(f;) — loga(d, + tci,) — t(cin, Ey)]

= %tz Ziel(n) (cz{n’ E(az + t'an)Cl{n), Itl ”cn,”n(A) é f‘n ¢
Here ¢ = at for some «, 0 < a« < 1, and ¢}, = c,,/||¢,]||, for i € I(n). The equ-
ation follows from a standard Taylor expansion, given the observation that
log a(+) has differential — E(f) at 6 € ©° and E(-) has differential £(6) at 6 € ©°
(see Berk (1972)). .

The norm ||c,/|[,(4) = 1. Clearly ||c,’||.(4) < [|c,/||l, = 1. Note that if
0.X =¢,/ and xeQ,, then |g(x)| = [c,,¢c,'], = g,(9). Thus ||c,||,(4) = 1.
Since f,, — oo, Condition 1 implies that

log W, (1) — 32, f|<e.
By Curtiss (1942), W, —_ N(0, 1). []
More generally, the following theorem is available.

THEOREM 11. Assume Condition 1 holds. Let g ¢ Q. * and n(g) < oo. Assume
9(x) # 0 for some x € Q. If

[T,,(g, A)/on(g)]dnfnz - 0 9
[0, — 9(8))/o.(9) — N(O, 1) .
REMARK. As in the proof of Theorem 8, 7,(g, 4) is the supremum of |g(y)|

fory e Q_ such that ||p, ¥||.(4) < 1. Notethat z,(g, 4) = 7,(g, Q.*) = 0,(g) and
d,(9, A) = 7,(9) for ge A. Thus Theorem 11 is a generalization of Theorem 10.

then

Proor. The proof is essentially the same as for Theorem 10. Let ¢,, W,
and ¥, be defined as in the proof of Theorem 10. Note that

€ 0, — 0, — Z,]|, < 74(9, A)||0, — 0, — Z,]|(4)

(9, 4)|10, — 8, — Z,)|,(4)/7.(g) =70 .

(9. — 9(0))/o.(9) — W, —p0.
Equation (3.17) holds for ¢ = at, 0 < @ < 1, and ¢}, = ¢,,/0,(9) for i I(n).
Since ||¢,’||.(4) = 1, if ¢t £ f,, then
[Ziel(n) (C;n, I‘(oi + t’c;n)cén) - Ztel(n) (czfn’ X’zc;n)l
= [ Dicrm (Cins 2(0; + P'ciy)cl,) — 1

%%;4_) U0, + ¢, c,)||.(A)
< |t ta(95 A)]0,(9) -

For |t| < e, log ¥, (t) - $* as n — co. Thus W, —_ N(0, 1). []

and

Thus

IA



EXPONENTIAL RESPONSE MODELS 829

3.3. Verification of regularity conditions when A = Q_*. The conditions used
in Theorems 5 through 11 are most readily verified if 4 = Q_* and Q_, = {0}.
In this subsection, it is shown that Condition 2 implies Condition 1, and Con-
dition 3 implies Condition 2. These new conditions are defined as follows. In
these conditions, a, = dim Q, and b, is the smallest nonnegative number such
that ||x,|| < b,||x||, for all i € /(n) and x € Q,.

ConpITION 2. There exist constantse > 0,n’ = 1,d, = 0,n = n’,and f,, = e,
n = n’, with the following properties:

(a) IfyeQ,and ||y — 0,||, < f., then y,€ ©°, i I(n), and

Tierm (2o [2(0) — 2d2) < d|lzll]y — Ol » zeQ,.

(b) Asn— oo, a,/f,} — 0and 4, f, — 0.

ConpITION 3. As n— oo, a,b,* — 0. In addition, one of the following state-
ments holds:

(a) The convex support C of vY~! is bounded.

(b) Foralliel, 6, e B, where B is a compact subset of ©°.

(c) For some ¢ >0 and £« =0, if x,yeV, ieJ, and ||y — 6,|]| < ¢, then
ye®° and

(6, [E(y) — Ex) = w(x, Eox)lly — 0] -

The lemmas which follow may be used to verify that Condition 3 implies
Condition 2, and Condition 2 implies Condition 1.

Lemma 1. Forn = 1, E{||Z,]|,”} = a,. If Condition 2 holds and if a,, — a < oo,
then ||Z,||,> = xa*

Proor. There exist ¢;,€Q,, 1 < j < a,, such that

[Cins Chnln = 1, j=k
=0, j#k.

The ¢;,, | £j < a,, form an orthonormal basis of Q, with respect to [-, «],.

By (3.12),
Win = [Cins Zy)lo = Dic1m (Ciju> Yi — E)
Thus
1Z]],* = 252 Wia -

Since E{W,,} = 0 for 1 <j < a,, one has
E{WJQ”} = Var{WJ"ﬂ} = Z'IZGI(%) Var {(cijn’ Y'L - EZ)}
= Yierom Cojmr 2€ijn) =1, 1=j=a,.
Thus E{||Z,||,’} = a,. If a, = a for n sufficiently large, then similar arguments
to those in Theorem 10 may be used to show that

$=173 Win g N(O, Z‘;'=1 Tja) s 7€R.

Thus W, = {W;,: 1 <j < d} converges in distribution to the multivariate



830 SHELBY J. HABERMAN

normal distribution with zero mean with the identity covariance operator. It
follows that ||Z,||,> — x> U

LemMma 2. If a,/f,? — 0, then Pr{||Z,]|, < 4f.} — 1.
PRrOOF. Just note that
Pr{||Z,||, > 4f.} = E{||Z.]|."}/(G 1) = 4a./fa - g

LEMMA 3. Assume that if ||y — 8,||, < f, and y € Q,, then y, € ©° for ic I(n).
If
| e rm (20 [E(r:) — £2)| = dal|z]l2|]y — alla s
y, zt Qn, Hy - 0n|]n éf'n, ’
then
||Un(y’ z)”n é dn”z”'n”y - 0’#”% ’ y,.z¢ Qn’ ”y - 07»”% éfn .

Proor. Note that ||U,(y, z)||, is the smallest nonnegative number such that

| Sz (%o [E(r) — £]2)] = (UL, D)|al1X]] » xeQ,.

If Q, = {0}, then the lemma is trivially true. If Q, # {0}, then for [x|[, < 1
and |z|]|, £ 1, x,2eQ,,
| Diezom (%o [£(r:) — E]2)]

does not exceed the supremum of

| Zserom (2o [E(p:) — £i]z)]

for ||z|]|, = 1, ze Q,. Given this observation, the lemma follows. []
LemMMA 4. Condition 2 implies Condition 1.
Proor. This result follows from Lemma 2 and Lemma 3. []
LemMA 5. Condition 3 implies Condition 2.

Proor. Let {f,: n = n'} be an increasing sequence of positive numbers such
that b, f, — 0 and a,/f,> — 0. Since b, = 0 if and only if a, = 0, such a se-
quence can be found.

Assume statement (c) of Condition 3 is true. Let n be large enough so that
b,f, <e Let yeQ, and ||y —80,|, < f.. Then ||y, — 6,|| < b,f, < ¢ for
i€ I(n). Therefore, y, € ©° for i € I(n) and

Dierm (2o [£(r:) — £12) £ £bu[ Dicrim (205 L)y — Gll. zeQ,.

Thus Condition 2 holds with e = f; and d, = «b,.

Statement (b) implies statement (c), for £(+) is continuously differentiable on
0©° and X(6) is positive definite for § € ©®°. Thus Condition 2 holds whenever
statement (b) is true.

Statement (a) also implies statement (c). To verify this claim, let ¢ > 0 and

let
w = sup,cq|lc|] -
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LetieJ, x,yeV, and ||y — 6,]| < e. Since ©° =V, yec ©°. Note that

(6, Z()x) = § (x, Y(s) — E(3.))’p(y> 5) du(s)
= § (%, Y(5) — E)'p(y, 5) dv(s)
_ $ (% Y(5) — E)* exp(y — 0., Y(5)p(0,, 5) du(s)
§ exp(y — 0y, Y(5)p(0:, 5) dv(s)
=< exp(2wlly — 6,]))(x, E;x) .

Similarly,
(x, £,x) < exp(2wlly — 0d)(x, L(y)x) -

For some £ = 0,

IA
N
IIA

exp(2wz) — 1 < «z, 0
Thus
(6 [£(ro) — %) < w(x, £x)[ly — 64|
if [ly—6ll=e 0O
Given these lemmas, the following corollaries to Theorems 5 through 11 are
available. '

COROLLARY 1. Assume that Condition 2 holds. As n— oo, the probability ap-
proaches 1 that 0, exists.

COROLLARY 2. Assume Condition 2 holds. Asn — oo, the probability approaches

1 that .
I”an - 0n|ln - ”Zn”nl § dn[lzn”nz

and
||0 - 07» - Zan é d'leZ'n.H'nz .

If a, — a < oo, then
||0n - 0n||n2 _)g Xaz .

COROLLARY 3. Assume Condition 3 holds. Let ge Q.* and n(g) < co. Then
g, —»p 9(0) as n — oco.

COROLLARY 4. Assume Condition 2 holds. Let g € Q. *, n(g9) < oo, and g(x) + 0
for some x € Q. Then '
3u(9)/0,(9) —p 1.

COROLLARY 5. Assume Condition 2 holds. Let 0 < a < 1, and let y% , be the
upper a-point of the y,* distribution. Assume that a, — a < oo. Then as n — oo,

Pr{lgn - g(0)| é Xa,aﬁn(g) Vge Q'rfm} —1—a.

REMARK. This corollary permits construction of simultaneous confidence
intervals for all linear functionals g(@), g € Q%,.

Proor. Note that |§, — 9(0)| < %...9,(9) for all g e QX if and only if

|0n - 0n|n2 = Xﬁ,a .
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Condition 2 and Corollary 2 imply that

[én - 0n|nz - ”én - 0%"%2 —p 0
and .
1€, — 0, =5 xa’ -
Thus .
|0n -0, —

ot -
The conclusion of the corollary follows immdiately. []

COROLLARY 6. Assume Condition 2 holds and d,f,*— 0. Let geQ,* and
n(g) < co. Assume 9(X) + 0 for some x € Q_*. Then

[0, — 9(6)]/ou(9) =5 N(O, 1) .

COROLLARY 7. Assume Condition 3 holds and a,b,— 0. Let ge Q. * and
n(g) < oo. Assume g(x) + O for some x € Q. Then

[6. — 9(0))/o,(9) — N(O, 1) .

Proor. Note that in the proof of Lemma 5, if a,b, — 0, then d, and f,,
n = 1, may be chosen so that b, f,* — 0, a,/f,’— 0, and d, = «b,. []

To illustrate use of these corollaries, consider the following example.

EXAMPLE 2. The Dempster model (continued). In this example, it is often rela-
tively easy to verify Condition 3. If ¥ has dimension v, then a, < vp(n), with
equality if the vectors {x,;: 1 <i < n}, 1 < j < p(n), are independent.

To find b,, let (., «),,, be the inner product of ¥» such that for y, e V and
z;eV, 1 =j= p(n),

<y’ z>p(m - Zp(m (y:’ .7)

Let D, be the linear transformation on ¥?* such that for y, z ¢ V*»™,

<y, Dnz>p(m = ?:1 p(m p(m (.y]’ X‘ zk)xia Xik
Thus if
) in — Zzel(n) w 1 §J§P(”)’
and W, = {W,,: 1 £j < p(n)}, then D, is the covariance operator of W,.
Assume that for some n’ = 1, D, is positive definite for n > n'.
By Rao (1973, page 60), if y € ¥»* and n = #’, then the supremum of {y, 2} ,,,
for ze V*™, (z, D,z ,.,, < 1, is ¥y, D,”'¥),. Since

lldlls* = <2z, DuZ)pim)
if

IA
A

d, = Zp(n) Xi;Z; s 1 i n,

it follows that b, is the supremum of {y, D,~'y)},, for y e F’»™™ such that for
some i€ I(n)and ce V, ||c|| = 1 and

Vi = %€, l=j=pm.
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To find a bound for b,, let y, be the smallest eigenvalue of D,, and let
0, = MaX,. ., 228 x2; .
Thenb,* < 4,/r,. Thusa,b,’— 0if p(n)é,/r,— 0, and a,b, — 0if [p(M]0,/r.— 0.
If ‘
9(0) = 235 (¢ B5)

for some n = n’, then
Gn(g) = <c9 D'n-lc>p('n)

6n(g) = <C, ﬁn_lc>p(n) ’

and

where .
<y’ D z>p(n) = Zz—- Zp(m Zp(m (ya’ I‘inzk)xw Xk » y,z¢ prm,

For corresponding formulas for ¢,(g), see Dempster (1971).

If p(n) is a constant p for n sufficiently large and if a or b holds in Condition
3, then a condition of Haberman (1974, pages 352-373) implies that a,b, — 0.
In this condition, the distribution of a random vector X, is the empirical distri-
bution of the vectors x, = {x;;: | <j < p}. Asn— oo, X, —_ X, where

E{D2.,d; X} > 0, deRe,d =0,
and

1
7 ZZ‘=1 Z?=l x?j - E{Z§=l ij} .

Note that a, — vp, 7,/n converges to a positive constant, and 4,/r, — O.

If p(n) — oo and if a or b holds in Condition 3, then p(n)d,/r, cannot approach
0 if [p(n)]/n does not approach 0 as n— co. Similarly, [p(n)]%,/r, cannot
approach 0 if [p(n)]*/n does not approach 0. Verification of these claims is
straightforward. Let d < co be the supremum of the eigenvalues of ¥, for
ieJ. IfceV,|lc]| =1, z;eR, 1 £j< p(n), and

Z?(:i) zj2 =1 s
then
Tn é zg(n) p(n) ZZ =1%; zk(c I’ C)X“ Xk

Sd R T ziz, Tt Xy Xy -
The sum of the p(n) eigenvalues of the matrix
H, = {Zxixu: 1 < j < p(n), 1 < k < p(n)}

is equal to the trace
2ii=1 2238 x3; < no,

Thus the smallest eigenvalue of H, does not exceed nd,/p(n). Therefore,

T < dnd,[p(n)

PM,[r, = d={p(m)Tn .
3.4. Verification of regularity conditions when A, is finite. Regularity conditions

and
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can sometimes be verified when the set 4, of Condition 1 is finite for n > 1.
Condition 1 is implied by Condition 4.

CoNDITION 4. A subset A — Q_* and constantsn’ = 1,e¢ > 0,d, =0, n = n,
and f,, = e, n = n', exist such that the following conditions hold for n = n':

(a) IfxeQ, and g(x) =0 forge A, = An Qf,, then p,x = 0.
(b) There are 0 < a,’ < oo elements in A,, and f,}[log a,’ — oo as n — oo.
(€) Ify,2eQ, and ||y — 0,||,(A) < f,, then

y:€0°, iel(n),
[Uu(Y; 2)|[a(4) < dally — 0.][u(AD)]|Z][a(A4) -
(d) 4sn— oo, d,f, — 0.

ana

To verify this claim, the following lemma is proven.
LeEMMA 6. If Condition 4 is satisfied, then Pr {||Z,||,(4) < 4f.} — 1 as n — co.

Proor. Letd, ={g,: 1 <j<a,},andletc;,cQ, bedefinedforl <j<a,
by the equation ‘
gi(x) = [cj'n’ an]'n p X e Qm .
Let
Wiw = ll€iulla™ Zierm (Cojns Yo — Ej) s l<sj=a),

J
so that : \
1Z4][(A) = max,<;za;, [Wial -

Letc), = cjn/chn”, 1<j<a), and let ¥, be the moment generating function
of W, ' '
By the same argument used in (3.17), one finds that
log llrj'n('t) = %tﬁ ZiEI(n)(cz:iﬂ’ Z(ai + t'C,’;j,n)ng,n) ’ ltl éfn B
where # = at for some a, 0 < a < 1. By Bahadur (1971),
Pr {an = %fn} = exp(—% nz)mjn(%fn)
Pr{—W;, =z 3f.} < exp(—1/)¥;u(—1/f2)
forl <j<a,. Forl<j<a,/,
log ¥, (3f,) and log W, (—4f,) do notexceed %1 + d,f./2).
By the Bonferroni inequality, :
Pr{||Z,]l.(4) = +fa} < 24, exp[—4f*(1 — d,[./2)]
= 2 exp[loga,’ — £f.}(1 — d,f./2)] -
Since log a,’/f,} — 0, the conclusion of the lemma follows. 0

and

To illustrate use of Condition 4, consider the following example.

ExAMPLE 1. The Rasch model (continued). In this example, I(n) = {(i, j):
l<igr, 1 £j<¢,}. The sequence {r,: n = 1} is strictly increasing, and
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{c,: n = 1} is a nondecreasing sequence such that ¢, — co asn — oco. For con-
venience, assume that r, > ¢, for n > 1. The space Q_ consists of x = {x;;:
i = 1,j = 1} such that '

X5 = Yi + %55 igl,jgl,
for some y,eV,i>1, and z;eV, j = 1. The space Q, consists of x = {x,;:
1gigr, 1 £j<c,)such that

X =Y+ Z;, l<igsr,1<j=<c,,

for some y,eV,1 <i<r,and z;eV, 1< j<c, Tosimplify a rather com-
plex analysis, assume that for some compact set T C 0°, a, 4+ ;€T fori > 1
and j > 1.

The estimates &, and §; have the consistency properties

max,<;<,, [|&; — a;]| =50
and
max, gz, [18; — Bsll —»0

whenever ¢,~*log r, — 0. If ¢,~*(log r,)* — 0, then nonzero linear combinations
such as

2 (B &4) s

h,eV for 1 <i < m, are asymptotically normal. If ¢,~%r,(logr,)* — 0, then
nonzero linear combinations such as

2o (b By s
h/eVforl <j< m, are also asymptotically normal. If
Xi+’n = 22'11 I’ii ’
L= 2h &,

then the asymptotic variance of

IA 1A

~.

21 (b, &)
can be approximated by
2y (hoy Xahy)
and the asymptotic variance of
S (ki By
can be approximated by
T (b I35.0)) -

These claims are verified through a careful selection of a set 4 C Q_*.
To define 4 — Q_*, let e, | <k <v=dimV, be a basis of V. Assume
that |le,]| = 1 for1 <k Z<w. Forl <k <wv,i=1,andj > 1, let

(%) = (e, Xi5) -
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Let A={0,;:i=1,j=1,1<k<w}, sothat 4, ={0u:1<i=sr,1=
j<e,1 <k <w)and a, =r,c,v. Note that if xeQ,_ and §;;4(x) =0, 1 =
igr,1<jge¢,1sk<v, thenx; =0,1<i<r,,1<j=sc,.

By (3.10), if y € Q,, then ||y||,(4) is the maximum value of

[(exs Vi)l /on(0ise) » lgigsr,1sjsc,1sk=sv.

To evaluate ||y||,(4), a procedure for computation of ¢,(g) is required for
geQ,*. Note that h,,(9)eV,1 <i<gr, 1 <j<c, maybe defined so that

g(x) = Z:«Zl Zj?:l (hijn(g)’ xq:j) ’ X e Qm >
and #,;;,(9) = 0 if neither i nor j is 1. Let

ign

dn(g) = un(g) + wzn(g) + zjn(g) ’ 1 é i é rn? 1 g.] ...-—<: c'n >

where u,(9), W, (9), 1 i< r, and z;,(9), | £j < ¢,, arein V,

(3-18) Yt Eiawin(9) =0,
(3-19) i Eimzi(@) =0,
and
[d.(9), pu(X)]. = 9(x) , xeQ,.

Note that ¢,(9) = ||d,(9)||x-
If x;; =yeV,iz1,j =1, then

[4.(9)> 0a(X)]s = (#a(9)s Essa)) = (Arsn(9)5 Y) 5

where
I‘++n = ::1 311 X’z‘j
and
hya(9) = 2% i hiia(9) -
Thus
(3.20) L, nttn(0) = by a(0) -
Let
hiva(9) = Z;'n=1 hiin(9) 5 l<i<sr,,
hiin(9) = Ziti hign(9) » lsj=se,.

Then similar arguments to those used to derive (3.20) may be employed to
show that

(3'21) I’z+nwzn(g) + Z;il I’ijzjn(g) = hz+'n(g) - I‘i+'nz’;%0-fnh++(g)n 2
l<isr,,

(3.22) Linzin(9) + 2 Eiiwin(9) = hyju(9) — E1inEihnhiia(9)
l1<j=se,.

Equations (3.18)—(3.22) determine u,(9), w;,(9), 1 < i <r,,and z;,(9), L £ j < ¢,..
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Given these coefficients,
14a(@l" = (#a(9)s E11n8(9) + 2721 (Wia(9)s EirnWin(9))
+ 258 (79> £15n2ia(9)) + 2 202 T30 (Win(9)s £ 2;4(9))
= (un(g)’ h++n(g)) + 2:21 (wm(g)’ hz+n(g)) + 2211 (Zjn(g)’ h+j'n(g)) *
In practice, approximations for ¢,(g) are helpful. To find such an approxi-
mation, let 7, > O be the largest number such that for 1 <i<r,, 1 <j< ¢,
(0 Bx) 27 - (0 Z0) + L (x 23+j,,x>] : xeV.
Note that for some y > 0, r, = 7 for all n.
Forlgigr, 1<j<ec, let
Win(9) = Ziubisn(9) — Eihnirn(9) »
Zi(9) = E3hnhiin(9) — Ehabisa(9)
W:;(g) = win(g) - w;n(g) s
25(9) = 2;u(9) — Z3a(9) »
’ 1 1
Z;ij'n = Zij — Ta (z; 2:.’i+n + 7",‘ I’+jn> ’
di;a(9) = un(9) + Win(9) + Z3u(9)
diin(9) = Win(9) + 27(9) = di;.(9) — disa(9) -
Note that
(3:23)  [d(9)ls — [1d."(D)lls = 0.(9) = [1da(9)]]n = [1d,"(9)]] + (|4, ()]s »

and
(3:24) I, @)l," = T3t (resa(9)s Eilabisn(9)) + Z5%1 (Bijn(9)s E35uk1s0(9))
- 3(h++n(9), L0, 1(9))
+ 2 2t D5t (hivn(9)s Tn Ljn £330 04 50(9)) -
Let
l(9) = — X5 Bijn £33 by in(9) + Lo X 1(9) lgigr,,
ma‘n(g) = ‘“Zi=1 Ez‘jnx‘iw&nhwn(g) + E+jn}:':£rnh++n(9‘) ’ 1 é/ =c¢,-
Then
Liawin(9) + X5t iynzfu(9) = La(9) » l<i<gr,,
Lnzi(9) + it ZW»W (9) = m;u(9) » lsj=se

By Rao (1973, page 60),
142 @)l1s* = ZiZs (W5(9)s Lin(9)) + X521 (270(9)s m54(9))
is the largest value of

[ 252 (xos Lia(9)) + 2550 (s mia(9))]
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forx,eV,1<i<r,andy,eV,1<j< ¢, such that

it i = X ;=0
and
D(x,¥) = it (Xis iyn X)) + 250 (is Bijuyi)
'I" Z:ZI ;:1 (xi’ I’uny;) + Z;ZI 7—1 (yJ’ I’zynxz)
1.

A

Since
D(x,y) = 1 [Z?ll <xi’ (I’i+n + % E++n> xi) + 2 <)’i’ (Z+fn+ % I’++n> )’j>:|
+ Zit D (4 i Bgalxs + 5)

2 Tn[Zfil (xt’ i+n z) + Zy—l (.yj’ z‘+jnyj)] ’
it follows that

(3‘25) ”d'n”(g)“'n é rn_I[ZZZI (lm(g)’ I’ z_-i}'n m(g))
+ X5 (m50(9)s Eam;a(9))] -

Forl<i<r,1<j<c¢,and 1<k <v,one has

“dﬂ,(aijk)”'nz = (ek’ L+'nek) + (ek’ +.1'n ) - 3(ek’ I‘-_f-‘i-'nek)
Z(ek’ }:’i+'nzwn X’+gnek)

and

”d ”(6uk)”n2 S rn_l[zt /=1 (ek’ }:’H%Ei jn}:'i +nEz'mE+anek)
J —1 (ek’ X’ania nX’+J nz'ij'n}:’i+nek) - z(ek’ Ell:l-nek)] *

For some 7 > 0,

|0,(3:50) — [(ers £7iner) + (ess I7l.e) — (e T3hae) ]
< t/(r,c,)t, l1<igr,1gj<Zce, 1 Sksv,n21.

If as in the Poisson distribution, ¥,; = £,,,%7%,%,;,, then r may be set equal
to 0.

Let

0< 7 < (x Eijx) <7
fori> 1, j= 1, and xe V such that ||x|]| = 1. For some n' > 1, if n > n’,
then 7,7Y(r," +¢,7") < 0,0, <7, '(r, +¢,™, 1ZiZr, 15j<Zc,
1 <k <w,and
o (T 4 6T <6 <o 7T+ 6T

Note that this inequality and the fact that a, = (r, + ¢, — 1) imply that Con-
dition 3 of Section 3.3 cannot hold. Nonetheless, b, does approach 0.

On the other hand, Condition 4 may be verified under the assumption that
¢, 'logr,— 0. Let f, be chosen so that f,*/log (r,c,v) — co and f,%(r,” +¢,™") —
0. Asin Condition 3, define ¢ > 0 and d = 0 so that for x,yeV,i=1,j =1,
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and ||y — a; — B|| < ¢, one has y e ©° and
(e [E(Y) — 2451%) < 80, 2 x|y — ai — B4l -
Note that for some 7, > 0,
1yisll < ool |Vl|u(A) (™ + €7, yeQ,.
Let n’ be sufficiently large so that -
(2 N (R S LI n=n.

IfyeQ,and |y — 0,||.(4) < f., theny, ;e®°forl <i<r,1<j<Zec,
To bound ||U,(y, z)||,(4) forn = ', y,2€Q,, and ||y — 8,]|,(4) < f,, note
thatforl <i<r, 1 <j<c¢,andl <k <,

|(€r> Uiju(y, 2))]
= |Z% 1—1( an(awk) [E(yza)— zj]zzj)l ‘
< erd(n 7 4 Y — Oulla (A)][HZII (A)] Zims X5 1@l -

Note that for some ¢’ > 0,

z’—l Z: ’=1 ” i3’ n(auk)” Z’—1 J —1 | g n(awk)” + Z ;‘?=1 ||d".1 n(awk)”
=1 “d{'y n(awk)” - “Ezﬂnek + }:’Hn ++nek“ + (rn - l)llzﬂnek“
+ (¢, — 1)||Zi+nekll + (rn = (e, — D][E7e
< 370, ‘
and .
Z';n—l J —1 ||d”.7 n(awk)” = (rncn)é“d "(5i1k)”n
<.

Thus parts (c) and (d) of Condition 4 are satisfied by
d, = t}(37r,7 + )eT(r, 7 0,7
It follows from Theorem 5 that the probability approaches 1 that 8, exists.
Given Theorem 6,
max, g, asise, [0iin — 0ill =2 0. .
This observation or Theorem 8 implies that &,, —, a;, i = 1, and §;, —5 §;,
Jj = 1. Indeed, one has the stronger result
max, ;. ||@;, — ;)| = 0,
max,g;c, ||B;n — Bill —» 0.
These conclusions are also reached by Lord (1975) in the binomial case.

In general, the consistency and existence results cannot be _improved. For
example, if each Y,; is binomial, then the probability that é, does not exist
exceeds the probability that Y,,, = c, for some subject i, 1 <i < r,. This
probability is

I — Lz [1 = I15% pla; + 85 1)] - ‘
This probability approaches 0 if and only if r, exp(—c,) — 0 as n — oo.
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To derive asymptotic normality results, assume that
¢, '(logr,)’—0.
Select f, so that f,*/log (r,c,v) — co and f,X(r,” 4 ¢,”") —> 0. Let
9(0) = 2t (b @) + D7 (R B;)

for some ;e V, 1 <i < m, such that some &, is not 0, and for some 1,/ e V,
1 <j<m. Then

(3-26) [0, — 9(6)]/5,(9) =5 N(O, 1),
(3.27) 0,(9)—0,

and

(3-28) 3.(9)/0.,(9) > 1.

The last two relationships follow from Theorem 7 and Theorem 9 and the fact
that f, b, — 0. Note that

(9 A) = b (X |hll + 2 275 11R5]])
0u(9) = |hal*/(his Eiynhi)t

=ttt 1<i<n.
= "1 n =

and

Thus 7,(g, A)/s,(g) is bounded above for all n. Asymptotic normality then fol-

lows from Theorem 11.

If
9(6) = X7 (1’5 B;)
for some A/ eV, 1 < j<r,, such that some 4,/ =+ 0, then a similar argument
may be used to show that (3.27) and (3.28) hold. One may verify (3.26) if
¢, *r,(logr,)’ — 0. How much this condition may be relaxed is unclear.
To approximate d,(g) if

9(0) = Xt (his @) + X7 (ks B5)

note that for some 7/(g),

14" (9)]ln = 7" (@)/(rnea)t -
Let some h; or k;/ be nonzero and let

h! = 2 b — ;’22 ha" .
Then (3.24) implies that

[0 LD (e, Tituhe) + S (by' T30 — 1

as n— oo.
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