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A CHARACTERIZATION OF THE VON MISES DISTRIBUTION

By Louis GORDON AND MaALcoLM HUDsON!
ALZA Corporation and Stanford University

The von Mises, or circular normal density on the unit circle is the
hitting density of a two-dimensional Brownian motion starting at the
origin, with constant drift velocity and direction. The concentration and
location parameters of the density have a natural relation to the drift
parameters.

1. Introduction and summary. The von Mises, or circular normal distribution
is discussed in Mardia (1972). Several characterizations are there available, often
analogous to characterizations for the normal distribution on the line. Extensive
use of random walk models and the von Mises distribution are made in Kendall
(1974). Kendall, however, was apparently unaware of the characterization given
below. :

The circular normal density on the circle is proportional to exp(d cos (6 —
a)), 6 € [0, 2] where 0 is interpreted as an angle with the positive x-axis, and
the circle is centered at (0, 0). The parameters d and « are respectively concen-
tration and location parameters. We use a likelihood ratio argument to establish
that the density is also the hitting density on the unit circle of a standard two-
dimensional Brownian motion starting at (0, 0) with drift velocity ¢ and drift
direction . The use of likelihood ratio martingales in the theory of stochastic
processes has been exploited by a number of authors. Robbins and Siegmund
(1970) used the martingale exploited below in the evaluation of boundray
corssing probabilities for a univariate Wiener process. Kailath (1971) discusses
likelihood ratio martingales in an hypothesis testing framework.

We here evaluate the hitting distribution of a standard 2-dimensional Brownian
motion starting from (0, 0) with drift velocity ¢ in direction a, to the unit circle
centered at (0, 0). We first reduce the problem to a one-dimensional problem
by means of symmetry considerations. We then complete the proof by using
the appropriate likelihood ratio martingale. ‘

2. The characterization. Since the von Mises density is proportional to
exp (0 cos (0 — a)), for 8, a € [0, 2x], we need only prove the following theorem.

THEOREM. The hitting density to a unit circle centered at (0, 0) for two-di-
mensional standard Brownian motion with drift velocity 6 > 0 and direction angle «
is proportional to exp(d cos (0 — a)), where 6, a € [0, 2x] and 0 is the angle of the
hit vector with the positive x axis.
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Proor. Let X, Y be independent standard one-dimensional Brownian motions.
Since we may choose as axes any two orthogonal axes, we reduce the problem
without generality loss to the case « = 0. Again from symmetry considerations,
it suffices to evaluate the hitting density only in the upper half of the circle.

Define X,(f) = X(t) + 6t. Let #, = o{X(s)|s < 1} be the history o-field of
the X, Y process to time 7. Let L,(f) = exp(6X(f) — 0*/2) and note that (L,(?),
F,, t < o) is a likelihood ratio martingale for the process X, with respect to
the process X, but with associated history o-fields .5, somewhat larger than
customarily used.

Let T be the first time (X, Y) hits the unit circle. Again from symmetry,
since there is no drift in any direction, (X(T'), Y(T)) is uniformly distributed on
the circle and is stochastically independent of T'.

Since |X(TAf)| < 1, the martingale (L,(TAf), & ;s t < o0) is uniformly
integrable and so L,(T) is the likelihood ratio for the process X,(TAf) with re-
spect to X(T'Ar) on sets in & ;. Because X,(T) is the cosine of the hitting angle,
we evaluate the hitting density by computing Eg(X,(T)) for g any bounded
function. However,

Eg(X,(T)) = Eg(X(T)) exp(0X(T) — 0°'T/2)
= Eg(X(T)) exp(0X(T))E exp(—0°T/2)
= (3% g(cos (0)) exp (0 cos (0)) dOE exp(—0°T/2)

where the right-hand expectations are all taken under the drift 0 measure. The
theorem follows immediately.
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