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ROBUST INTERVAL ESTIMATION OF THE INNOVATION
VARIANCE OF AN ARMA MODEL

By WiLLiAM W. Davis
Carnegie-Mellon University

For the autoregressive-moving average time series model, the normal
theory procedure for setting confidence intervals for the error variance is
not robust against nonnormality. This paper proposes three asymptotically
robust techniques: they are a “‘standard-error”’ procedure, an analog of
Box’s simple data splitting technique, and the jackknife procedure. The
large sample distribution of each of these techniques is derived.

1. Introduction. A discrete time-series {x,} is called an ARMA (p, ¢) [auto-
regressive-moving average] process if

(1.1) : @(B)(x, — ) = 6(B)a,

where B is the backshift operator which satisfies Bx, = x,_,, o(B) = 1 — 37 ¢, B
and 6(B) =1 — 317 6,B*. Models of this form were first used by Yule (1927)
and Wold (1938). Throughout this paper it is assumed that {a,} is an i.i.d.
sequence with mean 0, variance ¢?, and finite kurtosis y,. Also the roots of
¢(B) = 0 and 6(B) = 0 are assumed to be outside the unit circle in the complex
plane. Thusif ¢ = (¢,, -+, ¢,)and @ = (6,, - - -, 8,), then

(¢, 0) e Q = {(p, 0): all roots of ¢(B) =0 and 6(B) =0 have norm > 1}.

The series x, could be obtained by some transformation (e.g., a difference)
of the actual measurements. It is assumed throughout that although x, satisfies
(1.1) for all ¢ it is observed only for 1 < ¢t < T.

The point and interval estimates for (¢, @) derived under the assumption of
normality of the errors can be shown to be asymptotically robust with respect
to deviations from this assumption. That this robustness of normal theory pro-
cedures does not extend to interval estimation of ¢ might be expected from
knowledge of the i.i.d. case (i.e., p = ¢ = 0). As pointed out by Box (1953,
page 330), for inferences about ¢* the fourth moment must be studentized just
as the second moment is studentized when making inferences about means.

Three well-known methods of studentizing the kurtosis in the i.i.d. case are
shown to be valid in the more general ARMA time-series model. These pro-
cedures are a standard error procedure which uses a moment estimator of the
kurtosis, an analogue of Box’s (1953) simple data split, and the jackknife tech-
nique, which was shown to be asymptotically robust in the i.i.d. case by Miller

Received May 1975; revised November 1976.

AMS 1970 subject classifications. Primary 62M10; Secondary 62G35.

Key words and phrases. Autoregressive-moving average, discrete time series, variance, data
splitting, jackknife, robust inference.

700

[Z8 (€
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to | .z

The Annals of Statistics. NIN@IN
www.jstor.org



VARIANCE ESTIMATION FOR ARMA MODELS 701

(1968). Analogs of these three techniques were studied by Layard (1972) in the
i.i.d. case for testing equality of covariance matrices.

Although the jackknife was originally introduced by Quenouille (1949) in a
time-series problem to reduce bias, no application of Tukey’s (1958) confidence
interval use of the jackknife has been given previously in time-series. The only
other application in stochastic processes of interval estimation using the jack-
knife was by Gray, Watkins and Adams (1972), who assumed a stationary
stochastic process with independent increments.

The residuals d, are defined to satisfy (1.1) with estimated values § = (@, 6, 7))
replacing parameters 8 = (g, @, ¢z). The method of proof is to show that the re-
siduals are approximately i.i.d. random variables. It is assumed throughout that

(1.2) B— B =0T
where Mann and Wald’s (1943) notation is used. Most reasonable methods of
estimation satisfy (1.2). For one particular method see Hannan (1969).

The correspondence between residuals and errors is derived in Section 2 with

some messy algebra deferred to Section 4. Section 3 verifies that the three tech-
niques are asymptotically robust.

2. Residual approximation. Various methods of calculating the residuals for
the general ARMA model are discussed by Box and Jenkins (1970, Chapter 7).
Here we assume that the residuals are calculated recursively, using estimated
values for parameters in (1.1), by setting starting values equal to 0. Thus for
arbitrary B one can calculate the residuals 4, = a,(ﬁ) recursively from the
equations

0 1—-¢g=<t<0
T804, + % —Xrpk., 1<t<T

where
=0 1—p<t<0
:Xt-—ﬁ lgtéT

The residuals are most easily calculated as above, but it is mathematically more
convenient to express them as

3, = Ni #O%, l<tsT

where z*(B) = ¢(B)0~"(B) = L7, =,”B' and #9(B) is the analogous quantity
replacing 8 with B. Throughout this work we restrict attention to 4 such that
its first p + ¢ elements (@, 6) € Q.

Using a Taylor expansion of at(‘B) about the true values 8 (see Box and Jenkins
(1970), page 237), one has

4 — t—1 0 &
4, = inn, O(x,_, — ¢) + 3,
where

¢ — p+e+l (B __ adt
(2.1) §, = X1 (B — ) 28, i
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and B is on the line between ﬁ and 8. From(1.1)a, = 35 7, %(x,_, — p), thus
one has d, = a, + #, where /, = §, — w, and w, = 3,7 7, 9(x,_, — ). So a =
a4 twherea=(a, - -,a;), 4= (4, --,d;),and F = (F,, - - -, ;).

The following calculations show that the residuals {4,} are approximately equal
to the error {a,}. The proofs of

(2.2) »iaf, =0, (1) and

(2.3) Ti»=0,1) for n=2 and 4
are deferred to Section 4. From (2.3) one has

(2.4) max;,<r [fo| = 0,(1).

Since

Y@ —al)=2iL(a+F) —a) =23 af + XL,
by (2.2) and (2.3) one has

(2.5) N7 (@2 — a) = 0,(1).
To show
(2.6) 57 (@4 — af) = 0,(T%)
consider

|2 (@ — af)| < max, (¢’ + 47)| 2, (¢ — d/)| .
So by (2.5) it suffices to show that max, .., (@ + 4,°) = O,(T?). By the Cauchy-
Schwarz inequality

max, (a} + 4) < max, (3a’ + 2/}),
so by (2.4) it suffices to show
max,c,<r @’ = O,(T?).
Using Chebyshev’s inequality, one has
P(max,g,<, a® > NT?) < 217 P(a? > NTY) < 3T Ea}[N’T = o¥(r, + 3)IN* < ¢
for N = N(o, 1,, ¢) chosen sufficiently large, which completes the proof of (2.6).

Using these results Section 3 justifies the claims of Section 1 concerning robust
interval estimation of ¢*.

3. Robust interval estimation for o2

3.1. Standard-error procedure. This section shows that if confidence intervals
for ¢* are based on the asymptotic distribution of ¢* = T 4*/T the intervals
have the same susceptibility to nonnormality as in the i.i.d. case. Furthermore,
by using simple moment estimates, one can studentize the kurtosis creating
robust interval estimates.

Using (2.5) one has

(3.1) THG* — o*) = X7 (a) — o*)T + X7 (4 — a2)/T?
=2 A10,6'2 + 1))
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by the central limit theorem and Slutsky’s theorem (Rao (1973), 2c.4 (x) a, b).
The standard dependence of the population kurtosis is illustrated by (3.1). The
kurtosis can be studentized as follows:

21 4T = i af|T + Zi (' — a)|T —, Ea*
by (2.6), so that

(3.2) LT (@2 — VT = 1T 64T — (6° >, 0'2 + 713) -
Thus by Slutsky’s theorem (Rao (1973), 2c.4 (x) b), using (3.1) and (3.2) one has
(3.3) THa* — o®)/(X7 (@7 — (T — 1))t —»_ 470, 1).

In the i.i.d. case the variance stabilizing log transformation of the sample
variance has been shown to have a more nearly normal distribution for moderate
samples. Using a well-known theorem (see, for example, Rao (1973) 6a.2 (i)
one has

T¥(né* — Ind®) —_ A470,2 + 7,) .

A moment estimator of the asymptotic variance of Ing* is 24 7, =
(X1 44/T(@*) — 1. By (2.5) and (2.6) one obtains 2 + 7, —, 2 + 7,, so that by
Slutsky’s theorem

T¥(ln & — Ino?)/(2 + 7,)t -, A0, 1).

From Monte-Carlo work in the i.i.d. case, for moderate sample sizes the follow-
ing two data splitting procedures seem superior to this simple procedure.

3.2. Simple data split. Split the T residuals 4, into k groups each of size m
as follows. By randomization, advocated by Scheffé (1959, page 87) in the i.i.d.
case, or some other procedure partition the first T integers into k mutually ex-
clusive groups of size m (T = km). Define the integers in the jth group by P, =
{ijp--+si; }forj=1, ..., k. Define k estimates of ¢* by

Z; = Niep, dsm i=1,.-,k.
It is shown in Section 4 that
3.4) Dieep, afe = 0,(1) i=1,..-,k.
Thus using (2.3) and (3.4) one has
m¥(z; — o%) = 2iter, (a — o”)[mt + Zte?i @@ — a)/m?
= ZtePi (@ — @®)[mt + O (m~%).

Thus by the central limit theorem for i.i.d. random vectors and the multivariate
form of Slutsky’s theorem, one has

3.5 m(z — o*1) =, A0, "2 + 7)])

where z = y(zl, coo,z)and 1= (1,1, ..., 1) are k vectors. It follows easily



704 WILLIAM W. DAVIS

from (3.5) that
ki(z — a?)/(Dk(z, — 2/ (k — 1)) >_t,, a m— oo
where z = 3%, z,/k.

Box (1953) originally used this data splitting technique, in the 2 sample case,
after applying the log transformation to each estimate. Lettingu = (4, - - -, ;)
where u; = log z,, then by Rao 6a.2 (iii)

miu — Ind®l) —»_ 40, (2 + 1,)]) .
So, exactly as above, one has
k@ — Ina®)/(Dk, (u, — a)’/(k — 1)} > as m— oo

where @ = X fu,/k.
Small sample Monte-Carlo work in the i.i.d. case indicates that this procedure
performs better for small k.

3.3. Jackknife. This section shows that the jackknife is trustworthy for in-
terval estimation of ¢? for the ARMA model.

For notational simplicity let v = §* and v, = 3,,, 4'[/m(k — 1) for i =
1, .-, k where {P,, ..., P,} is the partition defined in Section 3.2. Let g be a
function with bounded second derivative in a neighborhood of ¢ and define
pseudovalues of the jackknife by

6, = kg(v) — (k — l)g(v) for i=1,..-, k.

The jackknife estimate of g(¢?) is

0 = Bt 0k = 9(v) — (k — 1) B (9(v) — 9@))/k -

THEOREM: If T, , = k@ — g(a*)/(Zt., (0; — 0Y/(k — 1))}, then under the as-
sumptions made above,

(i) Tpr—o tiyasm— oo

(i) T,, -, 40,1)ask — co.

ProoF. Since the proof of (i) and (ii) are similar, only the proof to (ii) will
be given, so it is assumed that m = 1 and k = T. As pointed out by Miller
(1974b, page 2), this is probably the best partition to use if the data base is
not too large. The theorem follows easily from Lemmas 1 and 2 which are
proven now.

LEmMA 1. Ti(6 — g(o%) -, A0, ¢'(0?) 02 + 1)) -

Proor. Combining (3.1) with Rao 6a.2 (i) one has

THg(?") — 9(7°) — ¢'(0)(@* — 0%)) =2 0.
We have
T%(é — g(a‘z)f _ g’(o’)(&’ _ 02))
= T¥9(8") — 9(0°) — g'(*)(&" — 0%)) — (T — 1) T, (9(vs) — 9(V))/T* .
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If

(3.6) T* 3 (9(v) — 9(v) =2 0,
then Lemma 1 is true by (3.1).

To show (3.6) consider

V== N dlT — Do dP[(T — 1) = (67 — (T - 1).

Thus, applying the triangle inequality, one has

1
T—1

+ max,g,<r @’ — 4] .

By (2.4), (2.7) and (3.1) one has max, ., [v — v,| = O,(T~%). By an application
of the triangle inequality using (3.1), one obtains

(3.7) maX,g;gr [V — v <

[16* — o*| + max,;;<, |a® — o

(3.8) A, =max{jv—d, |v, — %, -+, [v;, — |} >, 0.

Let S(o% 6) = (¢* — 4, o* + &) be a neighborhood of ¢?, such that for all r¢ §
l9”(t)] < M for some constant M. For fixed 6 let C, = (A, < 0) then by (3.8)
P(C;) — 1 as T — oco. Following Miller (1974a, page 886), for an arbitrary
sequence E; one has that lim, P(C, E;) = lim, P(E;) so that the imposition or
removal of the condition C, has no effect on limiting probabilities.

Letting A, < 0 and using Taylor’s theorem for i = 1, ..., T, one has

(3.9) 9(v) — 9(v) = (v; — V)9’ (v) + (”—i;——”z 9"(£,)

where &, € S(¢’, 9), since it is on the line between v and v,. Summing (3.9) for
i =1, ..., T and using the identity 7 (v; — v) = 0, one obtains
(3.10) |25 (9(v) — 9())| = 3T (v — v)'g"(§)]
=M (v — )2
=M 37 (@} — &[>T — 1).
By (3.2) the bounding term in (3.10) is O (T"), which establishes Lemma 1.

To show that the jackknife is trustworthy, it suffices to show

LEMMA 2. 37 (0, — 0P )T — 1) - g'(6*'0*(2 + 7).

Proor. Given ¢ > 0 there exists 6, = d,(¢) such that if ye S(e? 4,) then
|9'(y) — ¢’(¢”)] < e. Then if A, < 6, applying a first order Taylor expansion,
one has
(3.11) 9(v;) — 9(v) = (v; — v)g'(7)

= —(&} — AT — 1),
where 7, € S(¢%, 9,) for i = 1, ..., T. Thus, one has
(3.12) 0, — 6 = (T — 1)(gv) — 9)) — (T — 1) T, (9(v)) — g(v))/T
=b— (4, — &)g'(n)
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where b = Y,7_, (4> — 3*)(9'(n;) — 9'(¢*))/T. Thus, one obtains from (3.12)

N0, — 0y = Te — 26 1L, (47 — 69" (n)) + Ll (42 — Vg (7Y
= Lia (4} — &Yg'(n) — TV
— g/(az)z z?‘=1 (éi2 — 6‘2)2
+ D@} — &Y' (1) — 9'(o)) — Tb".
Now using the Cauchy-Schwarz inequality, we have
| S5 (@ — 0y — g'(a)@? — )]
(3.13) = |Z1 (@ — &) (g'(n) — ¢'(o°)) — TP
= X @ = &ylg' ()’ — 9oy
+ Zi @ — @) Li@m) — 9@)IT.
For A, < 4, the bounding term in (3.13) is bounded by
2¢(|g'(o)| + ¢) LT (47 — &)’
Since ¢ > 0 is arbitrary, the bounding term in (3.13) is 0,(T) by (3.2). Thus,
one has

ST@. — 0T — 1) — g(o* BT (@2 — @[T — 1) >, 0,
which establishes Lemma 2 by (3.2).

3.4. Discussion and summary. Based on the results of Sections 3.1, 3.2 and
3.3, the methods given in Table 1 are asymptotically correct for setting con-
fidence limits for ¢* and Ing¢®>. The symbols ®(1 — «/2) and ¢,_,(1 — «/2)
refer to upper percentage points of the normal and #,_, distributions respec-
tively. For calculation of the pseudovalues using the parameter In ¢?, the func-
tion g(#) = In u is appropriate.

Although all these techniques are asymptotically valid, based on the Monte-
Carlo work by Miller (1968) in the i.i.d. case, I would conjecture that the
jackknife estimate (m = 1) of In ¢* would be the best of these procedures for
moderate sample sizes.

TABLE 1
Robust methods for setting confidence limits for the variance
Parameter
Procedure
g? In g2
Standard error 0% + (D¢ (@e® — 22T — 1))t In 6% + (T¢ 4t/ T(02)? — 1)}
x OY(1 — a/2)/T# x ®Y1 — a/2)/T?
Jackknife m = 1 same as above 6+ (T (s — 6T — 1))
x ®-1(1 — a/2)/T#
Simple Data Split 24 (0F (2 — 22k — 1)t i+ (0F (i —ap/k — 1)
X te—(l — a/2)/k} X te-1(1 — af2)/k}
Jackknife m > 1 same as above 6+ (k@ — ik — )t

X te-1(1 — af2)k}
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4. Negligibility of remainder terms. This section proves (2.2), (2.3) and
(3.4). From (2.1) one has

(4.1) 8, = Lt (B, — Bi)dy;
where
24
d.=2¢t
Y 9B, i

and f is on the line between 8 and B. We have
th = Zi:g_l ﬁi(l)xt—j—i 1<j=sp
= nig ﬁiu)xt—j—i p+1=j=p+g¢g
= — Xy j=p+q¢+1
where #(B) = 6-(B) = Y¢ #,VB* and #(B) = —@(B)J(B) = X7 #, 7 B".
The following easily proven lemma states that with high probability the x
weights die out exponentially.

LEMMA 3. Given ¢ > O there exists a T, such that with probability > 1 — ¢ for
T>T,|#% <MR*k=0,1,2andi =0,1,2, ..., for some Mand1 < R <
min (R,, R,) where R, and R, are the radii of convergence of the power series ¢(B)
and 6(B).

The following two lemmas are useful in proving the main results of this sec-
tion. The proof of Lemma 4 (see Davis (1975)) is messy and is omitted here.

LEMMA 4.

(i) Xia8, = 0,1),
(i) 20,84 = 0,(T™).
The sums can be over | <t < TorteP,.

LEMMA 5. The following are bounded in probability when summed over 1 < t < T
orteP,.

(i) 2 aw,
(ii) X w," for n = 2 and 4.

PrOOF. Since (B, -+, B,4,) € Q, there exists M and .22 > 1 such that |¢,®| <
MA-tfori=0,1, .... Thus, one obtains

E(XT aw,)' = 6"E(x, — p)' 17 D2, m'"" < MPa*E(x, — p)(1 — Z7%)7* = 0(1)

since E(x, — p)* < oo follows from Lemma 3.
This establishes (i) when 1 < ¢t < T; the proof for e P, is analogous. To
show (ii), one has

EXiwd=E@x—p)'ni L7 =0(1)
as in (i). When n = 4, one still has E 3T w,* = O(1), establishing (ii) in the
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case ] £+ < T. Since ), P WS 337w, (ii) is true for summing over ¢ € P,.
This completes the proof of Lemma 5.

Continuing now with the proof of the main results of this section, one has
»r.af, = 3fa(s, — w,) = 0,(1) by (i) of Lemmas 4 and 5, which establishes
(2.2). By (ii) or Lemmas 4 and 5, one has

i ft S 16 ZT B4+ weh) = 0,(1) .
Applying the Cauchy-Schwarz inequality, one obtains
Zia P S AZTS + DT wd) S 2(T Z7 89 + LT wed) = 0,(1)

by (ii) of Lemmas 4 and 5. These last two convergences establish (2.3). Equa-
tion (3.4) follows from (2.3) and (i) of Lemmas 4 and 5.
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