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THE RATE OF CONVERGENCE OF SIMPLE LINEAR
RANK STATISTICS UNDER HYPOTHESIS
AND ALTERNATIVES
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Convergence rates for distributions of simple linear rank statistics are
investigated. Both the null hypothesis and near alternatives are considered.
The method of proof consists in approximating the characteristic function
of the statistic by that of a sum of independent random variables and then
applying standard tools.

1. Introduction. Let X,y, 1 < j < N, be independent random variables with
respective distribution functions F(x, 6;,), where 6, are unknown parameters.
Consider a general linear rank statistic

(1.1) Sy = Li1civan(Ryy)
where c,y, - - -, cyy are the regression constants, ay(1), - - -, ay(N) are the scores
and R;, is the rank of X, among Xy, - -+, Xyy.

The purpose of the present paper is to investigate the convergence rate of the
distribution function of S, both under the randomness hypothesis as well as “near”

alternatives. Throughout the paper, the following assumptions are adopted:
(I) the regression constants ¢y, - - -, ¢y, fulfill:

2i=Ciy =0, mcy =1, max,g;cy [Cin] = 43
(I) the scores ay(1), - - -, ay(N) are given in either of the following ways:
(1.2) ay(j) = ¢(/(N + 1)) , l=j=N,
(1.3) ay()) = Ep(Uy?) , 1<j<N,

with Uy'? denoting the jth order statistic from a rectangular (0, 1) population;

(III) ¢ is a nonconstant function on (0, 1), {3 ¢(#) du = 0, its first derivative
¢’ being absolutely continuous and the second one ¢” square integrable over
0, 1).

The asymptotic normality of S, has been established under very general con-
ditions (Hajek (1968), Dupac-Hajek (1969)). Recent research has been focused
on the rate of convergence and on the results concerning Edgeworth expansions
(see Bickel (1974) for a review). Results concerning Edgeworth expansions
deal with more or less special cases up to now: some two-sample rank statistics
(Praskova (1974)), one-sample rank statistics (Albers, Bickel, van Zwet (1976)),
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CONVERGENCE RATE OF RANK STATISTICS 659

two-sample rank statistics (Bickel, van Zwet (1973)). Obtaining the Edgeworth
expansion for general linear rank statistics remains an open problem.

The convergence rate of S, was investigated by JureCkova (1973) and Koul
(1976). Under assumptions (I), (II),

r is nonconstant, {{¢(#)du =0, ¢’ bounded on (0,1),
e @

and (IV), given in Section 2 below, JureCkova found the convergence rate as
2 X1 le;x[PN?, 6 > O arbitrary.

It is natural to expect the convergence rate under the null hypothesis is equal
to that of 37, ¢,y Yy, with Y;, independent uniformly bounded random vari-
ables, i.e., equal to 3, |c;y|* (see Feller (1971)).

In the present paper, this conjecture will be proved, provided that (IIT) is
replaced by the stronger (III). Under additional assumptions, the convergence
rate under alternatives will be proved as Y Y, (|¢;5|* + |0,5]°)-

Our proving method is closely related to the method utilized by Bjerve (1973);
cf. also Bickel (1974). The characteristic function of S, is replaced by the one
of the sum T, of suitable chosen independent random variables. The Berry-
Esseen argument is applied to the latter, whereas a Taylor expansion is made
use of to estimate the difference of both.

2. Rate of convergence under hypothesis. In this section we shall assume
that the distribution of (X,y, - - -, X,) satisfy:

(IV) the distribution function of the vector (X, ---, X,y) is of the form
II}-: F(x;, 0) with F(x, 0) continuous.

The main assertion of this section is the following:

THEOREM 2.1. Let the assumptions (I—IV) be satisfied. Then there exists a con-
stant A, (not depending on N) such that

(2.1)  sup, [P(Sy < x(§5 ¢'(u) du)t) — (27)72 {2 e dy| < Ay T lesul? s
where Sy, is given by (1.1).
CoROLLARY 2.2. Consider the two-sample linear rank statistic
Sy = Linax(Ryy) — aym,

where a, = (1/N) 21, ay(j). Under assumptions (II—IV) there exists a constant
A* such that

sup, |P(Sy < x[m(N — m) {} ¢*(u) du/N}¥) — ®(x)| < A,*[max (m, N — m)]+,
where D(x) is the standardized normal distribution function.

Theorem 2.1 will be implied by several lemmas. In the rest of this section
we omit indices N in ¢y, R;,, etc. Denote by

(2.2) f Ty = Dl ¢, 0(F(X;, 0)),
(2.3) Ty* = S ¢/ (F(X;, O)R, — E(R;| X,)/(N + 1),
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(2.4) SUP,e 0,1 [P(#)] = Dy SUP,e 0,1 |¢'(#)] = D,
LGplwdu =9,  §op*u)du=¢°.

REMARK 2.3. Notice that (I) implies
(2.5) i=1le’l = N7H, log (L1 le;’)™" = 2(max,g gy |e)~

LemMA 2.4. Under assumptions (I—IV) there exist constants B,, B, such that
(2-6) P(|Ziwei(an(R)) — ¢(R;/(N + 1)) > N%) < BN,
@7 P(ZiacioR((N + 1)) = (Ty + Ty*)| > 3(9")!N") < B,NH,
where ay(j) = Ep(Uy'?).

Proor. Making use of the Chebyshev inequality, the Taylor expansion for ¢

and the formulas for moments of order statistics we obtain (2.6).
A similar argument leads to (2.7):

P(|Zio ¢50(R/(N + 1)) — (Ty + Ty*)| > 3(¢")IN")
= NO@)E{ D ¢i(R;/(N + 1) — F(X;, 0))
X Sé[sg(—xl;ff’{/(l‘l+l)+li'(xi,0) gDn(u) du] dl}”
= N(99") ™ §5 (9" (w))" du {E[R(N + 1) — F(X,, 0)I'}
< (9¢°)7 $i (9" () du (32 + TON~! + 16N~")N~4. a
The following lemma (having probably a broader field of applications) will
be the main tool of our proof.

LEMMA 2.5. Let the assumption (1) be satisfied and let U,, - .., U, be random
variables such that for any permutation (jy, - - -, jy) of (1, - -+, N)

(2.8) ET[L Us = ETIL Us:,
where 3,7, a, = 2k, a; = 0 integers. Then, for 2k < d(max, gy |c;])™%
(2.9) E(T, U™ < k¥(4eys ™ EUM .

Proor. Using the multinomial expansion we get
2k)!
E(Z?;l ¢ Ui)zk — Zik=l Z(kl ..... ko) € Ala) . (fv!()k"{—-[:=l (kv)!
(2. 10) X Z(il ..... iz:=1ku)e B(Z:=l kv) E H.’;l=l (cij Uij)
Z:= ky @
X Hfl:;c’:?l-l (cij Uij)2 e Hj=2'3;} ko+1 (Cia' Uii) ’

where A(a) = {(ky, -- -, k,); k, = 0 integer, > 5_, vk, = 2k} and B(} 5., k,) =
{Gy -+, iz:=1kv); 1 < i; < N integer, i; + i, for v # j}.
First, we estimate EZ,(k,, - - -, k,), where

ZN(kv ceey ka)

x ok
= Z(il"“"z‘.’,’=1kv)eB(Eff=1"v) = (6, Usy) - - Ha':E‘:’fﬁkm (e;Us)) ®
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The Jensen inequality and (2.8) imply
(2.11) |EZy(kyy - - -5 k)| < EUP* | V(ky, -+ -5 k)| s

where

k =5 .k
V(kl, tth ka) = Z(il"“yiz:_lkv)GB(Z:=1kv) H.11=1 cij cre H o (cij Uij)a .

=32 ky+1
By induction on k, we shall prove that the inequality
(2.12) Viky, «- -y ka) < 28d%(ky[2)! (MaX,ggy e )=
holds for any integers (k,, - - -, k,), k, = 0, 315, vk, = 2k. Using assumption
(T) we get for k, = 0 and any nonnegative integers k,, - - -, k,,
VO, ky, -+, k) = (maX,geey o)== """ .
For k, = 1 we have

V(1 kyy -+ r k) = — D23k V(0 kay - s by — Lykyyy + 1, -+, k)
— V0, kg s kg — 1, 1)

and, then, by assumption (I) and for 2k < d(max, gy |c;])™*

% (v-2)ky+1
V(L kg - o5 k)| S 2ooa ko (maX,ggy [c]) vms (TR

a
v=3 (?—Nky

< jd(max,g, y |ci|)z
Assuming that (2.12) is true for k, = r we obtain for k, = r + 1
[V(r + 1, ky, - -+, k)|
S | Desbk (ke -k, — Lk + 1, -0, k)
+ k V(r kg - kg — 1L, 1) 4 rV(r — 1,k + 1, -+, k)|
< dr+12r+l((r + 1)/2)! (maXISiSN |ci|)2:=3(”_2)k" )

If we use (2.10—2.12) and the polynomial expansion

2k)! (2K)!
2k)* = % ( )
(26) =t Dtk 4 S (V)5 IT5-0 (k) (26 — 5o k)

then to get (2.9) it suffices to show that

(2.13) (2d)*1(k,[2)! (MaX,gigy |e))™2 7
(2k)!
(2k — 25 k)
In view of the assumption d(max, g,y |c,|)™" = 2k, inequality (2.13) will be im-
plied by the following one:

< (de)P+idPkkk(2k) -2

(2.14) (2d)!1(K[2)\(d[2k)%= "2k — Foy k) (200D
§ dzk(4e)2k+lkk(2k)—2k .
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Using the Stirling inequality (see Feller (1971)),
(2.15) (27)¥(n + 3)"*texp{—(n + $)33}
< nl < (2m)k(n 4 )"t exp{—(n + B)},

we obtain after some calculations that the left-hand side of inequality (2.14) is
smaller than or equal to
dﬁk(4e)2k+l(2k)—2kkk .

Thus inequality (2.14) holds and Lemma 2.5 is proved. []

LEMMA 2.6. Under conditions of Theorem 2.1 there exists a constant By(d) (not
depending on N and k) such that for 2k < d(max,g;<y|c]), 0<d <1,

E(Ty*)* < (2k)*N-H(By(d))* ,
where T, * is given by (2.3).
Proor. Putting U, = (N+1)"%(R,—E(R;| X,))¢'(F(X;, 0)),1 < i £ N, we have
E(Ty*) = kEN“d™(4e) E[(R, — E(R,| X)))¢'(F(X,, 0))*
and then applying Lemma 6.1 (Bickel (1974)) for &; = (u(X, — X,) — F(X,,

0))¢'(F(X;,0), 1<j<N, u(x) =1, x=0, u(x) =0, x <0, we obtain the
assertion. []

LeEMMA 2.7. Under assumptions (1—1V) there exist constants D*, B, (not depend-
ing on N) such that

Siuis{ios (22, 1e;18) Jor | E eXp{irTy}Ty*| dt < B, max (N7, T, [¢;°) -
PROOF. ET,* exp{itT,} can be written in the following form:
(N + 1)ET > exp{itT}
= Eexp{irTy} 21000 Ziionivws & E(U(X, — X)) — F(X,, 0))
X ¢'(F(X,, 0)) exp{it(c, p(F(X,, 0)) + ¢;o(F(X;, 0)))}
X {E exp{it[c, o(F(X,, 0)) + ¢; o(F(X;, O)]}} .
For the characteristic function of c; o(F(X;, 0)), 1 < j < N, the relation
(2.16) E exp{itc;o(F(X;, 0))} = 1 — ¢;**¢*2
+ GH7NlefNeln; Il =1,
holds and thus for |¢f| < —(log (X1, |¢;|*)i[¢@® + 1/3|@[*]~*, the Taylor expansion

for log E{exp{itc,o(F(X;, 0))}} can be established and after some calculations
we arrive at the following:

(2.17)  Eexp{itT,} = exp{—Pg/2)[1 + 21 Tl 1I0l(36") 0,41,
‘ <1 1<j<N.

Using the Taylor expansion for exp{it[c, o(F(X,, 0)) + ¢;o(F(X;, 0))]} and using
(2.16) for (E exp{itc, p(F(X,, 0))})~* and then again the Taylor expansion, we get
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(after long calculations)
Sit1s-pr 1r..g(>:,, vied) [ETy* explirTy}| dr
< 24¢N) 7D, D3 Tl e, + N7 L |6, ['Deg + DN~
+O0(Xo¢7),  where D* = }{p" + o[} . 0

LemMA 2.8. If assumptions (I—IV) are satisfied then

|ETy** exp{itTy}| < Di* max ((|1Dy)*, 4*) exp{— (1 — 2k max,g, 5y ¢,)9"/2}
for |t < 3/2¢*(|¢)* T2, le )" and k =1,2,3, -... Moreover, if 0 <2k <
—1/8log (33X, |c,|®) then

2

(2.18)  |ET,** exp{itTy}| < D;* max ((|1|Dy)*, 4*) exp {_% ¢2} .

PrOOF. Denoting h(vy, - -+, Vys fis -« +» Ji) = [1kai 6 {0(X,, — X;,) — F(X,,»
0)}¢'(F(X,,, 0)) exp{itTy} we can write
(2.19) ET * exp{itT)} S (N+ 1)y * 20 - Xl D

Y=t [ER(Uy, -+ Vs Jiy - e s )]
Now, decomposing the set (j,, - - -, j,) into three subsets B,, B,, B;, where B, =
{ji;jz ¢ja,a = la “',k, a#: i’ji:#vw a = 1, “'ak}’ B2={ji’ji :/:ja’ a =
1, ..., k,a #1i,j;¢ B}, and B, denotes the complement to B, U B,, the right-
hand side of (2.19) can be rewritten as follows:
k!

(N + 1) Zvl— e Zka=1 Z(pl,pz,pa)um

(2.20) Z(jli""jpl)esl Z(jm+1""’jpz+m)eﬂ2 Z(jpl+92+1""’jk)933 |Eh(’l}1, ey
vk,jla c ’jk)l )

where A = {(p1» Ps» Ps)s Pr + P2 + ps = k, p; = 0 integers}. By (2.16) and some
elementary considerations we have for |¢f| < 3/2¢%(|¢|* 237, |¢;)~

@21) B exp(it T jep ¢;0(F(X,, O S exp {7 ¢(1 — maxig e c4B)]

where B is a subset of {1, - .., N} and £B denotes its cardinal number.
Further, by a Taylor expansion we obtain

(2.22)  |E{u(X, — X;) — F(X,, 0)} exp{ite; o(F(X;, O)}| = [ADy¢; »
v#j,1<0,j<N.
Now the independence of X, - - -, X}, (2.20—2.21) and the last inequality imply
|ER(V1s = =+ Vis is =+ +» i)
= [Eexplit 3} e 5 ¢;p(F(X;, O)}E exp{it 215, 5 ¢; 0(F(X;, 0)}
X laa1 € [u(X,, — X;,) — F(X,,, 0)]¢'(F(X,,, 0))]
< exp {——g- @*(1 — 2k max, oy cjz)} Ik le,, | D:*

X ;e 5, les, 1|71 Do)*Pr
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where B={j;1 <j< N,j+# juj+# Vwa =1, ---,k}. Then the right-hand
side of (2.20) is smaller than or equal to

(N 4+ 1)~k exp {__’21 @*(1 — 2k max,g; .y cj’)}

X (Tl le)* D1 + X0 felf]Dy + NE)* .

Both the assertions of our lemma can be concluded from the last relation,
(2.19—2.21) and Remark 2.3. ]

ProOF oF THEOREM 2.1. In view of (2.6) it suffices to consider S, with scores
given by (1.2). According to (2.7) we have

P(Sy < x(@")}) < P(Ty + Ty* < (x 4+ 3N"#)(p*)}) + B,N~?
and
P(Sy < X(@)) Z P(Ty + Ty* < (x — 3N-})(g")} — BN+,

Now, we shall proceed as Bickel (1974) in the proof of Theorem 4.1. Thus it
suffices to show that there exist constants ¢, ¢,, D,*, D,* such that
(2-23)  Suse(z2,1e0)t |E explitTy} — exp{—r¢%2}||f|7 dr < Dy* Fidly lef
and
(224)  Siisu(s gs)t [E explit(Ty + Ty*)} — Eexp{ieT,}[f| ™ dt

é DZ* 3,=1 lcvls *

Inequality (2.23) follows from Feller (1971), for T, is a sum of independent
random variables. As for (2.24), we use the Taylor expansion

, » *)2k

EexplinTy + Ty*)} = E £igt U0 exppirr, ) + ‘—’(Tz—k)f— Ty Il S 1.

v! !
Denote 32, |c,[* = p,. Then, making use of Lemmas 2.6, 2.7, 2.8 for k =1,
we obtain
Siisopt |E eXp{it(Ty + Ty*)} — E explitTy}||f|™ dt
(2.25) = luspt108(op-1 |E exp{itT y}|Ty*| dt
+ Sprrogorisinseyt |ETw™ eXp{itT v} dt + §ygpp-4 7| ET ** dt
< Bymax (XL, |¢, ', N7') + 2D, max (Dyp,~", 4p,~%)

*272
x exp{ =22 (log pf} + 3B2)es -

Denote ¢,* = 3/2¢*(|¢|%0;)~* and

C= [TI'G min* <1, S—Dj > A s a >j| s
4  log(s,**D, D) log (4D, ¢,*)

where [x] denotes the largest integer not exceeding x and min* {x;,,i =1, ---,
4} =min{x;i=1,...,4,x; > 0}.
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If 0 < ¢, < ¢,* and 2k < 1/8 log p,~!, by Lemma 2.8 we get

t
Sogbsitisegtog-1 255" IIJ |E(Ty*) exp{irTy}| dr
=2 exp{ z } 2.%5" max {(D, Dye;'0;7Y), (4D, 6,057"))
<2 exp{ o i } max {(D, Doc;0,~ ), (4D, ¢,05 )%, 22¥) .

Then putting 2k = C[log p,'] and making use of elementary inequalities

$(logx)* < x, x=1,

logx < x, x=20,
we can conclude

—-l
226) i D2 1]’} |E(T,*) exp{ifTy)| dt < 2exp{ ¢2}.

Remark 2.3, Lemma 2.6 and (2.15) imply

t 2k—-1

eit 25
$or tsitisigost @R ETy*** dt = (2—71_)-; 2(e"By(2)ett)™ .

Then for ¢ = (By(2))* exp{+C~* — %5} the relation

] 2k-1
Sp;!sms«gp;l (2k)! ET, (2 )*

holds.

Inequality (2.24) follows from (2.25), (2.26), and the last one, if we choose
e, = min (g%, &,7). []

3. Rate of convergence under “near” alternatives. In this section we shall
assume that

(V) Xy, --+» Xyy are independent random variables, X;, has a density
f(x, 0,y) € &, where 0, are unknown parameters and & is a family of densi-
ties f(x, 6), 6 € J (J is an open interval containing zero) satisfying

a. f(x, 6) is absolutely continuous;

b. the limit

f(x, 0) = limy_o 0}(f(x, 8) — f(x, 0))
exists for almost every x;
c. there exist 6, and a constant C such that for all |§] < 6,

jre (f(X, 6))* dx < C.

f(x, 0)
REMARK 3.1. Notice that under (V), §*2 f(x, 0) dx = 0.
Further, unknown parameters 6, ,, - - -, 0, are assumed to satisfy:

(VI) | SN, By=1, XY, 0,y=0.
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In the following we shall denote by E, and E, the expectation under hy-
pothesis (IV) and alternative (V), respectively (similarly, Var, P,, Var, P, and
so on). Moreover, E,9(X,y, - - +» Xyy) Will denote the integral with respect to
the measure P,° which is a restriction of P, to the set JTY_, f(X;x, 0) # O, i.e.,
(3.1) E9(Xiys « -5 Xyn)

= Snjf":lf(xm,o#o_ 90xy, -5 xy) T13o fx;0 O5x) dxys - - -5 dxy
The main assertion of this section:

THEOREM 3.2. Consider statistics S, given by (1.1). Then under assumptions
(I—III) and (V—VI) there exist constants A, and 0, (not depending on N) such that
for max,g <y 0,4 < 6,

(3-2) sup, [P,(Sy — y < X(§?)) — (22)7* {2, ev2 dy|
< A, B (einl + 105807
where py = T2 €iw § pagoe0 9(F (X5 0)f(x;5 0,) dx.
REMARK 3.3. If assumptions (I—III), (V—VI) are fulfilled and moreover:

a’. f(x, 0) exists and is absolutely continuous;
b’. the limit
fx, 0) = Timy_, 0= fix, 0) — fix, 0))
exists for almost every x;
c’. there exist §,* and C* such that
§*e |fix, ) dx < € forall || < 6,
then the assertion of Theorem 3.2 remains true if we replace in (3.2)

py by Tia0vein § f(x; 0)p(F(x;, 0) dx .
COROLLARY 3.4. Two-sample case: Let assumptions (II—III) and (V) be satisfied
andlet 0,y = (N — m}(mN) 4,1 <i<m, 0,y = —m(N(N—m))"*m< i <N,
then there exist constants A,* and 0,** > 0 such that

Py (B an(Ry) — miy =ty < x (T2 Y1) — )i g2 ey

sup, N

< A*{max (m, N — m)}-#

if [max (m{(N — m), (N — m)/m)}} < 0,**N? and, where

= { =, o) {7 (% (=)

(o~ ) -

We shall prove Theorem 3.2, using the same method as in Section 2. The
present proof can be simplified by the following two lemmas (we shall write
¢;, 0,, X; instead of ¢y, 0,4, X;5):

A




CONVERGENCE RATE OF RANK STATISTICS 667

LemMMA 3.5. Under assumptions (V—VI) there exist constants C, and 6,** (not
depending on N) such that

(3-3) P(I13-1 (X3, 0) = 0) = €, X3.. 16,
Sfor max, . . |0;] < 6,%*.

Proor. Obviously,

_ v [Xn0)
(3.4) PAIT (X 0) = 0 5 2 (111 L5200 2 X)

for K > 0 arbitrary. Put, in accordance with Hajek-Sidak (1967),

Ly =T, M0 %) i v ax, 00> 0,
= HX0) if T X5 0) >

=1 if [Ii%fX; 0) = 0 = I3 f(X 65)
=+ if TI% X, 0) = 0 < TIF- (X 05) -
Le Cam’s third lemma (VI.1.4) and Theorem VI.2.2 (Héjek—éidék (1967)) imply
that under assumptions of our lemma for max, ;< |6;] — 0 -

sup, |P,(log Ly — b*/2 < xb) — ®(x)| -0,

where 5 = {*= ((f(x, 0)))/f(x, 0)) dx. Thus there exists 6,** such that for
max,c.<y |0;] < 6,*%*

sup, |P,(log L, — b*/2 < bx) — D(x)| < e}
and then according to Lemma V.4.9 in Petrov (1972) we have
(3:5)  |Pu(log Ly — 82 < xb) — @(x)| < (C,e7H/2 + 2,)(1 + [x]?)™
for all x, where p > 0, C, > 0 is a constant not depending on N and

’log L, — b2
b

% = |E, — § [xP d®(x), p>0.

Choosing in (3.5) p =1 and x = (37, |6,]*)~* we obtain that there exists a
constant C, such that
P,(log Ly > b(X31 10,17 4 8%/2) = G, B 10,

if max, g,y |0;] < 6,**. The assertion (3.3) can be concluded from (3.4) and
the last inequality. []

LeEmMMA 3.6. Let Y, be a measurable function of (X,, - - -, X). Then there exist
constants C, and 6,* (not depending on N) such that

(3.6) ESY " = (EgY "G if max .y |0, < 6,*
Proor. - Using Holder’s inequality we have

1) B = BTz e e < {mem (i Jae g Y
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and hence it suffices to prove that E, T, {f(X;, 6,)/f(X;, 0)}* is bounded from
above.
Obviously,

(3.8) E, {HN.I g(( i295) } ¥ Ey { ff(( ,)) }

Because of assumption (V.c) and the absolute continuity of f(x, §) in § we can
proceed in a similar way as Hajek-Sidék (1967) and Juredkova (1971) and get

09 B MK v, (SO0} (g 001

f1X;,0) f(X;,0) f(X;, 0)
(3.10) {f}( 0;} = o f, 0)dx S 1,
e
(3.11) = {f(X:’;Z)X (J:)(Xf’ 0) 525§ sia0rm0 £, f))aradx}2
< 28, {3t J{(( ”)) do} + 206,/ 5% | (fj:((’)‘c”f))))’ x| do < 40,C.

The last inequality follows from the Schwarz inequality and assumption (V.c).
Relations (3.9—3.11) imply
E, {f( )} 1+ 462C.
fX; ’
Assertion (3.6) can now be concluded from (3.7—3.8), assumption (VI) and the
last inequality. []

In view of Lemmas 3.5 and 3.6 we need not prove the lemmas analogous to
Lemma 2.4 and Lemma 2.6. It suffices to prove only lemmas analogous to
Lemmas 2.7 and 2.8, a sketch of their proofs is given (emphasizing differences).
But first we shall prove the following assertion:

LeEMMA 3.7. Under assumptions (I—III) and (V—VI) there exist 0,* > 0, C, and
3 > 0 (not depending on N) such that
G12)  Suse(zVyte; .s) |E,* exp{i(Ty — E,'Ty)} — exp{—1'¢*/2}||s|™ dt
= Cs Zi‘v=1 (lcjl + Ioil)s ’
if max,g <y 0] < 65*.

Proor. For the characteristic function of the jth summands of T, — E,°T,
we can write

E " explite;(p(F(X;, 0)) — Eo(F(X;, 0)))}
(3-13) =1 —(¢;'P[2)E(p(F(X;, 0)) — ELp(F(X;, 0)))*
+ e IPELe(F(X; 0)) — ELo(F(X;, 0)P9,;, [0, < 1.
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Noticing ‘
|E(o(F(X;, 0)) — Efo(F(X;, 0))* — ¢| = 16;(2D,°C
we observe that there exist »,*, »,** and ¢;*, ¢,** such that for
lf] < e*log (Lioile;l’)™  and  maxygcoy [0, < 75
(3.14)  log Bt explite,(¢(F(X,, 0)) — E%o(F(X;, 0))}
= — 1% E Ne(F(X;, 0)) — E o(F(X;, 0)))/2
+lrea;43, 16,4 < 8D,
and for |¢| < e** (Y. [¢;)~" and max,_;_y |0,] < n**
(3.15)  [E explite;,(p(F(X;, 0) — E L o(F(X;, O)} = exp{—ric;’/8} .
The assertion can now be concluded in a usual way. []

LemMA 3.8. Under assumptions (1—III) and (V—VI) there exist constants ¢,, 6,*
and C, (not depending on N) such that for max,_;., |0;| < 0,*

SItls{lonz(}iﬁ-’;l(I«s*j~|+|0,~|3))‘1}c4 |E,’ exp{it(Ty — E,'Ty)}Ty*|dt
= G i (el + 165P) -

The proof is the same as that of Lemma 2.7, only we use (3.13) or (3.14) instead
of (2.16) or (2.17), respectively. []

LeMMA 3.9. Under assumptions (I—III) and (V—VI) there exist constants ¢,
C;, 0,* (not depending on N) such that

|ELT ™ explit(Ty — ELTy)| < Co T (f° + 1019
il = & 2o (e + 16,17 and maxig;cy |0;] < 6,*
The proof runs in the same line as that of Lemma 2.8, only, the inequality
|EL(u(X, — Xo) — F(X,, 0)) exp{itc,(p(F(X,, 0)) — E o(F(X,, 0)))}]
= (1 + Jrea|(1 + 164])) Do Dy|6,|
and (3.15) instead of (2.22) and (2.21), respectively, must be applied. []
Proor oF THEOREM 3.2. By Lemma 3.5 one can write
IPu(Sy — iy < X(@)Y) — PASy — oy < X(@D))] = €, L7416, -

The rest of the proof runs in the same way as that of Theorem 2.1. The lemmas
analogous to Lemmas 2.4 and 2.6 follow from the mentioned ones and from 3.5
and 3.6. []
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