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UPPER BOUNDS ON ASYMPTOTIC VARIANCES OF
M-ESTIMATORS OF LOCATION'

By JouN R. CoLLINS
University of Calgary
If Xi,+-+,X» is a random sample from F(x — §), where F is an
unknown member of a specified class %~ of approximately normal sym-
metric distributions, then an M-estimator of the unknown location pa-
rameter 0 is obtained by solving the equation 7, ¢(X; — 6) = O for .
A suitable measure of the robustness of the M-estimator is sup {V(¢, F):
Fe.s}, where V(¢, F) = § ¢*dF/({ ¢/ dF)? is (under regularity con-
ditions) the asymptotic variance of n#(f, — 6). A necessary and sufficient
condition for Fp in .&#~ to maximize V(¢, F) is obtained, and the result is
specialized to evaluate sup (V(¢, F): Fe &} when the model for .7 is the
gross errors model or the Kolmogorov model.

1. Introduction and summary. Let X, ..., X, bei.i.d. random variables with
distribution function F((x — 6)/e¢), where ¢ is an unknown location parameter
to be estimated and ¢ is a (known or unknown) scale parameter. Following
Huber [5], F is unknown, but is assumed to lie in a specified class of distributions
& which is convex and vaguely compact. Assume further that the members
of & are symmetric (F(—x) =1 — F(x — 0) for all x > 0) and that &
contains the standard normal distribution ®(x) = = ¢(f) dt, where ¢(x) =
(27)~t exp(—x*/2). Two important specifications of & are the gross errors
model,

(1.1) F.={F:F=(1 —¢)® + ¢ G for some symmetric G},
and the Kolmogorov model,
(1.2) F 4 = {F: F is symmetric and sup, |F(x) — @(x)| < ¢},

where in each model ¢ is a known number in (0, 1).
For the case of ¢ known, M-estimators of ¢ (Huber [5]) are obtained by
solving equations of the form

SRICEO

for §,. Each ¢ to be considered is assumed to lie in the class ¥ of continuous
piecewise-smooth real-valued functions satisfying (i) ¢(x) = —¢(—x) for all x;
(ii) ¢(x) = 0 for all x = 0; but ¢ = 0; and (iii) sup, max {|¢’(x — 0), |¢'(x +
0)} < oo. Of particular interest are subclasses ¥, defined for each ¢ > 0 by:
¢9e¥, if ge¥and ¢(x) >0 when 0 < x < ¢, ¢(x) =0 when x = c.
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Under suitable regularity conditions on ¢ and F([2], [3], [5] and [6]), 4, is a
consistent estimator of 6, and ni(d, — 6) is asymptotically normal with mean 0
and variance ¢* V(¢, F), where

Fy= S dF
D=5 ary

The problem considered in this paper is the following: given ¢, find
sup {V(¢, F): Fe & }. One can regard the supremum as a measure of the
robustness of the M-estimator based on ¢.

The problem of finding the ¢ that minimizes sup {V(¢, F): F ¢ & } was solved
by Huber [5]. The minimax ¢ has the form ¢, = —f,'/f,, where f; is the (neces-
sarily absolutely continuous) density of the F,in & which minimizes the Fisher
information. For nonminimax ¢, it will be seen that the least favorable F for
¢ (i.e., the F in & which maximizes V(¢, F)) typically does not have finite
Fisher information, since it puts positive mass at least favorable points. We
remark that the formally least favorable F may not satisfy the required regu-
larity conditions. However, in typical cases the subset .5’ on which the regu-
larity conditions hold is dense in .7, so that one obtains the correct value of
sup {V(¢, F): Fe &'},

One may question why one would consider any ¢ other than the one mini-
mizing sup {V(¢, F): Fe .5 }. The reason is that sup {V(¢, F): Fe & }is just
one of several reasonable numerical measures of robustness by which one can
compare estimators. For some competing measures, see the table on page 392
of Hampel [4].

Section 2 contains some preliminary examples of finding sup {V(¢, F):
Fe &7}, Section 3 presents the main result: necessary and sufficient conditions
for F in & to maximize V(¢, F). Sections 4 and 5 specialize the result to the
gross errors model and the Kolmogorov model, respectively. The generalization
of the results to the case of unknown ¢ is discussed in the concluding remarks
in Section 6.

2. Preliminary examples. The following notation is used throughout: for

0<e<land0<y< oo, define F,,, in &, , by
(2'1) F(y).s = (1 - E)(D + EG(v) >
where
G(u)(x) =0 x< =)y
=% —y=x<y
= 1 X g y .

EXAMPLE 2.1.  Minimax solution. The ¢ in ¥, which minimizes sup {V(¢, F):
Fe &, .} has the form

“g(x) = x 0<|<a
= k tanh [}k(c — |x|)]sgn(x) a<|x| < ¢
=0 Xl z e,
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with a and k determined by ¢, provided that ¢ is less than a breakdown point
¢, depending on ¢. This minimax property is proved in [2] by showing that
do(x) = —f/(x)/fo(x), where f, is the density of a F,e &, which maximizes
V(¢ F). We note that F, is not the only F in .%, , which maximizes V(¢,, F).
To see this, let F = (1 — ¢)® + «G*, where G* is any symmetric distribution
satisfying G*{(a, ¢)} = 4. Then, noting that k* + 2¢, = ¢, on the set (a, ¢),
we have
Vo F) = (L2 0019540 4 Je? 4+ 2524 dG
[(1 — &) §§¢0 dP + ¢ {2 ¢y’ dG*]

Thus sup {V(¢,, F): Fe %, } is attained at all F of the above form satisfying

g a[ = (=90

] = vegw ao+.

Note that the class of F’s for which the equality holds is convex, and that
in particular, there is a number y € (a, c) such that F,, . attains sup {V(¢,, F):
Fe &}

EXAMPLE 2.2. Hampel’s piecewise linear ¢. For 0 < a < b < c, define ¢,,, €
¥, by
Dane(X) = x 0L |x|<La
= asgn (x) as |x| < b.

¢ — |x| .
=__ "igsgn(x) b X< ¢
= Masgn() b=
=0 x| = c.

TABLE 1
Parameters of optimal ** Hampels”

optimal values of

c € _— sup {V(gabe, F): Fe F1,¢}
a b
2.0 .001 1.7078 1.8558 1.4560
.01 1.3022 1.6244 1.7774
.05 0.8448 1.3014 2.9224
.10 0.5967 1.1043 4.9149
.20 0.3192 0.8031 15.2974
4.0 .001 2.5164 3.2060 1.0205
.01 1.8253 2.6913 1.1123
.05 1.2558 2.2331 1.4316
.10 0.9797 1.9917 1.8645
.20 0.6751 1.6931 3.1191
8.0 .001 2.6093 3.7677 1.0109
.01 1.9120 3.2045 1.0751
.05 1.3520 2.7443 1.3019
.10 1.0845 2.5122 1.5929

.20 0.7925 2.2353 2.3405
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Let
A* = sup {§¢ 9%, dF: Fe 7, } = (1 — ¢) {3 $*d® + (ca’/2)
and
B* = inf {{§ ¢l dF: Fe 7} = (1 — ¢) {§ oy, AP — [ea/2(c — b)] .

Assume that the parameters a, b, ¢ and ¢ are such that B* >0, so that
sup {V(¢, F): Fe &, ,} < A*/[2(B*)*]. To see that the supremum is equal to
A*[[2(B*)*], note that V(¢, F,, ,.) — A*[[2(B*)"] for any sequence {y,} for which
Vul basn— oo.

Given c and ¢, one can obtain the optimal ¢ of the form ¢,,, by finding the
values of a and b that minimize A4*/[2(B*)?]. Table 1 presents optimal values
of a and b and the corresponding minimum values of sup {¥(¢u;., F): F e .5}

EXAMPLE 2.3. Monotone ¢. Suppose that ¢ ¢ ¥ is monotone nondecreasing
with ¢’ monotone nonincreasing on [0, o). Examples are: (i) ¢(x) = x; (ii)
¢(x) = O(x) — §; (iii) Huber’s estimator ¢,(x) = {min {|x|, k} sgn (x), defined
for k > 0. For such ¢, one sees immediately that sup {V(¢, F): Fe &, } =
(¢, F..,.). The same supremum is obtained if .5, , is replaced by a subclass
&', of distributions which are proper (i.e., F{(— o0, o)} = 1) and which satisfy
the required regularity conditions.

REeEMARk. The cases for which the values of sup {V(¢, F): F e & } are not
always obvious occur when ¢ is not monotone. For this reason the theory in
the next section is developed for the class ¥,. The value of c is taken to be
finite, but the results can easily be extended to the case ¢ = co to cover cases
of nonmonotone ¢ supported by the real line.

3. The general result. Let & be a class of df’s satisfying the properties
listed in Section 1. Let ¢ be a fixed number in (0, co0), and assume that &
satisfies:

(3.1) F(c—0) — F(—c) >0 forall Fe.& .

The condition, imposed to eliminate 0/0 as a formal expression for V(¢, F), is
satisfied in the practical cases where .5 is a ““close neighborhood” of @.
Define ¥’ to be the subset of ¢’s in ¥, for which the only possible discon-
tinuities of ¢’ are at —c and ¢. The results, given here for ¢ in ¥/, are easily
modified to cover other ¢’s in ¥, of interest (see Section 6).
For ¢ ¢ ¥/ and F ¢ &, define

A(¢, F) = \§¢" dF ,
and
B¢, F) = \§¢' dF ,

with the.convention that ¢’ is defined at ¢ by ¢’(c — 0) and that dF really means
dF*, where F*(0) = { and F*(x) = F(x) for x > 0. Define

V¢, F) = A(¢, F)[[2B(¢, F)] »
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and note that V(¢, F) coincides with ¥(¢, F) unless ¢'(c — 0) + 0 and F(c) #
F(c — 0), so that sup{V (¢, F): Fe &} =sup{V(¢, F): Fe & }. We prefer
to work with V(¢, F) since it is a continuous functional, while ¥(¢, F) need
not be.

LeMMA 3.1. Let¢pe W,/ . Then:

(i) There is a Fy in & which attains sup {V (¢, F): Fe &},
(ii) sup{V.(¢, F): Fe &} < oo if and only if

3.2) inf {B(¢, F): Fe 5} >0.

ProoF. Suppose (3.2) holds. Then sup{V(¢,F):Fe &} < oo, since
sup {4(¢, F): Fe &} < (3)sup{¢i(x): xe[0, c]} < o0. Also, if (3.2) holds,
then V,(¢, F) is a continuous function on the compact set .5, and (i) follows.

Suppose (3.2) fails. To complete the proof of (i) and (ii), it suffices to show
that B,(¢, F) = O forsome F in &, Let F* ¢ % satisfy B,(¢, F*) < 0. Since &~
is convex and contains @, F, = (1 — )@ + tF*is in & for all re[0, 1]. Since
B(¢, @) = {§ x¢p(x)¢(x) dx > 0 and B¢, F) is continuous, there is a 7, ¢ [0, 1)
such that B,(¢, F,) = 0. ]

THEOREM 3.1. Suppose ¢ is in W/ and satisfies (3.2). Then F, maximizes
V¢, F)in & if and only if

3.3) §6[249, Fo)§'(x) — B¢ Fo)p*(x)] d(F — Fy) = 0
for all F e & or equivalently, if and only if
(3-4) 13 [24.(¢, Fo)d'(x) — B¢, Fo)¢*(x)] dF

is minimized in & by F,.

Proor. Since A,(¢, F) and B,(¢, F) are linear functions of F and A,(¢, F) >
0 for all F in &, it follows by Lemma 6 of Huber [5] that 1/V,(¢, F) =
2[B,(¢, F)I’/A(¢, F) is a convex function of F. Since & and 1/V (¢, F) are
convex, F, minimizes 1/V (¢, F) iff

d 1

3.5) 2__—° | =o
dt V(¢, F,) le=o

for every Fe &, where F, = (1 — f)F, + tF. A straightforward calculation
shows that (3.5) is equivalent to

285 9* dF (=5 ¢" dF, + \5¢" dF) — (§6¢" dFo)(— {5 ¢ dF, + (§¢*dF) 2 0,
which is (3.3). []

REMARK 3.1. Theorem 3.1 does not provide an explicit solution for the least
favorable -F, in terms of the given ¢. In typical applications, one guesses the
form of F, (e.g., F,, . for some x), calculates the least favorable distribution of
this form, and then checks condition (3.3).
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REMARK 3.2. F, need not be unique. All that one can say in general about
the subset of .5 on which 1/V (¢, F) attains its minimum is that it is necessarily
convex.

4. Application to the gross errors model. Let 0 < ¢ < o0, 0 < e < 1, and
F = F#,,, defined by (1.1). Then condition (3.1) is satisfied, so that Lemma
3.1 and Theorem 3.1 are true when % = &, ,. Condition (3.2) becomes

(4.1) (1 — ¢) {5 ' (x)@(x) dx + einf {¢'(x): x € [0, ¢)} > 0.
Note that since B,(¢, ®) > 0 and inf ¢’(x) < 0, there is a “breakdown point” ¢,
in (0, 1) at which the left-hand side of (4.1) equals 0. In terms of ¢, (4.1) can

be written as ¢ < ¢,.
Theorem 3.1 can be rewritten as:

THEOREM 4.1. Suppose ¢ ¢ W' and (4.1) holds. Then F, = (1 — )@ + ¢G,

maximizes V(¢, F) in &, if and only if
Gfs} =1,

where S is the set of points in [—c, c] at which 2A(¢J, Fo)¢'(x) — B,(¢, Fo)d*(x)
attains its minimum.

Proor. Since ¢ € ¥/, ¢* attains a positive maximum at some x, € (0, c) where
¢'(x) = 0. Thus min {24,(¢, Fo)¢' — B¢, F)¢’} < 0, so that the set S on
which the minimum is attained satisfies S C [—c, c].

Let F = (1 — ¢)® + ¢G be any other member of & .. Since F — F, =
¢(G — G,), condition (3.3) becomes

§8[24.(¢, F)¢'(x) — B, Fo)p*(x)] d(G — Go) 2 0.
This holds for all Fe &, if and only if G{S} = 1. []

REMARK 4.1. An immediate consequence of Theorem 4.1 is that a necessa-
ry condition for the least favorable G, to have a density is that 2¢/ — k¢* be
constant on the support of G,, where k = B,(¢, F)/A(¢, F;). This implies
that on the support of G,, ¢ must have one of three special forms: ¢(x) =
a tan [$ka(x — b)], ¢(x) = a, or ¢(x) = atanh [$ka(b — x)]. Note that all three
forms appear in solutions to minimax problems in [2] and [5]. V

The simplest possible form for a least favorable F in &, , is F,, ., defined by
(2.1).

CoRrOLLARY 4.1. Under the conditions of Theorem 4.1, F, , .
in &, if and only if x, is a number in [0, c] which minimizes

(4'2) 2Ac(¢” F(zo),e)gb'(X) - Bc(‘/” F(zo),e)‘/’z(x) .

Proor. Immediate from Theorem 4.1. [J

maximizes V,(¢, F)

REMARK 4.2. To apply Corollary 4.1, one computes the x, in [0, ¢] which
maximizes
Vg, Fayl) = (I = ¢) $59°W)e(y) dy + 3e¢*(x) ,
20 = o) 5 ()e(y) dy + e ()]
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and then checks to see whether x, minimizes (4.2). The next theorem shows
that this is always the case when ¢ ¢ ¥’ satisfies the following further conditions:

4.3) ¢ is twice differentiable and satisfies ¢” <0 on [0,c];
and
(4.4) ¢¢'[¢" is monotone nondecreasing on [0, c] .

The condition (4.3), implying that ¢ is concave on [0, ¢], is a natural require-
ment; however, (4.4) is a rather special condition.

THEOREM 4.2. Suppose that ¢ € W' satisfies (4.1), (4.3), and (4.4). Let x, €
[0, c] maximize V (¢, F,,,). Then F, . maximizes V (¢, F) over the set of all F
in &, ..

Proor. Note that for x e [0, c],

v

= ZB°(¢’ F(")")e ” _ ’
= m [4.(¢, Fi)¢ (x) B¢, F(z),e)¢(x)¢ 0]

so that by (4.1), d/dx[1/V (¢, F,,, )] has the same sign as
Ac(¢’ F(z),s)¢,’(x) - Bc(¢’ F(z),e)¢(x)¢l(x) .

The case x, = 0 is impossible since ¢(0) = 0 and ¢’(0) = 0. In the case
x,€ (0, c¢), we have

= AP Fiap), 09" (%) — Bo$s Fiap, )P(X0)¢"(%o)

z=2z(

0= Ed)‘c [ Vc(¢v,lF(,),s):|

= .Jd); [2Ac(¢" F(zo),s)¢l(x) — B(¢, F(zo),5)¢2(x)] o

%o
Conditions (4.3) and (4.4) imply that
AP Fiap, )" (x) — B, Fiay,)Pp(x)¢'(x) =0 0 = x < x,
; 0 xo é X é C,

so that x, minimizes (4.2) and the conclusion follows from Corollary 4.1.
Similarly, in the case x,=c¢, one finds that A4(¢, F, )¢"(x) — B,(¢,
F, )¢(x)¢'(x) < 0 for all x € [0, c], so that x = ¢ minimizes (4.2). []

ExampLE. Consider the following ¢ proposed by Andrews [1]:
$.(x) = sin (zx/e) |x| < ¢
=0 |x| >c.

Since ¢, satisfies (4.3) and (4.4), Theorem 4.2 applies and the result can be
described as follows:
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Define ¢, and ¢, by
af(l — &) = max {0, 2[(¢c/z)B,(¢,, @) — A($,, P)]}

&f(1 — &) = 2(c/m)B(¢,, D) .
If0<e<e¢,then F (sp,c MAXimizes V(¢,, F) in & ,, where

X, = € cos-t [27:(1 — €)A(¢,, D) + srr:l .
T 2(1 — e)eB(¢,, D)
If ¢, < e <, then F, , maximizes V,(¢,, F) in &, If ¢,<e< 1, then
sup {V(¢,, F): Fe &} = oo. For various values of ¢ and ¢, Table 2 presents
the value of sup {V,(¢,, F): Fe %} and the corresponding value of x, for
which F (zy),c attains the supremum. Also tabulated are the values of ¢, and ¢,
corresponding to each c.

and

TABLE 2
Least favorable c-contamination and the corresponding asymptotic variances
when ¢(x) = sin (zx/c) for |x| < ¢, ¢(x) = O otherwise*

€

c €1 €2
.001 .01 .05 .10 .20
2.0 0 .2454 1.8620 1.9890 2.7700 4.7392 43.196
(2.0) (2.0) (2.0) (2.0) (2.0)
3.0 .1201 .3673 1.2070 1.2584 1.5337 2.0432 4.6344
(2.3340) (2.3576) (2.4801) (2.7163) (3.0
4.0 .2755 .4235 1.0692 1.1134 1.3401 1.7182 3.1514
(2.6429) (2.6610) (2.7476) (2.8737) (3.2301)
6.0 .3979 .4658 1.0187 1.0749 1.3565 1.8023 3.2593
(3.4692) (3.4897) (3.5867) (3.7228) (4.0641)
8.0 .4423 .4807 1.0127 1.0931 1.4930 2.1165 4.0740
(4.3690) (4.3944) (4.5132) (4.6786) (5.0852)
10.0 .4630 4877 1.0139 1.1271 1.6879 2.5565 5.2370

(5.3033) (5.3339) (5.4773) (5.6762) (6.1611)

* The top entry for each case is sup (V(¢, F): Fe.#1,} and the bottom entry (in parenthéses)
is the value of xo for which Ve(¢, F(a,e) attains the supremum.

For various values of ¢ and ¢, Table 3 compares sup {V,(¢, F): Fe &, ,} for
the following ¢’s: (i) the minimax ¢, (Example 2.1); (ii) the optimal Hampel
¢as. (Example 2.2); and (iii) ¢,. Notice that (1) there is not much loss of efficien-
cy in using the optimal Hampel instead of ¢,, and (2) in the range ¢ = 2 to 4
and ¢ = .05 to .10, the maximum asymptotic variance for ¢, is smaller than
that of the optimal Hampel.

To conclude this section, a discussion of regularity conditions follows. Let
. be the class of distributions of the form F = (1 — ¢)® + ¢G, where G is
continuous and symmetric. For ¢ e ¥,, define the estimator as the Newton’s
method solution of 3 ¢[(X; — #)/c] = 0 with the sample median as starting
value. Denote by C the condition that the estimator defined by ¢ is consistent
and asymptotically normally distributed with asymptotic variance ¥(¢, F). A
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TABLE 3
Comparison of sup {V(¢, F): Fe 5.} for three §’s which vanish off the set [—c, c]

€

c ¢
0 .001 .01 .05 .10 .20

2 o 1.3540 1.4503 1.7273 2.6401 4.1291 11.2118
Pabe 1.3540 1.4560 1.7774 2.9224 4.9149 15.2974
s 1.8467 1.8620 1.9890 2.7700 4.7392 43.1958
3 o 1.0302 1.0622 1.1663 1.5026 1.9633 3.3772
dabe 1.0302 1.0677 1.2033 1.6568 2.3024 4.4148
s 1.2015 1.2070 1.2584 1.5337 2.0432 4.6344
4 o 1.0011 1.0151 1.0817 1.3143 1.6212 2.4632
Pabe 1.0011 1.0205 1.1123 1.4316 1.8645 3.1191
ds 1.0645 1.0692 1.1134 1.3401 1.7182 3.1514
6 o 1.0000+ 1.0096 1.0656 1.2600 1.5038 2.1145
dabe. 1.0000+ 1.0121 1.0820 1.3303 1.6547 2.5174
&s 1.0126 1.0187 1.0749 1.3565 1.8023 3.2593
8 o 1.0000+ 1.0096 1.0653 1.2564 1.4914 2.0584
Dabe 1.0000+ 1.0110 1.0751 1.3019 1.5929 2.3405
s 1.0040 1.0127 1.0931 1.4930 2.1165 4.0740
10 do 1.0000+ 1.0096 1.0652 1.2561 1.4900 2.0479
Pabe 1.0000+ 1.0105 1.0722 1.2890 1.5643 2.2584
&s 1.0016 1.0139 1.1271 1.6879 2.5565 5.2375

proofis given in [2] that C holds in the special case where G = ® and ¢ is smooth,
and the proof is extended in [3] to show that for any ¢ € ¥,, C holds uniformly
for all F in &7/, if ¢ is sufficiently small. Since &/, is dense in .5, ,, it follows
that sup {V(¢, F): Fe &/} =sup{V,(¢, F): Fe & }.

5. Application to the Kolmogorov model. Let 0 < ¢ < o0, 0 < e < 1, and
F = .F,,, defined by (1.2). We remark that, for sufficiently small ¢, the ¢
in ¥, that minimizes sup {V(¢, F): F € 5, } has the form

$(x) = k tan (3kx) 0<|x<a
=X as |x| < b
= mtanh [{m(c — |x|)]sgn(x) b < |x|<Z ¢
=0 x| = c.

The proof, obtained by combining portions of proofs appearing in [2] and [5],
is omitted.
Assume throughout this section that ¢ and ¢ satisfy

(5.1) ¢ < 3[P(c) — 4]
Then 5?3.“ satisfies condition (3.1), so that Lemma 3.1 and Theorem 3.1 apply.

As in Section 4, Theorem 3.1 will be specialized to ¢ in W/ satisfying (4.3) and
(4.4), in which case sup {V(¢, F): Fe .5, } can be determined explicitly.
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Define x, = ®~( + ¢) and x, = min {®~*(1 — ¢), ¢}, and note that 0 < x, <
x, < ¢, by (5.1). Adopting the convention that each F in .5, is normalized
by setting F(0) = 4, it is clear that a symmetric df F is in & ,, if and only if
F.(x) = F(x) £ F*(x) for all x = 0, where

F,(x)=1% 0=x<x
=0x) —e x=x

and
F*(x) =1 x=20
=P(x)+e 0< x< x,
=1 X=X,

For y > 0, define F,,,e &, by
Fiy(x) = Fylx) 0=x<y
=F*x) x=y.
Lemma 5.1. Let x,€ [0, c], and let g be a continuously differentiable function on
[0, c] that satisfies g(c) < 0 and
gl(x) g 0 x € [09 xo]
=0 xe[xp,c].
Then \§ g dF is minimized in & ,, by F
Proor. Let Fe & ,,. Then
$6gd(Ff — F,)
= 9(O)[F(c) — F*(e)] = 9(O)[F(0) — Fy(0)] — $5[F(x) — Fiap(x)]g’(x) dx
= — {0 [F(x) = Fyu(x)]9'(x) dx — §5,[F(x) — F*(x)]g'(x) dx
>0. 0
Suppose that ¢ ¢ ¥,/ satisfies (4.3). Then since ¢’(c — 0) < 0, we can apply
Lemma 5.1 with g = ¢’ and x, = ¢ to obtain that F,, minimizes {;¢’dF in
F 4.~ Condition (3.2) of Lemma 3.1 can be written as
(5.2) (5, 9" (x)p(x)dx 4 ¢'(¢ — 0) min {2¢, 1 — D(c) + ¢} > 0.
The analogue of Theorem 4.2 for the class &, is:

{zg}®

THEOREM 5.1. Suppose that ¢ € W' satisfies (5.2), (4.3), and (4.4). If x, maxi-
mizes V (¢, F,)) over all xin [0, c], then F, , maximizes V (¢, F) over all F in 5, ,.

ProoOF. On the set [0, ¢] we have

d 1 _ 4B,(¢, F,))H(x) ” )
E[Vc@/), FMJ 2 }(’x))]z (A9, Fo))¢"(x) — B¢, Fo)d(x)¢'(x)] ,
where

Hx) =®(x) — 4 +¢ xe]0, x,]
= 2¢ X € [X, X,]
=1—-Dx)+¢ xe[x,].
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The same argument used in the proof of Theorem 4.2 yields

gx)=0 0= x= x
go xoéxéca

where g(x) = 24,(¢, Fi5)¢'(x) — B¢, F,)¢*(x). Note that g(c) < 0.
By Lemma 5.1, F,, , minimizes

$§[24:¢s Fag)d’ — B¢, Fiay)g*1 dF
in &,,. The conclusion follows by Theorem 3.1. []

6. Concluding remarks. Let 0 < b < ¢ < oo and define ¥,, to be the class
of ¢’s in ¥, for which ¢'(x — 0) + ¢'(x + 0) = 0 for all x € [0, b), and ¢’(x)
exists and is < O for all x & (b, ¢). Note that ¢, and ¢,,, (and, one can argue,
all ¢’s in W, of practical interest) have this form. If ¢ eV,,, then to find
sup {V(¢, F): Fe &, } one need only consider F = (1 — ¢)® + ¢ G for the class
of symmetric G satisfying G{[b, c]} = 4. For such F, one can replace B(¢, F)
by a continuous functional in the obvious way to obtain theorems for the class
¥,, analogous to those obtained for ¥, .

Another generalization is the following: let ¥, denote the class of ¢’s in ¥
for which ¢’ is continuous everywhere and both lim, . ¢(x) and lim,_, ¢'(x)
exist and are finite. Then, since ¢ and ¢’ are continuous on the compact set
[— o0, oo], Lemma 3.1 and Theorem 3.1 hold for the class ¥_.

When the scale parameter ¢ in the model is unknown, one proposal for defin-
ing the M-estimator of ¢ is to solve

n X, — én
i ¢ ('—l—:‘—> =0
aﬂ
for 6,, where &, = 6,(X,, ---, X,) is an estimator of ¢ that is unbiased when

F = @. Under regularity conditions, 6, is consistent and n¥(@, — 8) is asymp-
totically normal with mean 0 and a variance which we choose to write in the
form ¢ B(F)V(¢, F). If & is the gross errors or Kolmogorov model with e
“small,” then B(F) is “close to” 1 for all F in & (see Section 4 of [2] for a
specific example of this). In such cases sup {V(¢, F): F € &} is a reasonably
good measure of robustness in the scale unknown case.

Note that all results stated for neighborhoods of @ essentially go through if
® is replaced by any symmetric distribution H for which § ¢’ dH > 0.
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