UPPER BOUNDS ON ASYMPTOTIC VARIANCES OF M-ESTIMATORS OF LOCATION¹ By John R. Collins University of Calgary If X_1, \dots, X_n is a random sample from $F(x-\theta)$, where F is an unknown member of a specified class $\mathscr T$ of approximately normal symmetric distributions, then an M-estimator of the unknown location parameter θ is obtained by solving the equation $\sum_{i=1}^n \psi(X_i - \hat{\theta}_n) = 0$ for $\hat{\theta}_n$. A suitable measure of the robustness of the M-estimator is $\sup\{V(\psi, F): F \in \mathscr F\}$, where $V(\psi, F) = \int \psi^2 dF/(\int \psi' dF)^2$ is (under regularity conditions) the asymptotic variance of $n^{\frac{1}{2}}(\hat{\theta}_n - \theta)$. A necessary and sufficient condition for F_0 in $\mathscr T$ to maximize $V(\psi, F)$ is obtained, and the result is specialized to evaluate $\sup\{V(\psi, F): F \in \mathscr F\}$ when the model for $\mathscr F$ is the gross errors model or the Kolmogorov model. - 1. Introduction and summary. Let X_1, \dots, X_n be i.i.d. random variables with distribution function $F((x-\theta)/\sigma)$, where θ is an unknown location parameter to be estimated and σ is a (known or unknown) scale parameter. Following Huber [5], F is unknown, but is assumed to lie in a specified class of distributions $\mathscr F$ which is convex and vaguely compact. Assume further that the members of $\mathscr F$ are symmetric (F(-x)=1-F(x-0)) for all $x\geq 0$ and that $\mathscr F$ contains the standard normal distribution $\Phi(x)=\int_{-\infty}^x \varphi(t)\,dt$, where $\varphi(x)=(2\pi)^{-\frac{1}{2}}\exp(-x^2/2)$. Two important specifications of $\mathscr F$ are the gross errors model, - (1.1) $\mathscr{F}_{1,\epsilon} = \{F : F = (1-\epsilon)\Phi + \epsilon \ G \text{ for some symmetric } G\}$, and the Kolmogorov model, - (1.2) $\mathscr{F}_{2,\varepsilon} = \{F : F \text{ is symmetric and } \sup_{x} |F(x) \Phi(x)| \le \varepsilon \}$, where in each model ε is a known number in (0, 1). For the case of σ known, M-estimators of θ (Huber [5]) are obtained by solving equations of the form $$\sum_{i=1}^{n} \phi\left(\frac{X_{i} - \hat{\theta}_{n}}{\sigma}\right) = 0$$ for $\hat{\theta}_n$. Each ψ to be considered is assumed to lie in the class Ψ of continuous piecewise-smooth real-valued functions satisfying (i) $\psi(x) = -\psi(-x)$ for all x; (ii) $\psi(x) \ge 0$ for all $x \ge 0$; but $\psi \ne 0$; and (iii) $\sup_x \max\{|\psi'(x-0), |\psi'(x+0)|\} < \infty$. Of particular interest are subclasses Ψ_o , defined for each c > 0 by: $\psi \in \Psi_o$ if $\psi \in \Psi$ and $\psi(x) > 0$ when 0 < x < c, $\psi(x) = 0$ when $x \ge c$. Received August 1975; revised July 1976. ¹ Research supported by a grant from Purdue Research Foundation. AMS 1970 subject classifications. Primary 62G05; Secondary 62G20, 62G35. Key words and phrases. M-estimator, location parameter, asymptotic variance, robustness. Under suitable regularity conditions on ψ and F([2], [3], [5]) and [6], $\hat{\theta}_n$ is a consistent estimator of θ , and $n^{\frac{1}{2}}(\hat{\theta}_n - \theta)$ is asymptotically normal with mean 0 and variance $\sigma^2 V(\psi, F)$, where $$V(\psi, F) = \frac{\int \psi^2 dF}{(\int \psi' dF)^2}.$$ The problem considered in this paper is the following: given ψ , find $\sup \{V(\psi, F) : F \in \mathscr{F}\}$. One can regard the supremum as a measure of the robustness of the M-estimator based on ψ . The problem of finding the ϕ that minimizes $\sup\{V(\phi,F):F\in\mathscr{F}\}$ was solved by Huber [5]. The minimax ϕ has the form $\phi_0=-f_0'/f_0$, where f_0 is the (necessarily absolutely continuous) density of the F_0 in \mathscr{F} which minimizes the Fisher information. For nonminimax ϕ , it will be seen that the least favorable F for ϕ (i.e., the F in \mathscr{F} which maximizes $V(\phi,F)$) typically does not have finite Fisher information, since it puts positive mass at least favorable points. We remark that the formally least favorable F may not satisfy the required regularity conditions. However, in typical cases the subset \mathscr{F}' on which the regularity conditions hold is dense in \mathscr{F} , so that one obtains the correct value of $\sup\{V(\phi,F):F\in\mathscr{F}'\}$. One may question why one would consider any ψ other than the one minimizing $\sup \{V(\psi, F) : F \in \mathscr{F}\}$. The reason is that $\sup \{V(\psi, F) : F \in \mathscr{F}\}$ is just one of several reasonable numerical measures of robustness by which one can compare estimators. For some competing measures, see the table on page 392 of Hampel [4]. Section 2 contains some preliminary examples of finding $\sup \{V(\psi, F): F \in \mathcal{F}\}$. Section 3 presents the main result: necessary and sufficient conditions for F in \mathcal{F} to maximize $V(\psi, F)$. Sections 4 and 5 specialize the result to the gross errors model and the Kolmogorov model, respectively. The generalization of the results to the case of unknown σ is discussed in the concluding remarks in Section 6. 2. Preliminary examples. The following notation is used throughout: for $0 < \varepsilon < 1$ and $0 \le y \le \infty$, define $F_{(y),\varepsilon}$ in $\mathscr{F}_{1,\varepsilon}$ by (2.1) $$F_{(y),\varepsilon} = (1-\varepsilon)\Phi + \varepsilon G_{(y)},$$ where $$G_{(y)}(x) = 0$$ $x < -y$ = $\frac{1}{2}$ $-y \le x < y$ = 1 $x \ge y$. EXAMPLE 2.1. Minimax solution. The ϕ in Ψ_e which minimizes $\sup \{V(\phi, F): F \in \mathscr{F}_{1,e}\}$ has the form with a and k determined by ε , provided that ε is less than a breakdown point ε_0 depending on c. This minimax property is proved in [2] by showing that $\psi_0(x) = -f_0'(x)/f_0(x)$, where f_0 is the density of a $F_0 \in \mathscr{F}_{1,\varepsilon}$ which maximizes $V(\psi_0, F)$. We note that F_0 is not the only F in $\mathscr{F}_{1,\varepsilon}$ which maximizes $V(\psi_0, F)$. To see this, let $F = (1 - \varepsilon)\Phi + \varepsilon G^*$, where G^* is any symmetric distribution satisfying $G^*\{(a, c)\} = \frac{1}{2}$. Then, noting that $k^2 + 2\psi_0' \equiv \psi_0^2$ on the set (a, c), we have $$V(\phi_{\scriptscriptstyle 0},F) = \frac{(1-\varepsilon) \int_{\scriptscriptstyle 0}^{\varepsilon} \phi_{\scriptscriptstyle 0}^{\,2} \, d\Phi + \frac{1}{2}\varepsilon k^2 + 2\varepsilon \int_{\scriptscriptstyle a}^{\varepsilon} \phi_{\scriptscriptstyle 0}^{\,\prime} \, dG^*}{2[(1-\varepsilon) \int_{\scriptscriptstyle 0}^{\varepsilon} \phi_{\scriptscriptstyle 0}^{\,\prime} \, d\Phi + \varepsilon \int_{\scriptscriptstyle a}^{\varepsilon} \phi_{\scriptscriptstyle 0}^{\,\prime} \, dG^*]^2} \, .$$ Thus sup $\{V(\psi_0, F): F \in \mathcal{F}_{1,\epsilon}\}$ is attained at all F of the above form satisfying $$\int_a^c \psi_0' d \left\lceil \frac{F_0 - (1-\varepsilon)\Phi}{\varepsilon} \right\rceil = \int_a^c \psi_0' dG^*.$$ Note that the class of F's for which the equality holds is convex, and that in particular, there is a number $y \in (a, c)$ such that $F_{(y),\epsilon}$ attains $\sup \{V(\psi_0, F): F \in \mathscr{F}_{1,\epsilon}\}$. Example 2.2. Hampel's piecewise linear ψ . For $0 < a \le b < c$, define $\psi_{abc} \in \Psi_e$ by $$\psi_{abc}(x) = x \qquad 0 \le |x| \le a$$ $$= a \operatorname{sgn}(x) \qquad a \le |x| \le b$$ $$= \frac{c - |x|}{c - b} a \operatorname{sgn}(x) \quad b \le |x| \le c$$ $$= 0 \qquad |x| \ge c.$$ TABLE 1 Parameters of optimal "Hampels" | | ε | optimal values of | | | | |-----|------|-------------------|--------|-------------------------------------------------------------------|--| | c | | а | ь | $\sup \{V(\psi_{abc},F)\colon F\in \mathscr{F}_{1,\varepsilon}\}$ | | | 2.0 | .001 | 1.7078 | 1.8558 | 1.4560 | | | | .01 | 1.3022 | 1.6244 | 1.7774 | | | | .05 | 0.8448 | 1.3014 | 2.9224 | | | | . 10 | 0.5967 | 1.1043 | 4.9149 | | | | .20 | 0.3192 | 0.8031 | 15.2974 | | | 4.0 | .001 | 2.5164 | 3.2060 | 1.0205 | | | | .01 | 1.8253 | 2.6913 | 1.1123 | | | | .05 | 1.2558 | 2.2331 | 1.4316 | | | | . 10 | 0.9797 | 1.9917 | 1.8645 | | | | . 20 | 0.6751 | 1.6931 | 3.1191 | | | 8.0 | .001 | 2.6093 | 3.7677 | 1.0109 | | | | .01 | 1.9120 | 3.2045 | 1.0751 | | | 1 | .05 | 1.3520 | 2.7443 | 1.3019 | | | | . 10 | 1.0845 | 2.5122 | 1.5929 | | | | .20 | 0.7925 | 2.2353 | 2.3405 | | Let $$A^* = \sup \left\{ \int_0^\infty \psi_{abc}^2 dF : F \in \mathscr{F}_{1,\varepsilon} \right\} = (1 - \varepsilon) \int_0^\infty \psi^2 d\Phi + (\varepsilon a^2/2)$$ and $$B^* = \inf \left\{ \left\{ \int_0^\infty \psi'_{abc} \, dF : F \in \mathscr{F}_{1,\epsilon} \right\} = (1 - \epsilon) \left\{ \int_0^\infty \psi'_{abc} \, d\Phi - \left[\epsilon a / 2(c - b) \right] \right\}.$$ Assume that the parameters a, b, c and ε are such that $B^* > 0$, so that $\sup \{V(\psi, F) \colon F \in \mathscr{F}_{1,\varepsilon}\} \leq A^*/[2(B^*)^2]$. To see that the supremum is equal to $A^*/[2(B^*)^2]$, note that $V(\psi, F_{(y_n),\varepsilon}) \to A^*/[2(B^*)^2]$ for any sequence $\{y_n\}$ for which $y_n \downarrow b$ as $n \to \infty$. Given c and ε , one can obtain the optimal ψ of the form ψ_{abc} by finding the values of a and b that minimize $A^*/[2(B^*)^2]$. Table 1 presents optimal values of a and b and the corresponding minimum values of $\sup \{V(\psi_{abc}, F) : F \in \mathcal{F}_{1,\varepsilon}\}$. EXAMPLE 2.3. Monotone ϕ . Suppose that $\phi \in \Psi$ is monotone nondecreasing with ϕ' monotone nonincreasing on $[0, \infty)$. Examples are: (i) $\phi(x) = x$; (ii) $\phi(x) = \Phi(x) - \frac{1}{2}$; (iii) Huber's estimator $\phi_k(x) = \{\min\{|x|, k\} \operatorname{sgn}(x), \text{ defined for } k > 0$. For such ϕ , one sees immediately that $\sup\{V(\phi, F) : F \in \mathscr{F}_{1,\epsilon}\} = V(\phi, F_{(\infty),\epsilon})$. The same supremum is obtained if $\mathscr{F}_{1,\epsilon}$ is replaced by a subclass $\mathscr{F}'_{1,\epsilon}$ of distributions which are proper (i.e., $F\{(-\infty, \infty)\} = 1$) and which satisfy the required regularity conditions. REMARK. The cases for which the values of $\sup \{V(\psi, F): F \in \mathscr{F}\}$ are not always obvious occur when ψ is not monotone. For this reason the theory in the next section is developed for the class Ψ_c . The value of c is taken to be finite, but the results can easily be extended to the case $c=\infty$ to cover cases of nonmonotone ψ supported by the real line. 3. The general result. Let \mathscr{F} be a class of df's satisfying the properties listed in Section 1. Let c be a fixed number in $(0, \infty)$, and assume that \mathscr{F} satisfies: $$(3.1) F(c-0) - F(-c) > 0 \text{for all } F \in \mathcal{F}.$$ The condition, imposed to eliminate 0/0 as a formal expression for $V(\psi, F)$, is satisfied in the practical cases where $\mathscr F$ is a "close neighborhood" of Φ . Define $\Psi_{c'}$ to be the subset of ϕ 's in Ψ_{c} for which the only possible discontinuities of ϕ' are at -c and c. The results, given here for ϕ in $\Psi_{c'}$, are easily modified to cover other ϕ 's in Ψ_{c} of interest (see Section 6). For $\phi \in \Psi_c$ and $F \in \mathscr{F}$, define $$A_c(\psi, F) = \int_0^c \psi^2 dF,$$ and $$B_c(\psi, F) = \int_0^c \psi' dF$$, with the convention that ψ' is defined at c by $\psi'(c-0)$ and that dF really means dF^* , where $F^*(0) = \frac{1}{2}$ and $F^*(x) = F(x)$ for x > 0. Define $$V_{c}(\phi, F) = A_{c}(\phi, F)/[2B_{c}^{2}(\phi, F)]$$, and note that $V_c(\phi, F)$ coincides with $V(\phi, F)$ unless $\phi'(c-0) \neq 0$ and $F(c) \neq F(c-0)$, so that $\sup \{V_c(\phi, F) : F \in \mathscr{F}\} = \sup \{V(\phi, F) : F \in \mathscr{F}\}$. We prefer to work with $V_c(\phi, F)$ since it is a continuous functional, while $V(\phi, F)$ need not be. LEMMA 3.1. Let $\psi \in \Psi_c'$. Then: - (i) There is a F_0 in \mathscr{F} which attains $\sup \{V_c(\psi, F) : F \in \mathscr{F}\},\$ - (ii) $\sup \{V_{\mathfrak{e}}(\psi, F) : F \in \mathscr{F}\} < \infty$ if and only if $$\inf \{B_{\mathfrak{o}}(\psi, F) : F \in \mathscr{F}\} > 0.$$ PROOF. Suppose (3.2) holds. Then $\sup\{V_c(\psi, F): F \in \mathscr{F}\} < \infty$, since $\sup\{A_c(\psi, F): F \in \mathscr{F}\} \le (\frac{1}{2}) \sup\{\psi^2(x): x \in [0, c]\} < \infty$. Also, if (3.2) holds, then $V_c(\psi, F)$ is a continuous function on the compact set \mathscr{F} , and (i) follows. Suppose (3.2) fails. To complete the proof of (i) and (ii), it suffices to show that $B_c(\phi, F) = 0$ for some F in \mathscr{F} . Let $F^* \in \mathscr{F}$ satisfy $B_c(\phi, F^*) \leq 0$. Since \mathscr{F} is convex and contains Φ , $F_t = (1-t)\Phi + tF^*$ is in \mathscr{F} for all $t \in [0, 1]$. Since $B_c(\phi, \Phi) = \int_0^s x\phi(x)\phi(x) dx > 0$ and $B_c(\phi, F)$ is continuous, there is a $t_0 \in [0, 1)$ such that $B_c(\phi, F_{t_0}) = 0$. \square THEOREM 3.1. Suppose ψ is in Ψ_c' and satisfies (3.2). Then F_0 maximizes $V_c(\psi, F)$ in $\mathscr F$ if and only if $$(3.3) \qquad \int_0^c \left[2A_c(\psi, F_0)\psi'(x) - B_c(\psi, F_0)\psi^2(x) \right] d(F - F_0) \ge 0$$ for all $F \in \mathcal{F}$; or equivalently, if and only if (3.4) $$\int_0^c \left[2A_c(\psi, F_0)\psi'(x) - B_c(\psi, F_0)\psi^2(x) \right] dF$$ is minimized in \mathcal{F} by F_0 . PROOF. Since $A_c(\psi, F)$ and $B_c(\psi, F)$ are linear functions of F and $A_c(\psi, F) > 0$ for all F in \mathscr{F} , it follows by Lemma 6 of Huber [5] that $1/V_c(\psi, F) = 2[B_c(\psi, F)]^2/A_c(\psi, F)$ is a convex function of F. Since \mathscr{F} and $1/V_c(\psi, F)$ are convex, F_0 minimizes $1/V_c(\psi, F)$ iff $$\left. \frac{d}{dt} \frac{1}{V_c(\psi, F_t)} \right|_{t=0} \ge 0$$ for every $F \in \mathcal{F}$, where $F_t = (1 - t)F_0 + tF$. A straightforward calculation shows that (3.5) is equivalent to $$2(\S_0^c \, \psi^2 \, dF_0)(-\S_0^c \, \psi' \, dF_0 + \S_0^c \, \psi' \, dF) - (\S_0^c \, \psi' \, dF_0)(-\S_0^c \, \psi^2 \, dF_0 + \S_0^c \, \psi^2 \, dF) \geqq 0 ,$$ which is (3.3). \square REMARK 3.1. Theorem 3.1 does not provide an explicit solution for the least favorable F_0 in terms of the given ϕ . In typical applications, one guesses the form of F_0 (e.g., $F_{(x),\varepsilon}$ for some x), calculates the least favorable distribution of this form, and then checks condition (3.3). REMARK 3.2. F_0 need not be unique. All that one can say in general about the subset of \mathscr{F} on which $1/V_c(\phi, F)$ attains its minimum is that it is necessarily convex. 4. Application to the gross errors model. Let $0 < c < \infty$, $0 < \varepsilon < 1$, and $\mathcal{F} = \mathcal{F}_{1,\varepsilon}$, defined by (1.1). Then condition (3.1) is satisfied, so that Lemma 3.1 and Theorem 3.1 are true when $\mathcal{F} = \mathcal{F}_{1,\varepsilon}$. Condition (3.2) becomes $$(4.1) (1-\varepsilon) \int_0^\varepsilon \phi'(x) \varphi(x) dx + \varepsilon \inf \{ \phi'(x) : x \in [0,c) \} > 0.$$ Note that since $B_c(\psi, \Phi) > 0$ and inf $\psi'(x) < 0$, there is a "breakdown point" ε_0 in (0, 1) at which the left-hand side of (4.1) equals 0. In terms of ε_0 , (4.1) can be written as $\varepsilon < \varepsilon_0$. Theorem 3.1 can be rewritten as: Theorem 4.1. Suppose $\psi \in \Psi_{c'}$ and (4.1) holds. Then $F_0 = (1 - \varepsilon)\Phi + \varepsilon G_0$ maximizes $V_c(\psi, F)$ in $\mathscr{F}_{1,\varepsilon}$ if and only if $$G_0\{S\}=1$$, where S is the set of points in [-c, c] at which $2A_c(\psi, F_0)\psi'(x) - B_c(\psi, F_0)\psi^2(x)$ attains its minimum. PROOF. Since $\psi \in \Psi_c'$, ψ^2 attains a positive maximum at some $x_0 \in (0, c)$ where $\psi'(x_0) = 0$. Thus min $\{2A_c(\psi, F_0)\psi' - B_c(\psi, F_0)\psi^2\} < 0$, so that the set S on which the minimum is attained satisfies $S \subset [-c, c]$. Let $F = (1 - \varepsilon)\Phi + \varepsilon G$ be any other member of $\mathscr{F}_{1,\varepsilon}$. Since $F - F_0 = \varepsilon (G - G_0)$, condition (3.3) becomes $$\int_0^c \left[2A_c(\psi, F_0)\psi'(x) - B_c(\psi, F_0)\psi^2(x) \right] d(G - G_0) \ge 0.$$ This holds for all $F \in \mathcal{F}_{1,\epsilon}$ if and only if $G_0\{S\} = 1$. \square REMARK 4.1. An immediate consequence of Theorem 4.1 is that a necessary condition for the least favorable G_0 to have a density is that $2\psi' - k\psi^2$ be constant on the support of G_0 , where $k = B_c(\psi, F_0)/A_c(\psi, F_0)$. This implies that on the support of G_0 , ψ must have one of three special forms: $\psi(x) = a \tan \left[\frac{1}{2}ka(x-b)\right]$, $\psi(x) = a$, or $\psi(x) = a \tan \left[\frac{1}{2}ka(b-x)\right]$. Note that all three forms appear in solutions to minimax problems in [2] and [5]. The simplest possible form for a least favorable F in $\mathcal{F}_{1,\epsilon}$ is $F_{(y),\epsilon}$, defined by (2.1). COROLLARY 4.1. Under the conditions of Theorem 4.1, $F_{(x_0),\epsilon}$ maximizes $V_c(\psi, F)$ in $\mathcal{F}_{1,\epsilon}$ if and only if x_0 is a number in [0, c] which minimizes $$(4.2) 2A_{\mathfrak{o}}(\psi, F_{(x_0),\varepsilon})\psi'(x) - B_{\mathfrak{o}}(\psi, F_{(x_0),\varepsilon})\psi^2(x).$$ PROOF. Immediate from Theorem 4.1. REMARK 4.2. To apply Corollary 4.1, one computes the x_0 in [0, c] which maximizes $$V_c(\phi, F_{(x),\varepsilon}) = \frac{(1-\varepsilon)\int_0^\varepsilon \phi^2(y)\varphi(y)\,dy + \frac{1}{2}\varepsilon\phi^2(x)}{2[(1-\varepsilon)\int_0^\varepsilon \phi'(y)\varphi(y)\,dy + \frac{1}{2}\varepsilon\phi'(x)]^2},$$ and then checks to see whether x_0 minimizes (4.2). The next theorem shows that this is always the case when $\phi \in \Psi_e$ satisfies the following further conditions: (4.3) ψ is twice differentiable and satisfies $\psi'' \leq 0$ on [0, c]; and (4.4) $$\psi \psi' / \psi''$$ is monotone nondecreasing on [0, c]. The condition (4.3), implying that ψ is concave on [0, c], is a natural requirement; however, (4.4) is a rather special condition. THEOREM 4.2. Suppose that $\psi \in \Psi_{\mathfrak{c}'}$ satisfies (4.1), (4.3), and (4.4). Let $x_0 \in [0, c]$ maximize $V_{\mathfrak{c}}(\psi, F_{(x), \varepsilon})$. Then $F_{(x_0), \varepsilon}$ maximizes $V_{\mathfrak{c}}(\psi, F)$ over the set of all F in $\mathscr{F}_{1,\varepsilon}$. PROOF. Note that for $x \in [0, c]$, $$\frac{d}{dx} \left[\frac{1}{V_o(\phi, F_{(x), \varepsilon})} \right] \\ = \frac{2B_o(\phi, F_{(x), \varepsilon})\varepsilon}{\left[A_o(\phi, F_{(x), \varepsilon})\right]^2} \left[A_o(\phi, F_{(x), \varepsilon})\phi''(x) - B_o(\phi, F_{(x), \varepsilon})\phi(x)\phi'(x)\right],$$ so that by (4.1), $d/dx[1/V_c(\psi, F_{(x),\epsilon})]$ has the same sign as $$A_c(\phi, F_{(x),\epsilon})\phi''(x) - B_c(\phi, F_{(x),\epsilon})\phi(x)\phi'(x)$$. The case $x_0 = 0$ is impossible since $\psi(0) = 0$ and $\psi'(0) \ge 0$. In the case $x_0 \in (0, c)$, we have $$0 = \frac{d}{dx} \left[\frac{1}{V_{c}(\psi, F_{(x_{0}), \varepsilon})} \right]_{x=x_{0}} = A_{c}(\psi, F_{(x_{0}), \varepsilon}) \psi''(x_{0}) - B_{c}(\psi, F_{(x_{0}), \varepsilon}) \psi(x_{0}) \psi'(x_{0})$$ $$= \frac{d}{dx} \left[2A_{c}(\psi, F_{(x_{0}), \varepsilon}) \psi'(x) - B_{c}(\psi, F_{(x_{0}), \varepsilon}) \psi^{2}(x) \right]_{x=x_{0}}.$$ Conditions (4.3) and (4.4) imply that $$A_{\mathfrak{o}}(\psi, F_{(x_0), \mathfrak{o}})\psi''(x) - B_{\mathfrak{o}}(\psi, F_{(x_0), \mathfrak{o}})\psi(x)\psi'(x) \leq 0 \quad 0 \leq x \leq x_0$$ $$\geq 0 \quad x_0 \leq x \leq c,$$ so that x_0 minimizes (4.2) and the conclusion follows from Corollary 4.1. Similarly, in the case $x_0 = c$, one finds that $A_c(\psi, F_{(c),\epsilon})\psi''(x) - B_c(\psi, F_{(c),\epsilon})\psi(x)\psi'(x) \le 0$ for all $x \in [0, c]$, so that x = c minimizes (4.2). \square Example. Consider the following ϕ proposed by Andrews [1]: $$\psi_s(x) = \sin(\pi x/c) \quad |x| \le c$$ $$= 0 \quad |x| > c.$$ Since ψ_s satisfies (4.3) and (4.4), Theorem 4.2 applies and the result can be described as follows: Define ε_1 and ε_2 by $$\epsilon_{\scriptscriptstyle 1}/(1-\epsilon_{\scriptscriptstyle 1})=\max\left\{0,\,2[(c/\pi)B_{\scriptscriptstyle c}(\psi_{\scriptscriptstyle s},\,\Phi)-A_{\scriptscriptstyle c}(\psi_{\scriptscriptstyle s},\,\Phi)] ight\}$$ and $$\varepsilon_2/(1-\varepsilon_2)=2(c/\pi)B_c(\phi_s,\Phi)$$. If $0 < \varepsilon \le \varepsilon_1$, then $F_{(x_0),\varepsilon}$ maximizes $V_{\varepsilon}(\psi_{\varepsilon}, F)$ in $\mathscr{F}_{1,\varepsilon}$, where $$x_0 = \frac{c}{\pi} \cos^{-1} \left[\frac{2\pi (1 - \varepsilon) A_c(\psi_s, \Phi) + \varepsilon \pi}{2(1 - \varepsilon) c B_c(\psi_s, \Phi)} \right].$$ If $\varepsilon_1 < \varepsilon < \varepsilon_2$, then $F_{(\varepsilon),\varepsilon}$ maximizes $V_c(\psi_s,F)$ in $\mathscr{F}_{1,\varepsilon}$. If $\varepsilon_2 \le \varepsilon < 1$, then $\sup \{V_c(\psi_s,F): F \in \mathscr{F}_{1,\varepsilon}\} = \infty$. For various values of c and ε , Table 2 presents the value of $\sup \{V_c(\psi_s,F): F \in \mathscr{F}_{1,\varepsilon}\}$ and the corresponding value of x_0 for which $F_{(x_0),\varepsilon}$ attains the supremum. Also tabulated are the values of ε_1 and ε_2 corresponding to each c. TABLE 2 Least favorable ε -contamination and the corresponding asymptotic variances when $\psi(x) = \sin(\pi x/c)$ for $|x| \le c$, $\psi(x) = 0$ otherwise* | c | $arepsilon_1$ | $arepsilon_2$ | ε | | | | | | |------|---------------|---------------|--------------------|--------------------|--------------------|--------------------|--------------------|--| | | | | .001 | .01 | .05 | .10 | .20 | | | 2.0 | 0 | . 2454 | 1.8620
(2.0) | 1.9890
(2.0) | 2.7700
(2.0) | 4.7392
(2.0) | 43.196
(2.0) | | | 3.0 | . 1201 | .3673 | 1.2070
(2.3340) | 1.2584
(2.3576) | 1.5337
(2.4801) | 2.0432
(2.7163) | 4.6344
(3.0) | | | 4.0 | .2755 | .4235 | 1.0692
(2.6429) | 1.1134
(2.6610) | 1.3401
(2.7476) | 1.7182
(2.8737) | 3.1514
(3.2301) | | | 6.0 | . 3979 | . 4658 | 1.0187
(3.4692) | 1.0749
(3.4897) | 1.3565
(3.5867) | 1.8023
(3.7228) | 3.2593
(4.0641) | | | 8.0 | . 4423 | . 4807 | 1.0127
(4.3690) | 1.0931
(4.3944) | 1.4930
(4.5132) | 2.1165
(4.6786) | 4.0740
(5.0852) | | | 10.0 | .4630 | .4877 | 1.0139
(5.3033) | 1.1271
(5.3339) | 1.6879
(5.4773) | 2.5565
(5.6762) | 5.2370
(6.1611) | | ^{*} The top entry for each case is $\sup \{V(\phi, F) : F \in \mathscr{F}_{1,\epsilon}\}$ and the bottom entry (in parenthéses) is the value of x_0 for which $V_{\sigma}(\phi, F_{(x_0),\epsilon})$ attains the supremum. For various values of c and ε , Table 3 compares $\sup\{V_c(\psi,F): F\in \mathscr{F}_{1,\varepsilon}\}$ for the following ψ 's: (i) the minimax ψ_0 (Example 2.1); (ii) the optimal Hampel ψ_{abc} (Example 2.2); and (iii) ψ_s . Notice that (1) there is not much loss of efficiency in using the optimal Hampel instead of ψ_0 , and (2) in the range c=2 to 4 and $\varepsilon=.05$ to .10, the maximum asymptotic variance for ψ_s is smaller than that of the optimal Hampel. To conclude this section, a discussion of regularity conditions follows. Let $\mathcal{F}'_{1,\varepsilon}$ be the class of distributions of the form $F=(1-\varepsilon)\Phi+\varepsilon G$, where G is continuous and symmetric. For $\psi\in\Psi_c$, define the estimator as the Newton's method solution of $\sum \psi[(X_i-\theta)/\sigma]=0$ with the sample median as starting value. Denote by C the condition that the estimator defined by ψ is consistent and asymptotically normally distributed with asymptotic variance $V(\psi,F)$. A | c | ψ | ε | | | | | | | |----|--------------|---------|--------|--------|--------|--------|---------|--| | | | 0 | .001 | .01 | .05 | .10 | .20 | | | 2 | ψ_0 | 1.3540 | 1.4503 | 1.7273 | 2.6401 | 4.1291 | 11.2118 | | | | ψ_{abc} | 1.3540 | 1.4560 | 1.7774 | 2.9224 | 4.9149 | 15.2974 | | | | ψ_s | 1.8467 | 1.8620 | 1.9890 | 2.7700 | 4.7392 | 43.1958 | | | 3 | ψ_0 | 1.0302 | 1.0622 | 1.1663 | 1.5026 | 1.9633 | 3.3772 | | | | ψ_{abc} | 1.0302 | 1.0677 | 1.2033 | 1.6568 | 2.3024 | 4.4148 | | | | ψ_s | 1.2015 | 1.2070 | 1.2584 | 1.5337 | 2.0432 | 4.6344 | | | 4 | ψ_0 | 1.0011 | 1.0151 | 1.0817 | 1.3143 | 1.6212 | 2.4632 | | | | ψ_{abc} | 1.0011 | 1.0205 | 1.1123 | 1.4316 | 1.8645 | 3.1191 | | | | ψ_s | 1.0645 | 1.0692 | 1.1134 | 1.3401 | 1.7182 | 3.1514 | | | 6 | ψ_0 | 1.0000+ | 1.0096 | 1.0656 | 1.2600 | 1.5038 | 2.1145 | | | | ψ_{abc} | 1.0000+ | 1.0121 | 1.0820 | 1.3303 | 1.6547 | 2.5174 | | | | ψ_s | 1.0126 | 1.0187 | 1.0749 | 1.3565 | 1.8023 | 3.2593 | | | 8 | ψ_0 | 1.0000+ | 1.0096 | 1.0653 | 1.2564 | 1.4914 | 2.0584 | | | | ψ_{abc} | 1.0000+ | 1.0110 | 1.0751 | 1.3019 | 1.5929 | 2.3405 | | | | ψ_s | 1.0040 | 1.0127 | 1.0931 | 1.4930 | 2.1165 | 4.0740 | | | 10 | ψ_0 | 1.0000+ | 1.0096 | 1.0652 | 1.2561 | 1.4900 | 2.0479 | | TABLE 3 Comparison of $\sup \{V(\psi, F) : F \in \mathscr{F}_{1,\epsilon}\}\$ for three ψ 's which vanish off the set [-c, c] proof is given in [2] that C holds in the special case where $G = \Phi$ and ϕ is smooth, and the proof is extended in [3] to show that for any $\phi \in \Psi_e$, C holds uniformly for all F in $\mathcal{F}'_{1,\epsilon}$ if ε is sufficiently small. Since $\mathcal{F}'_{1,\epsilon}$ is dense in $\mathcal{F}_{1,\epsilon}$, it follows that $\sup \{V(\phi, F): F \in \mathcal{F}'_{1,\epsilon}\} = \sup \{V_e(\phi, F): F \in \mathcal{F}'_{1,\epsilon}\}$. 1.0722 1.1271 1.2890 1.6879 1.5643 2.5565 2.2584 5.2375 1.0105 1.0139 5. Application to the Kolmogorov model. Let $0 < c < \infty$, $0 < \varepsilon < 1$, and $\mathscr{F} = \mathscr{F}_{2,\varepsilon}$, defined by (1.2). We remark that, for sufficiently small ε , the ψ in Ψ_{ε} that minimizes $\sup \{V(\psi, F) : F \in \mathscr{F}_{2,\varepsilon}\}$ has the form $$\psi(x) = k \tan \left(\frac{1}{2}kx\right) \qquad 0 \le |x| \le a$$ $$= x \qquad a \le |x| \le b$$ $$= m \tanh \left[\frac{1}{2}m(c - |x|)\right] \operatorname{sgn}(x) \quad b \le |x| \le c$$ $$= 0 \qquad |x| \ge c.$$ The proof, obtained by combining portions of proofs appearing in [2] and [5], is omitted. Assume throughout this section that ε and c satisfy $$(5.1) \qquad \qquad \varepsilon < \frac{1}{2} [\Phi(c) - \frac{1}{2}] .$$ 1.0000 + 1.0016 ψ_{abc} ψ_s Then $\mathscr{F}_{2,\epsilon}$ satisfies condition (3.1), so that Lemma 3.1 and Theorem 3.1 apply. As in Section 4, Theorem 3.1 will be specialized to ϕ in Ψ_{ϵ}' satisfying (4.3) and (4.4), in which case $\sup \{V(\psi, F) : F \in \mathscr{F}_{2,\epsilon}\}$ can be determined explicitly. Define $x_1 = \Phi^{-1}(\frac{1}{2} + \varepsilon)$ and $x_2 = \min \{\Phi^{-1}(1 - \varepsilon), c\}$, and note that $0 < x_1 < x_2 \le c$, by (5.1). Adopting the convention that each F in $\mathscr{F}_{2,\varepsilon}$ is normalized by setting $F(0) = \frac{1}{2}$, it is clear that a symmetric df F is in $\mathscr{F}_{2,\varepsilon}$ if and only if $F_*(x) \le F(x) \le F^*(x)$ for all $x \ge 0$, where $$F_*(x) = \frac{1}{2} \qquad 0 \le x < x_1$$ = $\Phi(x) - \varepsilon \quad x \ge x_1$ and $$F^*(x) = \frac{1}{2} \qquad x = 0$$ $$= \Phi(x) + \varepsilon \quad 0 < x < x_2$$ $$= 1 \qquad x \ge x_2.$$ For $y \ge 0$, define $F_{\{y\}} \in \mathscr{F}_{2,\varepsilon}$ by $$F_{y}(x) = F_{*}(x) \quad 0 \le x < y$$ = $F^{*}(x) \quad x \ge y$. LEMMA 5.1. Let $x_0 \in [0, c]$, and let g be a continuously differentiable function on [0, c] that satisfies $g(c) \leq 0$ and $$g'(x) \leq 0 \quad x \in [0, x_0]$$ $$\geq 0 \quad x \in [x_0, c].$$ Then $\int_0^c g \, dF$ is minimized in $\mathscr{F}_{2,\epsilon}$ by $F_{\{x_0\}}$. PROOF. Let $F \in \mathcal{F}_2$. Then Suppose that $\phi \in \Psi_c'$ satisfies (4.3). Then since $\phi'(c-0) \leq 0$, we can apply Lemma 5.1 with $g = \phi'$ and $x_0 = c$ to obtain that $F_{\{c\}}$ minimizes $\int_0^c \phi' dF$ in $\mathscr{F}_{2,c}$. Condition (3.2) of Lemma 3.1 can be written as $$(5.2) \qquad \int_{x_1}^c \psi'(x)\varphi(x)\,dx + \psi'(c-0)\min\left\{2\varepsilon, 1-\Phi(c)+\varepsilon\right\} > 0.$$ The analogue of Theorem 4.2 for the class $\mathscr{F}_{2.5}$ is: THEOREM 5.1. Suppose that $\psi \in \Psi_c$ satisfies (5.2), (4.3), and (4.4). If x_0 maximizes $V_c(\psi, F_{\{x\}})$ over all x in [0, c], then $F_{\{x_0\}}$ maximizes $V_c(\psi, F)$ over all F in $\mathcal{F}_{2,c}$. Proof. On the set [0, c] we have $$\frac{d}{dx} \left[\frac{1}{V_c(\psi, F_{\{x\}})} \right] = \frac{4B_c(\psi, F_{\{x\}})H(x)}{[A_c(\psi, F_{\{x\}})]^2} \left[A_c(\psi, F_{\{x\}})\psi''(x) - B_c(\psi, F_{\{x\}})\psi(x)\psi'(x) \right],$$ where $$H(x) = \Phi(x) - \frac{1}{2} + \varepsilon \quad x \in [0, x_1]$$ $$= 2\varepsilon \qquad x \in [x_1, x_2]$$ $$= 1 - \Phi(x) + \varepsilon \quad x \in [x_2, c].$$ The same argument used in the proof of Theorem 4.2 yields $$g'(x) \leq 0 \quad 0 \leq x \leq x_0$$ $$\geq 0 \quad x_0 \leq x \leq c,$$ where $g(x) = 2A_c(\phi, F_{\{x_0\}})\phi'(x) - B_c(\phi, F_{\{x_0\}})\phi^2(x)$. Note that $g(c) \le 0$. By Lemma 5.1, $F_{\{x_0\}}$ minimizes $$\int_0^c \left[2A_c(\phi, F_{\{x_0\}})\phi' - B_c(\phi, F_{\{x_0\}})\phi^2 \right] dF$$ in $\mathscr{F}_{2,\epsilon}$. The conclusion follows by Theorem 3.1. [] 6. Concluding remarks. Let $0 < b < c < \infty$ and define Ψ_{bc} to be the class of ϕ 's in Ψ_c for which $\phi'(x-0) + \phi'(x+0) \ge 0$ for all $x \in [0, b)$, and $\phi'(x)$ exists and is < 0 for all $x \in (b, c)$. Note that ϕ_0 and ϕ_{abc} (and, one can argue, all ϕ 's in Ψ_c of practical interest) have this form. If $\phi \in \Psi_{bc}$, then to find $\sup \{V(\phi, F) : F \in \mathscr{F}_{1,c}\}$ one need only consider $F = (1 - \varepsilon)\Phi + \varepsilon G$ for the class of symmetric G satisfying $G\{[b, c]\} = \frac{1}{2}$. For such F, one can replace $B(\phi, F)$ by a continuous functional in the obvious way to obtain theorems for the class Ψ_{bc} analogous to those obtained for Ψ_c '. Another generalization is the following: let Ψ_{∞} denote the class of ϕ 's in Ψ for which ϕ' is continuous everywhere and both $\lim_{x\to\infty} \phi(x)$ and $\lim_{x\to\infty} \phi'(x)$ exist and are finite. Then, since ϕ and ϕ' are continuous on the compact set $[-\infty, \infty]$, Lemma 3.1 and Theorem 3.1 hold for the class Ψ_{∞} . When the scale parameter σ in the model is unknown, one proposal for defining the *M*-estimator of θ is to solve $$\sum_{i=1}^{n} \psi\left(\frac{X_i - \hat{\theta}_n}{\hat{\sigma}_n}\right) = 0$$ for $\hat{\theta}_n$, where $\hat{\sigma}_n = \hat{\sigma}_n(X_1, \dots, X_n)$ is an estimator of σ that is unbiased when $F = \Phi$. Under regularity conditions, $\hat{\theta}_n$ is consistent and $n!(\theta_n - \theta)$ is asymptotically normal with mean 0 and a variance which we choose to write in the form $\sigma^2 \beta(F)V(\psi, F)$. If \mathscr{F} is the gross errors or Kolmogorov model with ε "small," then $\beta(F)$ is "close to" 1 for all F in \mathscr{F} (see Section 4 of [2] for a specific example of this). In such cases $\sup \{V(\psi, F) : F \in \mathscr{F}\}$ is a reasonably good measure of robustness in the scale unknown case. Note that all results stated for neighborhoods of Φ essentially go through if Φ is replaced by any symmetric distribution H for which $\int \phi' dH > 0$. Acknowledgment. The author wishes to thank the referees for their helpful comments. ## REFERENCES - [1] Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H. and Tukey, J. W. (1972). Robust Estimates of Location. Princeton Univ. Press. - [2] COLLINS, J. R. (1976). Robust estimation of a location parameter in the presence of asymmetry. Ann. Statist. 4 68-85. - [3] COLLINS, J. R. (1976). On the consistency of *M*-estimators. Purdue Univ. Dept. of Statistics Mimeograph Series No. 450. - [4] HAMPEL, F. R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 69 383-393. - [5] HUBER, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101. - [6] HUBER, P. J. (1967). The behavior of maximum likelihood estimates under non-standard conditions. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1 221-233, Univ. of California Press. DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF CALGARY 2920 24 AVENUE N. W. CALGARY, ALBERTA, CANADA T2N 1N4