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where
1 .. 1
k(7) . ¥ a7 costydy,
illustrating the ‘“bandwidth” role of 2. (See [1].)

Moore and Yackel [5] have made a detailed comparison of window vs. k-NN
type density estimates and conclude (not surprisingly) that one does better with
k-NN estimates near x where £(x) is small (and presumably vice-versa). A direct
comparison of practical k-NN type estimates vs. window type estimates for
E(Y|X = x) must of course include the prescription for choosing k or 2 as well
as for choosing the shape, e.g., uniform, triangular or quadratic examples as
given by Professor Stone, or as determined by Q here. Any Q within the same
equivalence class (in the sense of [9]) will give the same (asymptotic) results, so
within a class, computational ease can be the criteria. To choose from among
a finite number of representatives of equivalence classes compute min, V(1) or
min, R(2) for each representative and take the minimizer over the representatives
tried.

REFERENCES

[1] CocBURN, R. and Davis, H. T. (1974). Periodic splines and spectra estimation. Ann. Statist.
2 1108-1126.

[2] CrAVEN, P. and WAHBA, G. (1976). Smoothing noisy data with spline functions: Estimat-
ing the correct degree of smoothing by the method of generalized cross-validation.
Unpublished.

[3] Hupson, H. M. (1974). Empirical Bayes estimation. Technical Report 58, Dept. Statist.,
Stanford Univ.

[4] KiMELDORF, GEORGE and WAHBA, GRACE (1971). Some results on Tchebycheffian spline
functions. J. Math. Anal. Appl. 33 82-95.

[5S] Moorg, D. S. and YAckEL, J. W. (1976). Large sample properties of nearest neighbor
density function estimators. Mimeo series 455, Dept. Statist., Purdue Univ.

[6] WaHBA, G. (1975). A canonical form for the problem of estimating smooth surfaces. Tech-
nical Report 420, Dept. Statist., Univ. of Wisconsin-Madison.

[71 WaHBA, G. (1977). Practical approximate solutions to linear operator equations when the
data are noisy. SIAM J. Num. Anal. 14, No. 4. To appear.

[8] WaHuBA, G. (1976). A survey of some smoothing problems and the method of generalized
cross-validation for solving them. Technical Report 457, Dept. Statist., Univ. of
Wisconsin-Madison. Proc. Symp. Appl. Statist. (P. R. Krishnaiah, ed.). To appear.

[9] WaHBA, G. (1974). Regression design for some equivalence classes of kernels. Ann. Statist.
2 925-934.

[10] MALLows, C. L. (1973). Some comments on C,. Technometrics 15 661-675.

REPLY TO DISCUSSION
First I wish to thank an Associate Editor handling the paper for suggesting
that it be used for discussion. I also wish to express my gratitude to him and
the other discussants for the wide variety of interesting, thought provoking and
uniformly constructive comments and to the Editor, Richard Savage, for his
help in improving the accuracy, style and readability of the paper.
Cover wonders why continuity requirements are not needed for consistency.
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Perhaps the best explanation is that a function in L?(IR?, «) can be arbitrarily well
approximated in norm by a continuous function having compact support. Cover
also mentions possible extensions to separable metric spaces. But it is not at all
clear how to eliminate the Euclidean nature of the proof of Proposition 11.

Breiman refers to the “leave one out” (coined PRESS by Allen) method of
computing the residual sum of squares from a fit. In the present context let
£.(Y|X) denote an estimator of E(Y|X) based on thedata (X, ¥;),1 <j < n,
and j # i. Then PRESS = Y, (Y, — ,£,(Y|X,))>. As Breiman points out, the
method of minimizing PRESS can be used to determine the proper amount of
smoothing, to select subsets of independent variables and even to choose be-
tween, say, kernel and nearest neighbor weighting systems. For large sample
sizes PRESS should be calculated as i ranges over only a subset of the cases. It
may be desirable to carefully select which cases to use, intentionally including
(or perhaps excluding, depending on the application) cases where X; is in the
tail of its distribution or Y, has a large residual from a linear fit.

The method of minimizing PRESS can be combined with the method discussed
by Chernoff for detecting nonlinearity. Specifically PRESS should be obtained
and minimized as indicated above when the Y,’s are replaced by their residuals
from a linear fit. The original residual sum of squares RSS should be compared
to PRESS. If RSS is smaller or only negligibly larger than PRESS, linearity is
confirmed. Otherwise nonlinearity is indicated and the estimated regression
function can be obtained as suggested in Section 5 on trend removal.

Bickel wonders how much is lost by using a nonparametric method over an
efficient parametric method. For reasonably large sample sizes, the combined
method just described may be highly efficient in comparison to linear regression
even if the true regression function is linear. Bickel proposes a different and
imprecisely formulated method for achieving this goal. Parzen also proposes a
method of estimation which he believes will be “asymptotically efficient.”

Cox suggests that the test of a parametric form “is most easily done if the
‘smoothed’ estimators are calculated at an isolated set of points using nonover-
lapping data sets, so that independent errors result.” This could be done by
using statistically equivalent blocks (see the reference to Anderson in Olshen’s
discussion).

Bickel, Brillinger and Olshen mention various contexts in which (X, Y,), - - -,
(X, Y,) are not i.i.d. Sampling schemes such as the one described by Olshen
are particularly interesting. Let the population on which (X, Y) is defined be
divided into J < oo subpopulations representing known proportions of the origi-

nal population. Let random samples of sizes n,, ---, n, be drawn from these
subpopulations. It should be possible to obtain consistent estimators of the
quantities discussed in this paper from the combined sample as n,, - - -, n, each

tend to infinity.
Several of the discussants describe possible advantages of various weighting
systems. Wahba states in her context that “the correct choice of the ‘bandwidth’
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parameter is more important than the choice of the ‘shape’ provided the ‘shape’
is in an appropriate class.” Eddy mentions the computational advantage of
kernel weights if the weights are chosen to be zero whenever p,(X;, x) > a, for
some constant a,. A disadvantage of such weights is that the estimator must be
given a special definition on the nonempty set {x: min, o, (X, x) > a,}. Eddy
and Sacks point out the desirability of using weights which may be negative.
Rosenblatt and Sacks are particularly concerned about possible bias when X is
in the tail of its distribution. The local linear regression estimator discussed in
Section 4 does yield negative weights and was designed to reduce bias in the
tails. Trend removal as discussed in Section 5 is also useful in this regard.
Estimators obtained from kernel weights can be expected to have smaller bias
but larger variance in the tails than estimators obtained from nearest neighbor
weights.

Rosenblatt refers to work which indicates that nearest neighbor density esti-
mates appear to have disadvantages under certain circumstances. He suggests
that possible difficulties are due to bias of the estimate in the tail of the distri-
bution. On the other hand, Wahba states that “Moore and Yackel have made
a detailed comparison of window vs. k-NN type density estimates and conclude
(not surprisingly) that one does better with k-NN estimates near x where [the
density] A(x) is small.”

Olshen suggests replacing the coordinates of the independent variables by their
order statistics, thereby obtaining rules which are invariant under all strictly
monotone transformations of the coordinate axes. It might be possible to modify
the techniques of the present paper to verify the consistency of the resulting
procedures (Olshen indicates having obtained some positive results for the clas-
sification problem). Parzen proposes some rather complicated estimators in-
volving order statistics of the dependent variable as well as those of the inde-
pendent variables. Much work seems required to justify his belief that these
estimators will be asymptotically efficient.

Brunk and Pierce describe in detail a novel method of generating weight
functions. Their estimate of the regression function has an expansion in terms
of a finite system {¢,, - - -, ¢,} of functions which are orthogonal with respect
to a prescribed measure v. No suggestions are given for choosing k or the
functions ¢,, - - -, @,.

Bickel, Eddy, Parzen, Rosenblatt and Wahba all touch upon the important
problem of determining asymptotic rates of convergence of the estimators stud-
ied in the present paper. Work is clearly needed in this direction. It should be
pointed out that local and global rates of convergence need not be the same.
Set m(x) = E(Y | X = x), i, (x) = E(Y|X = x), r,(x) = E((,(x) — m(x))?| X = x)
and R, = Er,(X) = E(",(X) — m(X))’. 1 conjecture that typically the main
contribution to R, comes from r,(X) with X in the tail of its distribution and
specifically that lim,, r,(x)/R, = 0 for x e R?.

Brillinger and Hampel both point out the need for robust estimators.
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Estimators of conditional quantiles are fairly robust as Hampel indicates. Also
robust are conditional L-estimators of the form §, ., J(p)0.7 (p| X) dp, where J
is continuous on [p,, p,] C (0, 1). Consistency of such estimators is described
in Corollary 6.

Brillinger suggests the use of what might be called conditional M-estimators.
In comparison with conditional L-estimators they have the disadvantage of re-
quiring an iterative solution or approximation thereto at each value of x for
which an estimate is desired. These estimators also have problems of lack of
uniqueness and difficulties of interpretation when F¥(. | X) is asymmetric.

Consistency of conditional M-estimators under appropriate conditions is not
hard to obtain. Let % denote the collection of probability distribution func-
tions on R. This collection can be made into a metric space by using the
Prohorov metric &, convergence in this metric being equivalent to weak con-
vergence. An M-estimator can be thought of as a particular functional T on .&".
A point F,e & is a continuity point of T if T(F,) — T(F,) whenever F, — F,
in the Prohorov metric. Let £,¥(+|X) be the estimator of F¥(+ |X) based on a
consistent sequence of weights. Then £,Y(y|X) — F(y|X) in probability for
every ye R. Consequently F,”(+ | X) — F¥(+ | X) in probability in the sense that
FP(E,Y(+ | X), F¥(+ | X)) — 0 in probability. The conditional M-estimator can be
written as T(F,7(+ | X)). Suppose that F¥(.|X) is a continuity point of T with
probability one. Then T(FY(-|X))— T(F¥(+ | X)) in probability. This estab-
lished the consistency of the conditional M-estimator and thereby answers one
of Brillinger’s several interesting questions.

The Bayes and empirical Bayes formulation of Wahba’s approach makes her
estimator most appealing, at least for moderate sample sizes. It is computation-
ally difficult, however, for large values of the sample size n since evaluation of
her formula (3) requires O(n®) operations. The parameter 2 occurring in this
formula must also be determined. Wahba’s suggestion of using the generalized
cross-validation estimate of 2 seems to yield a very good estimator. But in this
connection she states on page 11 of reference [8] of her discussion that “Data
sets of 50 can be handled for a few dollars.” If the cost is O(n®), data sets of
size n = 500 could be handled for a few thousand dollars. Wahba’s estimator
shares with the estimator £,(Y|X) of the present paper the property of being
sensitive to outlying values of the dependent variable.

Hampel points out that estimators such as those studied in the present paper

“can be used “as starting values for fitting a ‘smooth’ model.” Wahba’s discussion
suggests a particular smooth model to use. Specifically let N and points X, -,
X, in R* be determined by the user and set ¥, = £,(Y|X,) for 1 <i < N. If
the X’s are not too close together and the weight function used to determine the
Y’s is appropriately selected by minimizing PRESS, then Wahba’s formula (3)
with 2 = 0 could be applied to the data (X, ¥,), 1 < i < N, yielding

1) f(x) = (Q(x, X)), -+, O(x, X)Qy (¥, -+, Ty)'
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Here the covariance function Q is determined by the user. Note that f(X;) = Y,
for 1 < i< N. To robustify this estimator, the ¥’s could be replaced by con-
ditional medians, L-estimates, or M-estimates.

The computation of the right side of (1) can be simplified considerably by
choosing the X’s and Q appropriately. Suppose first that 4 = 1 and let v denote
a positive integer parameter whose role will become clear shortly. Let Q, be a
covariance function on R X R, let @, e R, let b, > 0, let m denote a positive
integer, and set X,;, = a, + (i — 1)b, and ¥, = E,(Y|X,;) for 1 <i < m. Then
(1), applied to the data (X,;, ¥;), 1 < i < m, can be written in the form

19

(2) fu(x) = Zi Wui(x) Yi ’

where evaluation of W,,(x) requires inversion of the m X m matrix (Q,(X,:, X,,),
1<i,j<m). If

() 0,(x,y) = (1 = b x —yD*, xyeR,

then f, represents linear interpolation between successive X’s and its form out-
side the range of the X’s is equally clear. If Q,(x,y) = exp(—c,|x — y|) for
x,y€ R, where ¢, > 0, then f, represents a simple form of nonlinear interpo-
lation between the successive X’s.

Suppose now that d > 1. Let Q be the covariance function defined by Q(x,
Y) = 0u(x, y1) ¢ - -+ - Qu(x4, y5), Where x = (x,, -++, x;) and y = (y1, - *» Yag)-
(To see that this is indeed a covariance function, let &,(+), - - -, §(+) be independ-
ent stochastic processes having covariance functions Q,, - - -, Q, respectively.
Then &(x) = &,(x,) + - - - - &4(x,) defines a stochastic process having covariance
function Q.) For 1 < iy, -+ i, < msetX; .., = Ko Xayp)and ¥, L, =
E”(Yl)?il,,,,,id). When applied to the data (X; ..., ¥; i)y | Sy ooy ig < m,
(1) takes the form

4) flx) = Zil DI | Wui,(xu))Yil,u-id .
If (3) holds, (4) reduces to a weighted average of 2% or fewer of the ¥’s. Sup-
pose, for example, that (3) holds, that d = 2, and that x, = sX;; + (1 — )X, ,,,
and x, = tX,; + (1 — )X, ;,,, where 0 < s, < land 1 < i,j< m — 1. Then
(4) simplifies to
(5) fx) =stY;; + (1 — )Yy, ; + s — 0¥,
+ (1 - s)(l - I)Yi+1,j+1 .

This particular method of interpolation was suggested in Stone (1975) as being
convenient for obtaining contour plots.

Equation (4) and trend removal together suggest another method for imple-

menting Hampel’s suggestion in a robust manner. Let the regression function
be approximately by a function f of the form

(6) fx) =a+ Ziab,x, + 2y -0 Dy Coppenig (T2 Wiy (%)) 5

X = (X, -+, Xg) .
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This function is linear in the m* 4 d + 1 unknown parameters. If these pa-
rameters are not too numerous, they can be estimated robustly from the data
by means of M-estimators. For starting values of a and b’s one could use a
robust linear fit. For the starting value of Ciy, ... pig ONE could use a robust esti-
mator ¥, .., applied to the residuals from that fit.



