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ON ASYMPTOTICALLY OPTIMAL TESTS

By G. TusNADY

Mathematical Institute of the Hungarian
Academy of Sciences

Sequences of tests with error exp(—nd) of the first type are inves-
tigated. It is shown that the error of the second type of such a sequence
of tests is bounded by exp(—nB) where B is determined by the Kullback-
Leibler information distance of the hypotheses tested. The information
distance between the empirical measure and the null-hypothesis on a finite
partition of the sample space is proposed to use as a test statistic. A suf-
ficient condition is given which ensures that this test has error of the second
type about exp(—nB) with the best possible B. The exact Bahadur slope
of the proposed statistic is investigated.

1. Introduction. Let S = (X, v, &) be a statistical space, and S, = (X",
S7m )y ts nth power. Suppose that <7 consists of all probability measures
on (X, %), and it is desired to test the null-hypothesis H,: P € .Z; on S,, where
4 is an arbitrary nonempty subset of <~ Let ¢, = ¢,(x,, - -, x,) denote a
randomized test function (¢, is the probability of the rejection of H,), and let

(1.1) a,(P) = (yim @, dP™, B.(P) =1 — a,P), a, = SUPpc a,(P).

Several different ways have been proposed for defining the asymptotic op-
timality of a sequence of tests ¢,. In some of them a sequence of alternatives
Q, is chosen in such a way that the probabilities 8,(Q,) are bounded away from
0 and 1. The speed of Q, approaching 4 is measured somehow and this speed
is taken as a criterion of optimality. Another possibility is to fix an alternative
Q and consider the rate of 8,(Q) tending to 0. The first method was investigated
by Neyman (1937), the second by Bahadur (1960), Hoeffding (1965) and Brown
(1971). The following definition is motivated by their results.

DEeFINITION 1. A sequence of tests is of rate 4, 0 < 4 < oo, if

(1.2) limsup, a, <1, incase A =20,

(1.3) lim sup, ., l loga, < —4, incase A4 > 0.
n

Let @, be the set of sequences of tests of rate 4, and let

(1.4) B(4, 0, ) = —inf, .o, lim inf,_, 711_ log £.(Q) -
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A sequence of tests ¢, € @, is called exponential rate optimal (ERO) at Q, if
. 1
(1.5) lim,_, — log 8,(Q) = —B(4, Q, &) -

A sequence of statistfcs T, is ERO at Q, if the sequence of tests
(1.6) 0, =0 if T,< A
=1 if T,= A4
is of rate 4 and ERO at Q for any continuity point 4 > 0 of B(4, Q, &). [

Although the above definition has a local character, our basic aim is to give
statistics which depend only on & and are ERO at as many alternatives Q as
possible. Brown (1971) gives sufficient conditions ensuring that the likelihood
ratio is an ERO statistic. His conditions are of topological character, and are
not fulfilled if < consists of all probability measures on (X, %)-except for the
multinomial case, investigated by Hoeffding (1965). We shall extend Hoeffding’s
result using finite partitions of (X, .%7").

DEerINITION 2. The empirical measure p, is defined by
1
(1.7 Pa= pulYs 3 -y x) = - Bt Xalx)

where X, (x) = 1,if xe Y, and X,(x) = 0 otherwise. For measuring the distance
between p, and .7, we shall use a partition <7, of (X, .%). A sub-c-algebra %,
is called a partition of (X, %) if it is generated by disjoint sets Y3, - -+, ¥,, € &
whose union is the whole space X. Throughout this paper, the sequence m = m(n)
denotes the number of atoms in the partition <5,. The Kullback-Leibler in-
formation number for P, Q ¢ &7 on &7, is

P(Y)
(1.8) K.(P, Q) = Y7, P(Y;) log Z\1i) |
1 o)
where § = 0, 0log 0 = 0; and for any & C &
(1.9) K, (P, &) = inf,. . K, (P, Q); K, (&, P) = inf,., K,(Q, P) .
Let L, denote the statistic
(1.10) L, = K,(pw Z3) - 0
DEerINITION 3. Givena family &8 ¢ % of sets in X, we say that the sequence
P, € & converges to the set function v on &7 if lim, ., P,(Y) = »(Y) for any

Y e <. A monotone sequence of partitions 7, is said to be adequate (wrt &),
if & is closed under convergence on &% = |Jy., <%,, and <% generates .. [

In Section 2 we investigate the function B(4, Q, &4). Section 3 contains our
main result (cf. Corollary 2): if the sequence 2%, is adequate, and the sequence
m(n) satisfies

)

(1.11) lim,_., m(n) °8" = 0
n
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then the sequence of statistics L, is ERO. (It is easy to see that any monotone
B, generating &7 is adequate, if &9 is dominated and the set of densities is
compact in L;-norm. This condition fulfills trivially if & is simple, or at least
finite.) The relation of ERO statistics and the exact slope introduced by Bahadur
is investigated in Section 4. Some concluding remarks, examples and problems
are collected in Section 5.

This work was initiated by a survey paper of Bahadur (1971). We shall mostly
use the notation introduced there, and refer to known results through that paper.

2. The best exponent. The investigation of the function B(4, Q, &) (cf.
Definition 1) will be based on a lemma of Stein (cf. Lemma 6.1 in Bahadur
(1971)). This lemma states that

2.1 B0, Q,{P}) = K(P, Q),
for any P, Q € &, where K is defined by

(2.2) K(P, Q) = gxlog_gg P if PKQ,
= © otherwise.
For any & c & let
(2.3) K(P, Q) = ianeé,, K(P, Q); K(@’, P) = ianeé, K(Q, P).
For any 0 < 4 < oo, let

(2.4) T ={0Q: K@, &) < 4},

(2.5) Py =1{0: K(Q, F) < A} .
THEOREM 1. Forany 5 C F, Qe FH 0< A< o

(2.6) B(4, 0, 7)) < K(F, Q) .

Proor. First we prove that for any sequence ¢, e ®,, 0 < 4 < c©
2.7 lim,_, «,(R) =0
holds true for any R e &,. If we had a R € &, such that
lim sup,,_., ,(R) > 0, ie., lim,_ 8, (R) <1
for some subsequence n,, then the sequence
Gn=1—0,, for n, < n< ny,

would be of rate O for testing the simple hypothesis that the actual measure is
R. Hence Stein’s lemma would imply that

(2.8) lim inf,_, 1 log @, (P,) = liminf,_, 1 log £,.(Py)
n, n

= —B(0, P, {R}) = —K(R, P,
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for any Pye & (B, denotes the error of second type of ¢,.) But there is a
P, e & such that K(R, P)) < A since R e.Z; consequently (2.8) contradicts

(1.3).
The obtained (2.7) implies that given Re %, any sequence ¢, @, is of
rate O for testing the simple hypothesis that the actual measure is R. Hence

B(4, 0, &) < B(0, Q, {R}) = K(R, Q) for any R € &#,, which proves (2.6). []
THEOREM 2. The sequence of tests
(2.9) 0, =0 if L,<4
=1 if L,=4
is of rate A for any 0 < A < oo, where L, is defined by Definition 2, and <&, is
any sequence of partitions for which m(n) satisfies (1.11). For this sequence of tests

(2.10) lim sup, _,., 1 log 8,(Q) £ —liminf,__ K, (& ,, Q)
n

holds true for any Q € &, where &7, , is defined by (2.5).
CoroLLARY 1. B(4, Q, &) = liminf,_, K.(F ., Q).
Proor. It is easy to see (cf. (5.33) in Bahadur (1971)) that

(2.11) P(Ko(par F) Z A) < (n + 1)me

holds true for any P,e.7; hence (1.11) implies ¢, e ®,. Let the numbers
K.(& . Q) be denoted by B,. The set &%, , of measures is contained in the set
{R: K,(R, Q) = B,}, hence

Q(Ku(pws Z0) < A4) = QK(pas Q) Z B,) -
On applying the same argument as in (2.11) we get
Q(K,(par Q) = B,) < (n + 1yme=7n;

consequently (1.11) implies (2.10), too. []

3. Adequate sequences of partitions.

THEOREM 3. If the sequence of partitions <%, is adequate (cf. Definition 3), then
(3.1) lim, ... K,(Z,, Q) = K(Z,, Q)
holds true for any 0 < a < A £ o0, Q € &, &4 C &7 (cf. Definition 2, (2.4) and
(2.5)).

COROLLARY 2. If &7, is adequate and the sequence m(n) satisfies (1.11), then the
sequence of statistics L, is ERO (cf. Definition 1).

COROLLARY 3. If T is such that there exists an adequate sequence of partitions,
then forany 0 < a < A< o0, Qe &F Fc F

(3.2) K, Q) < B(a, 0, F) < K(Z%, Q) .
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Proof. Let the numbers K,(;, ,, @) be denoted by B,. The sequence B, is
monotone increasing, for <%, is monotone. Hence the limit on the left-hand
side of (3.1) exists. (It is also easy to see that B, < K(%, Q).) It is enough to
prove that for any B, such that lim,_, B, < B < oo, there is an R € &, such
that K(R, Q) < B.

There are P, € &}, R, € &, such that K (R,, Q) < B, K,(R,, P,) < a. For any
J there is a convergent subsequence of P,, R, on £%;, because <%, has finitely
many elements. By using the diagonal method we can choose convergent sub-
sequences of P, R, on &&= |J7, %, too. Let P, , R, be such subsequences;
then there is a P, € &% such that P, tends te P, on Z for 7, is adequate. Let
the limit of R, be denoted by »:

(3.3) W(Y) = lim,_. R, (Y) for Yecs.

Now we prove that there is a probability measure R on (X, %) such that its
restriction to (X, &%) is v.
Let Y;, ---, Y, be the atoms of 2£,. It is easy to see that the sequence
Y)
3.4 ra(x) = 239
- © =02,
if x e Y, is a martingale with respect to <%, on (X, %7, Q). The function f(u,v) =
u log (u/v); f(0, v) = 0; f(u, 0) = oo; f(0,0) =0 (0 < u, v < 1) is lower semi-
continuous, i.e., for any convergent sequences 0 <, < ;0 < v, < 1

3.5) flim,_, u;, lim,__ v,) < liminf,__ f(u,, v;),

consequently 1™, v(Y;) log (»(Y,)/Q(Y;)) £ B. This implies that 7, is uniformly
integrable on (X, .27, Q), since

B4+ 1
log C

1
$rp>c 7 dQ = log C Srp5cta logr,dQ <
for any C > 1 (note that tlogt > —1). Thus r, is convergent Q a.s. and in
L,-norm on (X, 57, Q) (cf. Theorem VII.4.1 in Doob (1953)), and the measure

defined by
(3.6) R(Y) = {4 lim,__ r,(x)dQ

for any Y e % is the desired limit of R,. l

We have seen that K, (R, Q) < B. Similarly K,(R, P;) < a < A, and the proof
is completed by the well-known fact that K, tends to K if <%, is monotone and
generates %7 (cf. Theorem 2.4.2 in Pinsker (1964)). []

4. The exact slope of ERO-tests. Let T, be a sequence of statistics for testing
H,: Pe &, large values of T, being significant, and let the function G,(¢) be
defined by

4.1) G.(1) = suppe,, (T, = 1).
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The sequence T, has exact slope ¢ when Q obtains if

(4.2) 1imw%1og G(T.) = —3c(Q) Q as.

This definition is due to Bahadur (1960). He proved that
(4.3) lim inf, . L log G(T,) = —K(Q, F) Q as.
n

(cf. Theorem 7.5 in Bahadur (1971)). He also proved that under suitable
compactification conditions the exact slope of the likelihood ratio statistic is
2K(Q, &)

THEOREM 4. If the sequence of partitions <%, is adequate (cf. Definition 3), and
the sequence m(n) satisfies (1.11), then the exact slope of the statistic L, is 2K(Q, )
(cf. Definition 2).

Proor. It is enough to prove that
(4.4) lim sup, ... L log H,(L,) < —K(Q, &) Q a.s.,
n

where
H,(t) = SUPpe o, P(L,=1).

Let 0 < a < 4 < K(Q, ) be arbitrary. Theorem 2 implies
lim sup,,_.., 1 log H,(a) < —a;
n

thus it is enough to prove that
liminf, ,L,=a Q a.s.

Theorems 2 and 3 imply that
lim sup,,_.. __1 log Q(L, < a) £ —K(F, Q) ;
n

hence, by the Borel-Cantelli lemma, it is enough to prove that K(&#,, Q) > 0.
We have seen in the proof of Theorem 3 that

4.5) lim,_, K.(Q, &) = K(Q, &),

thus 4 < K,(Q, &) for some n. The m-dimensional set of probabilities {R(Y;);
i=1, ..., m}of those R-s for which K, (R, ) < 4, is closed, and does not
contain the vector {Q(Y;),i = 1, - .-, m}, hence K (&, ,, Q) > 0. This completes
the proof, because K, (F ,, Q) = K(F,, Q). [

5. Remarks, examples, problems. First of all it should be noted that the
adequateness of %, actually is a property of the system {&, &, n = 1,2, ... }.
The convergence on & C % is a weaker version of the weak convergence of
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probability measures defined by
5.1 P(Y) = lim,_, P,(Y) forall Ye &,

consequently the weak closedness is a necessary condition for the existence of
an adequate sequence of partitions. Given any convergent sequence R, on %
we can define v by (3.3) and 7, by (3.4) (by choosing any dominating Q). More-
over r, will still be a martingale with respect to <%,. Hence it is convergent
Q a.s.; but it is no longer convergent in L, norm, unless r, is uniformly in-
tegrable. In any case, if & is dominated, and its densities form a compact set
with respect to L,-norm, then the limit measure (3.6) belongs to .

ExampLE 1. Let S and Q € & be arbitrary, and let
(5.2) F={P: K(Q,P) = A}.

Then Q ¢ &, but in most cases the closure of .} is equal to < for any <7,
hence there is no adequate sequence of partitions. On the other hand, one can
prove that if a sequence of partitions is adequate with respect to .5, then it is
adequate with respect to . too. Consequently if %7 is countably generated,
then any monotone sequence of partitions is adequate with respect to A =
{P: K(P, Q) < 4).

ExaMPLE 2. Let (X, 57) be the real line with the s-algebra of Borel-measur-
able sets, and let .7 be the collection of all probability measures concentrated
on the dyadic rationals in [0, 1). Let Q be the uniform distribution on (0, 1).
Let %, be the partition of [0, 1) consisting of the half-open intervals [(i — 1)/2",
i/2"). Then, forany 4 < oo, K, (%, ,, Q) = 0and K(&;, Q) = . Hence (3.1)
does not hold, and 7, is not adequate.

ExaMPLE 3. Let X bearbitrary, and let % be a countably generated g-algebra
(e.g., X is the Euclidean space and .% is the g-algebra of Borel-measurable sets).
Let &4 = {P,}, where P, is arbitrary. Then any monotone sequence of partitions
generating .o is adequate. Consequently

(5.3) B(4, 0, {P}) = K(F%, Q)

for any continuity point 4 of the function B(4) = B(A4, Q, {P,}). This function
is convex, because K(R, P) is convex in R: for any R, R,, 0 < ¢t < 1 and R =
tR, + (1 — )R, we have .

K(R, P) £ tK(R,, P) + (1 — t)K(R,, P),
(which in turn is a consequence of the convexity of ulogu). Hence the only
discontinuity that may occur is at
(5.4) A, = sup{4: K(F, Q) = o} .
(5.3) has been obtained by Blahut (1972) in the case when % is finitely generated.

The majority of tests of rate 4 = 0 for this problem are ERO at any Q (e.g.,
the Kolmogorov-Smirnov test in a Euclidean space). This however is true only
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for A = 0, and one can expect that any ERO statistic for testing goodness-of-
fit is asymptotically equal to L,.

ExAMPLE 4. Let (X, %) be the k-dimensional Euclidean space with the o-
algebra of Borel-measurable sets, and let .7, be the set of normal distributions.
It is easy to see that there is no adequate sequence of partitions in this case. This
is partly the consequence of using only finite partitions. The finiteness of the
partitions was used in an essential manner in (2.11), but there is no evidence
that it would really be needed for the validity of Theorem 2. Vasicek (1976)
introduced a test for normality based on sample entropy. It would be worth-
while to determine whether his statistic is ERO or not.

Another limitation of our results is the lack of error terms. The statistic L,
is ERO, but for a reasonable sample size it may be very poor. This problem
consists of two parts. One is the error term in Stein’s lemma and in Theorem 1.
The question is the following: are there any sequences ¢, — 0 depending on &,
Q only through the function B(4, Q, &) such that for any sequences ¢, for
which

(5.5) Loga, < —a—e,
n
we have
(5.6) L log 5,(0) = —B(4, 0, 9 — e, .
n

The other side of this problem is the speed of convergence of the sequence B,.
It is very likely that its investigation needs different methods from those used
in the proof of Theorem 3.
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