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SEQUENTIAL BAYES ESTIMATION OF THE
DIFFERENCE BETWEEN MEANS

By Tuomas A. KELLEY
Los Alamos Scientific Laboratory

It is desired to estimate the difference between the means of two in-
dependent normal distributions as accurately as possible and in a sequen-
tial manner when the total number of observations is fixed. The problem
is-posed in a Bayesian framework with conjugate prior distributions and
squared error loss function. It is shown that the optimal sequential design
depends on the ratio of the posterior variances of the two means. There
exist constants (dependent on the prior parameters, the number of obser-
vations taken from each distribution, and the number of observations re-
maining) such that when the above-mentioned ratio exceeds this constant
it is optimal to select the next observation from one distribution; otherwise
it is optimal to select it from the other distribution.

1. Introduction. Suppose there are two experiments ¢, and ¢, which generate,
independently of each other, sequences of i.i.d. random variables which are
generically denoted by X and Y respectively. Let each X have a normal distri-
bution N(zx,, P,~') where P, is the precision. Let each Y have a normal distri-
bution N(z,, P,”*). Many different sequential schemes for estimating g, — g,
have been proposed. If the observations are taken in pairs (X;, Y)), (X3, Y),
etc., then Z, = X, — Y, is normally distributed with mean s, — p, and variance
P,7*+ P,~'. Thus all of the results on sequentially estimating the mean of a single
normal distribution are applicable. For example, see Anscombe [1], Chow and
Robbins [2], Geertsema [4], Ray [6], Robbins [7], Serfling and Wackerly [9],
Simons [10], and Starr [12], [13]. Allowing for unequal sample sizes may increase
the accuracy of the estimate or decrease the expected total sample size. Srivastava
[11] and Robbins, Simons and Starr [8] have proposed a class of sequential rules
incorporating both a sampling scheme and a stopping rule which are asymptot-
ically optimal. The approach in this paper is to suppose that the total number
of observations is fixed and to concentrate on the sampling scheme. From this
point of view the problem closely resembles the two-armed bandit problem.
Prior distributions and a loss function are assigned and the concomitant optimal
sequential strategy is examined. '

2. The Bayesian model. The vector of means and precisions (u,, P, y,, P,)
is assigned a prior distribution so that (yx,, P,) and (y,, P,) are priorly independ-
ent with normal-gamma distributions NG(7,, 7,, @;, B;) and NG(n,, 75 @y, B5)-
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Properties of this conjugate family of distributions are well known (cf. DeGroot
[3], Section 9.6).

The object is to estimate § = p, — y, with squared error loss, so that if § is an
estimator of 6, the loss is L(0, 6) = (§ — 6)2. The estimator § which minimizes
the expected loss (risk) with respect to a prior distribution is E(y,) — E(p,) and
the minimum risk itself is 6*(z,) 4 0*(p,) (cf. Zacks [15], pages 273-274). These
are, respectively, the Bayes estimator and the Bayes risk.

Let N be the fixed total number of trials and let m and n be the number of
trials allocated to experiments ¢, and ¢, respectively. After all N observations
have been completed, the Bayes estimator of y, — p, is the difference in the
means of the posterior marginal distributions of s, and sx,; the Bayes risk is the
sum of the variances of these two distributions. Once this is established, the
whole problem can be modeled as an adaptive control process.

3. Adaptive control process model. For a description of adaptive control
processes (ACP) see Yakowitz [14]. In our situation, the state space may be
thought of as the set of quadruples (m, n, A4,,, B,) where m >0, n >0, m +
n<N, A4, =0, B, 0. Here 4, and B, are the variances of the posterior
marginal distributions of p, and g, respectively and are functions of the sample
means, sample variances, and prior parameters. From the properties of the
normal-gamma distributions, it follows that

(3.1) 4 = 2Bt (m = DS+ oym(z, + m)H(X — 7))
" (t1 + m)(m + 2a, — 2)

and
(3.2) B, = 2B, + (n — 1Sy + zyn(r, + n) (Y — 7,)? .

(ty + n)(n + 2a, — 2)
In order that these quantities be finite and nonnegative for all m and n, «, and
@, must be larger than 1. The control set consists of two elements: choose ¢,
or choose ¢,. At time ¢+ < N zero loss is incurred while at time r = N a loss of
A,, + B, is incurred. The loss function may then be written as the sum of these

losses as ¢ ranges from 0 to N. The statistical law of motion for this ACP is
embodied in the following lemma.

LemMma 3.1. Given A,, and B,, U = a, A4,/A,,., and V = b,B,/B, ., have inde-
pendent beta distributions B(a, + %m, })'and B(a, + in, L) respectively where

(3.3) a, = (04 m(m+ 2a, —2)
(72 + m + 1)(m + 2a, — 1)

and

(3.4) b= (Tt m(n 2, —2)
" (ma A D+ 2a, — 1)

Proor. Tedious algebraic manipulation leads to the fact that

(3.5 A1 = ap(Ay + (M + 20, — 2)™ (7, + m + 1) Y(X, ., — 7')?)
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where
(3.6) 7 = (i + m‘Ym)/(TI + m).
Let &, be the o-field generated by X,, ---, X,,. From the properties of the

normal-gamma family of distributions, X,, ., given .5, is distributed as CtW +
7’ where

3.7) C=(m+2a;, —2)(zr, + m + 1)(m + 2a,)7*4,, ,

7, is defined as in (3.6) and W is a random variable having a Student’s z-distri-
bution with 2«, df. This means that, given >, 4,,, is distributed as a,, 4,,(1 +
W¥m + 2a,)7"). Thus U has a beta distribution B(a, + 4m, }). An analogous
argument can be applied to B, ,, to get the distribution of V. Furthermore, 4,,,,
and B, ., are independent, so U and V are independent. []

Because of the Markovian nature of the statistical law of motion and the sep-
arability of the loss function for this ACP, the dynamic programming algorithm
yields the optimal strategy (cf. Yakowitz [14], Theorem 3.3).

4. The optimal sequential design. Suppose there are k trials remaining where
m trials have already been allocated to ¢, and n trials to ¢,. Let 5, , denote
the sigma field generated by (X, ---, X,,, Y3, - -+, ¥,). Unless otherwise stated,
all expectations in this section are conditional on .>7, .. Also for notational
convenience, the arguments A4,,, B, will be suppressed from the functions in this
section unless needed. Denote the anticipated risk over the remaining k trials
by R,(m, n). Then

(41) Rl(m’ n) = min {E(Am+l + Bn)’ E(A'm + Bn+1)} *
From Lemma 3.1 it follows that
(4.2) R(m,n) = A, + B, — max {A,(r; +m + 1), B,(z, + n + 1)~} .

In general there exist functions F,(m, n) and G,(m, n) such that

(4.3) R, (m, n) = A,, + B, — max {F,(m, n), G,(m, n)}.
These functions may be defined recursively as follows.
(4.4) Fym,n) = Gy(m,n) =0

and fork > 0 '
4.5)  Fyy(myn) = A,(c, + m 4+ 1)7' + E(max {F,(m + 1, n), G,(m + 1, n)})
(4.6) G, (m,n) = B,(ty + n + 1)' + E(max {F,(m,n + 1), G,(m,n + 1)}).

Once these functions have been determined, the optimal policy is to select ex-
periment ¢, provided F,(m, n) = G,(m, n) and experiment ¢, otherwise. In order
to gain more information about the optimal policy let D (m, n) = F,(m, n) —
G,(m, n), the relative advantage of ¢, over ¢,. These functions may be defined
recursively in the following manner.

4.7 D(m,n) = A,(t, + m + 1) + B,(r, + n 4 1)71.
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Let H,(m, n) = E(max {F,(m, n), G,(m, n)}), then from (4.5) and (4.6) it follows
that

(4.8) D, (m,n) = D(m,n) + H(m + 1,n) — H(m,n 4 1).

Since max {F, G} = G + (F — G)* where x* denotes max {x, 0},

(4.9) Hy(m + 1,n) = E(G,(m + 1, n)) + E(D,*(m + 1, n)) .

Since max {F, G} = F + (G — F)* = F — (F — G)~ where x~ denotes min {x, 0},
(4.10) H(m,n + 1) = E(F,(m,n + 1)) — E(D,~(m,n 4+ 1)).

Now using (4.5) and (4.6) again we find that

(4.11)  E(Gym + 1,n)) = By(t, + n+ 1)~ + Hy(m + 1,n +-1),

and also that

(4.12) E(F(m,n+ 1) = A, (r; + m+ 1)+ H(m+ 1,n 4 1).

Thus E(G,(m + 1,n) — F,(m,n + 1)) = —D,(m, n) independent of k, so that
fork =1

(4.13) D,,.(m, n) = E(D,*(m + 1, n)) + E(D,~(m, n + 1)).

Similar recursive relations have been derived by the author [5] for the Bernoulli
two-armed bandit problem. These relations are now used to prove the first result
about the optimal procedure.

THEOREM 4.1. For any positive constant c,
D,m,n,cA,, cB,) = cD,(m,n, A4,,B,) .

Proor. By not suppressing the arguments 4,,, B, the proof is by induction
on k and follows directly from (4.13). []

Since the optimal strategy depends on the sign of D,(m, n), the decision rule
is a function of (4,,, B,) only through the ratio 4,/B,. This means that a new
function A,(m, n, r) can be defined as follows.

(4.14) A (m, n, A,/B,) = B,D,(m, n, A,, B,).

LeMMA 4.1. The functions Ay(m, n, r) are defined recursively through the following
equations.

(4.15) A(m,n,r) = r(t; + m 4+ 1)7' — (z, + n + 1)~
and fork =1, ..., N — 1,
(4.16) Ap(myn,r) = EAF(m + 1, n,a,U'r))

+ E(b, V-0, (m, n + 1, b,7'Vr))

where U and V have independent beta distributions B(a, 4 im, %) and B(a, + }n, )
respectively and a,, and b, are given in (3.3) and (3.4).

Proor. This follows directly from (4.7), (4.13), and Lemma 3.1. [J
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LeMMA 4.2. For the functions A,(m, n, r) defined in Lemma 4.1, there exist two
sequences Q,(m) and P,(n) such that Q,(m) > 0 and P,(n) < 0 and for all r = 0,
P(n) < Ay(m, n,r) < Qu(m)r.

Proor. The proof is by induction on k and uses Lemma 4.1. ]

The main use of this lemma is in the proof of the following theorem giving a
characterization of the optimal sequential decision rule.

THEOREM 4.2. For the functions A (m, n, r) defined in Lemma 4.1, there exists a
unique sequence of constants y,(m, n) such that A,(m, n,r) = 0 if and only if r >
ri(m, n).

Proor. Using Lemma 4.2, the following properties of A,(m, n, r) may be es-
tablished by induction:

(i) Au(m, n, r) is a strictly increasing function of r,
(ii) A,(m, n, r) is a continuous function of r,
(iii) A,(m, n, r) is negative for sufficiently small values of r, and
(iv) A.(m, n, r) is positive and arbitrarily large for sufficiently large values of .

Then the existence of y,(m, n) is guaranteed by the intermediate value theorem
and the uniqueness of y,(m, n) is guaranteed by property (i). []

The optimal sequential procedure is then of the following form. If m trials
have been allocated to ¢,, n trials have been allocated to ¢,, and there are k trials
remaining, then on the basis of the prior parameters and the posterior variances
A,, B, it is optimal to allocate the next trial to ¢, if and only if 4,/B, exceeds
ri(m, n).

5. The myopic decision rule. Unfortunately, little is known about the con-
stants y,(m, n). In approximating the optimal decision rule, one needs only to
choose a set of constants g,(m, n) “close” to r,(m, n). An appealing choice is

5.1 gu(m, n) = ry(m, n) = (r; + m + 1)(z, + n 4+ 1),

and the resulting decision rule, which is independent of k, is called the myopic
rule. It “acts” as if there were always but one more trial remaining.

This decision rule also appears when one obtains the limiting form of the
optimal strategy as more and more information is assumed to be available con-
cerning the precisions P, and P,. Consider prior distributions in the normal-
gamma family where the marginals of P, (i = 1, 2) are gamma distributions with
B; = oa;. Suppose ¢,’ is a constant and «, is allowed to increase to 4 co. These
marginals approach singular distributions with the entire probability mass con-
centrated at ¢,72. The prior marginal distributions of y; approach normal dis-
tributions with mean 7, and precision r;4,7%. Note also that as a; — 4-c0, a, —
(ry + m)(zr; + m + 1)~*and b, — (r, + n)(zry + n + 1)~'. The random variables
A,, B,, Uand V all approach singular distributions with probability mass con-
centrated at ¢(r, + m)~*, a)(t, + n), 1 and I respectively. The limiting form
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of Ay(m, n, r), from the Helly-Bray theorem, satisfies the recursive equations.
(5.2) Am,n,r)y=r(t; + m+ 1) — (5, +n+ 1),
andfork=1,...,N—1

(5.3) A, (m, n ) = DAF(m + 1, n,a,r) + b8, (m,n + 1, 6,7'r) .

THEOREM 5.1. For the functions A,(m, n,r) defined in (5.2) and (5.3), r >
ri(m, n) = Ay(m, n, 1) = 0.

ProoF.. The proof is by induction on k. [J

So the limiting optimal decision rule is to allocate the next trial to ¢, provided

5.4) 020,72 = (v, + m)(zy + m + 1)(z, + n)y Nty +n 4 1)~

Since this decision rule does not depend on the outcomes of the various trials,
the sampling may be done in one stage, choosing as the total number of trials
to be allocated to ¢, the largest value of m such that (5.9) is satisfied.
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