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SEQUENTIAL ESTIMATION IN BERNOULLI TRIALS

By PauL CaBILIO!

Acadia University

The sequential estimation of p, the probability of success in a se-
quence of Bernoulli trials, is considered for the case where loss is taken
to be symmetrized relative squared error of estimation, plus a fixed cost ¢
per observation. Using s»/n as a terminal estimator of p, where s is the
number of successes in # trials, a heuristic rule is derived and shown to
perform well for any fixed 0 < p <1 as ¢— 0. However for any fixed
¢ > 0, this rule performs badly for p close to 0 or I. To overcome this dif-
ficulty a uniform prior on p is introduced, and the optimal Bayes procedure
is shown to exist and to have bounded sample size. The optimal Bayes
risk is shown to be ~ 2zc? as ¢ — 0, and is computed for various values of
¢, along with the expected loss for various values of p.

0. Introduction. Let x,, x,, - - - be a sequence of independent identically dis-
tributed random variables, with P(x, = 1) = p, P(x, =0) =q =1 — p. The
problem of estimating an unknown 0 < p < 1 by some function g, of x;y +++, X,
with a loss structure

L(n, 6, p) = L(|0, — pl) + ne

where 0 < ¢ < 1 is some constant, has been approached by many authors. The
case where

has been considered as a special case of a more general problem by, in particular,
Wald [13], Bickel and Yahav [3], and Alvo [1]. In all of these cases, either a
heuristic stopping rule is proposed and its properties investigated, or a prior dis-
tribution on p is assumed, and a Bayes terminal estimator and an optimal stopping
rule are found. The difficulty with the latter approach is that, for example, if
the prior distribution on p is taken to be the beta, the optimal strategy can then
only be expressed in terms of a backward induction equation, and thus cannot
readily be applied, nor can it be compared to a heuristic rule for the same problem.
The case where

10, = p.= Lo 20
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SEQUENTIAL ESTIMATION IN BERNOULLI TRIALS 343

has been dealt with by Whittle and Lane [14], through the use of beta priors.
It is shown that the optimal rule is a fixed sample rule.

In the following we deal with what turns out to be a more amenable loss
structure for this problem.

Consider the following hypothetical situation in medical trials. The probability
p that a drug will cure a particular ailment is to be estimated sequentially with
acost ¢ > 0 per observation. If this value of p is large, the drug will tend to be
called a “cure,” and research will shift to other ailments. If p is small, the drug
will be discarded and more money and time will be invested in the problem.
However, if p is close to one-half, no dramatic change will occur, that is, the
drug will continue to be administered and research will continue in the same
direction. Since in both extreme cases a dramatic decision will result, greater
accuracy of estimation is demanded. A loss function which reasonably satisfies
such a requirement is the following.

Let
1) L(n, 8,, p) = <§L:£>2 +one.
P9
In Sections 1 and 2, 4, is taken to be
(2) 0, = Su/n
where 5, = x, + - .- + x,, and a heuristic stopping rule N is considered. In

Section 3 it is assumed that p has a uniform prior on (0, 1) and the Bayes ter-
minal estimator 4,* and the optimal stopping rule N* are found. In Section 4
numerical examples of the perfomance of (N*, 3%.) are given. Section 5 gives
the proofs of various assertions and in particular that the Bayes risk of (N*, §%.)
is ~ 2mct as ¢ — 0. Finally, Section 6 outlines the results obtained when p is
assumed to have a more general beta prior.

An outline of parts of this problem has appeared in [4].

1. A heuristic stopping rule using the sample mean. The following discussion
is modeled on that of [10], which deals with the sequential estimation of the
mean of a normal distribution with unknown variance. For fixed n and p the
expected loss using 9, = s,/n is

3) E,L(n, 4, p) = (npg)™ + nc .
The value of n which minimizes (3) is

(4) n(p) = (cpg)~

and for this n the expected loss is

(5) E, L(n(p), duizy» P) = 2(c/pq)? .

Although the pair (n(p), d,,,,) is unavailable for statistical purposes, properties
(4) and (5) provide a standard of comparison for sequential procedures when p
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is unknown. Since s,/n ~ p and (n — s,)/n =~ ¢, a sequential analogue of n(p)
may be defined by

= — -1
6) N =first n=1 suchthat n>= <cf’_‘ . u> .
n n

This is equivalent to
(7) N =first n>=1 suchthat s,(n—s,) =1/c.
For convenience define

fo=(n—s).

It is easily seen that {N > n} = {s,f, < 1/c}, P(N < o0) = I forany0 < p < 1,
and N = 2/ct. Modeling the discussion on that of [11], N has the following
properties as ¢ — 0 for fixed 0 < p < 1.

(8) N(cpg)t — 1 almost surely (a.s.)

) E{N(cpg)ttr -1 k=1,2, ...

(10) (pg/e)* (5—”[)%5’) — 7 inlaw
5;, —p 2 -

(11) (Pg/c)iE, {<W_> } 1,

where Z is a normally distributed random variable with mean 0 and variance 1.
From (9) and (11) it follows that as ¢ — 0

(12) E,L(N, 05, p) _ Ef{(65 — p)!l(P°P)} + ¢cE,N |
E, L(n(p); Onipys P) 2(c/pg)} ’

so that (N, d5) is asymptotically as good as (n(p), 0,,,)-

Proor oF (8)—(11). Writing N = N throughout the rest of this section, it can
be seen that (8) holds from

1
(13) LSSy <Siafin kNS LN,

and the fact that s,/N — p and f,/N — g a.s. as ¢ — 0.
The proof of (9) is based on showing that for p fixed the convergence of (8)
is dominated for all 0 < ¢ < 1. To this end define

M, = M(p) =first n=2 suchthat s/i=p/2 forall i=n,
M, = My(p) =first n =2 suchthat f/i>=¢/2 forall i=n.
From Theorem 2 of [12], E,M;* < oo, j = 1,2,and k = 1, 2, . ... Further, if

n = max (M,, M,, 2/(cpq)) then s, f, = n’pq/4 = 1/c, so that for 0 < ¢ < 1,
Nepg)t = (My + My)(epg)* + 2 < (M, + My)[2 + 2.

Thus, by (8) and the dominated convergence theorem, (9) holds.
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To prove (10) we note that
0y — P\ _ (sy — Np)? 1
(pgjey (2= 2) = w2V
< Pq Npq N(pge)*
Thus (10) follows from Anscombe’s theorem [8, page 197] and (8).
Since N = 2/ct,

(pq/e)? (%p—;ﬁ)z = (c/p9)t - %@f

and thus (11) follows from (10) if (s, — Np)*(c/pg)t is uniformly integrable for
0 < ¢ < 1. To prove the latter we make use of Wald’s lemma for second mo-
ments [7], together with (9), to obtain as ¢ — 0

(14) E,(sy — Np)* - (¢/pg)* = E,N(cpg)t — 1.

Further, (8) and Anscombe’s theorem yield

(15) (sy — Np)Xc/pg)t = %‘;\’1’)’ N(epg)t — Z* in law.

The uniform integrability follows from the convergence theorem of [9, page 183].
The remainder of this section deals with the asymptotic distribution of N as

¢ — 0, and is not used in the rest of the paper. As with many other sequential

problems dealing with Bernoulli trials, for example [2] and [11], this distribution

is different when p = { and p + §.

Casel. If p+ 4, thenasc—0

(16) 2(p9)}(N — 1/(epg)t)et | Z in law.
lp — 4
Proor. We introduce the identity
(17) sn(n—sn): —(Sn—”P)2+”(q—P)(5n—”P)+n2Pq’
substitute N for n, and use (13) to obtain for p < 4 the inequality
' —Npg  _ _(sy— Np)’ <1§1>* 1 sy — Np
Ng—p)pgt = Npg AN/ (g—p)  (Np9

< ¢ = Npg. 1 .
= Nig — p)(pg)t  (Npg)k(q — p)

As ¢ — 0, the previous results show that

NPg—¢? 7 inlaw.
Nip — ql(pg)t

Similarly the same result holds for p > 4. From (8) it follows that

(18) (PD'WN* — (PDDE | 7 in taw.
lp — 4|
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Further, since

(N + (cpq)a> (cpq)t — 2 a.s., then (16)

follows from (18).

In addition, (16) remains valid with 1/(cpq)? replaced by E,N. To prove this
it is sufficient to show that

1 i
(19) (P9 E,N — — = 0(c7H) .
Proor oF (19). By Wald’s lemma and the Schwartz inequality,

£, N = N 5 (BNl {(N = ) ]) = o)

Taking expectations in (17), with n replaced by N and using (13), yields the fact
that

P9E,N* — ¢! = o(c7%).
Thus (19) follows from

1 E,N* — ¢!
VE,N — — < P17 = o(cY),
(PDEN = = GgE Ny — 18 o)

and the observation that (cpg)!E, N = 1.
Casg 2. For p = {, put
n=[2/c]+J, j=12,...,

where [a] denotes the greatest integer < a. Since

P(Ngn):P<s"fng%>=P<(s”+/:/2—)—Z§n—%>,

it follows that

— 2 4
PN—2c%£‘:P<(ﬁn_”/21£'_|_ 2/t — >
( [2/¢] = J) nja =7+ [2/¢t] P
As ¢ — 0 the central limit theorem shows that, uniformly inj = 1,2, ...,

PV = /e S ) = P(2 5+ 206 = i) =0

Since as ¢ —» 0
4 4

qzjet] @i+ )

I

it follows that

. , 4
PN —-[2/ct] =) —P(2? < 2/ct] — —0
V=) S ) — P (2 =)+ 2] = o)
uniformly in j = 1,2,.... The term [2/c}] — 4/(c[2/c]) oscillates finitely be-

tween —1 and 0 as ¢ — 0.
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2. The Bayes risk for (N, §;). By (12) the procedure (N, d3), with N defined
by (7), has a risk function that is equivalent to that of (n(p), d,,,) as ¢ — 0 for any

n(p)

fixed 0 < p < 1. The Bayes risk of (n(p), 0,,,,) With respect to a uniform prior is
(12ct(pg)~tdp = 2mct .

However, the Bayes risk of (N, 0 #) is infinite, and thus the asymptotic equivalence
of the two risks is not uniform in 0 < p < 1. In fact, both of the integrals

(PO E 05 — pydp,  SHE,Ndp
are infinite.
Indeed, given x, = 1, E,N = (1 4+ 1/g) and given x, = 0, E,N = (1 + 1/p).
Hence

Epﬁzp<1+%)+q<l+%>=?lq

Moreover if an integer m > 1/c and s,, = m, x,,,, = 0, then 6, = m/(m + 1),
so that

g () 2 e = o)+ o (e = o)

— g-lpm-2 m —1,m-2 1 >
7 <m +1 P) Al (m 4+ 1 P
In the following sections we shall find the Bayes procedure (N*, 6}.) for which

§6 E, L(N, 6y, p) dp

—1.

is a minimum with respect to all stopping rules N and terminal estimators 4, of
p- This Bayes procedure will be shown to satisfy properties (8)—(12) and in
addition to have Bayes risk ~ 2zct as ¢ — 0. We remark in passing that it is
possible to find certain ad hoc modifications of (N, 05) which satisfy (8)—(12)
and have finite Bayes risk. One such procedure is (N, 03), where

N=first n>1 suchthat |(s, — 1)(f, — 1) = L~ .
c

3. The Bayes procedure for the uniform prior. The Bayes risk for procedure
(N, 6y), when p has a prior density f on (0, 1), is given by

@0 BN.5) = 5, (L) + oN) fip) dp

= 2in=1 Zv=n) {Sé((g—"p—;—ﬁy + cn)f(p|x1, ) Xn)dp}

X P(xl, ...,xn)

where

(21) P(xy, « vy x,) = §§ prg/nf(p) dp
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and
22 Cx) = D)
(22) firlx X,) P - 5)
Let
1
2 ; s b — a—1,b-1 s 0
(23) fip; a, b) Ba ) b)p q a,b>

denote thg beta prior on 0 < p < 1, for which
(24) Ep = af(a + b), Var p = abf{(a + b + 1)(a + b)"} .

Consider the case where @ = b = 1, that is the uniform prior distribution. For
this case, (22) becomes

@) fpls ) = g = Ap s LA D,

and (21) becomes

_

(n+ D)

For a given N, the Bayes estimator 6,* = 8,%(x,, - - -, X,) that minimizes the
integral

(26) Py %) = By + L fu+ 1) =

A
@) 3 (2 L) i+ Lot D P
is found to be
28 sr=5%=Ll i 1<s,<n—1, nz3
( 2 n =
= 5 if 5,=0 or n, n=2.
n

With é, = d,*, (27) becomes

Hs)=-"0ED i 1<s,<n—1, n23
(n — 2)s, fu =
(29) :”+i if 5,=0 or n, nx2
n_.
= 400 otherwise

and thus the uniform prior Bayes risk (20) for an arbitrary stopping rule N and
the best estmator d,*, may be witten as

(30) Vs Diw=m (Ha(sa) + en)P(xy, - - -, x,) = E{Hy(sy) + cN}.

Note that {N = 2} is understood to be some subset of {s, = 0 or 2}. The Bayes
procedure fora uniform prior is (N*, d%.), where N* is the solution, (if one exists),
to the optimal stopping problem of finding the N which minimizes (30). To treat
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this problem we make use of the general theory of optimal stopping as found in
[6]. A simplification of the problem is achieved by using the fact that, at stage
n, all conditions on x,, - - -, x, may be replaced by conditions on s,. That is we
are in the Markov case [6, page 102]. Thus forn =0,1, ...

(31) P(sn+1:sn+1|x1,"'axn):P(snﬂ:sn‘*‘llsn):sn—l—l’
n+4+2

1
P(Spin = S| Xpy - v X,) = P(Spyy = S,]8,) = %‘_7__—2
with Sy = 0.
The remaining part of this section is spent first, in showing that for this prob-
lem the optimal rule N* is bounded by

(32) I(c) = smallest n >3 suchthat — ""+1)
(n — 1)%(n — 2)

IA

C,

and second, in finding the explicit form of this rule. To this end, define
(33) W.(s) = H,(s) + cn .

To find optimal rule N,* in the class of rules N < I, I = 1, 2, . .., define
(34) wi(s) = W,(s), for s=0,1,...,1,

and by backward induction,

(35) W, 1(s,) = min {W,(s,), EWL,,(500) | X -+, X))

forn=r—-1,1—-2,...,1,0.
By (31), equation (35) may be rewritten as

(36)  w,(s) = min {W,,(s), A+ Dwanl+ D+ (41— S)W’I’“(S)}
n+2
forn=1—-1,I1—2,...,1,0and s =0, 1. ..., n. Therefore N,* = smallest
n = 0 such that w,(s,) = W,(s,). Sinces(n —s)=n—1forl <s<n-—1,
then
(37) O<H()=—""*+D -6 forall nx3.
= (- Dn—-2
Thus it follows from Theorems 4.4 and 4.5 of [6] that an optimal rule N* exists
and is given by
N* = lim,__ N,*
To show that N* is bounded by (32) we make use of the following

LEMMA. If the integer I is such that
II-1)

9 (=27 —3)

IA
o

then
39) wi_i(s) = wizl(s) forall s=0,1,...,1 —1.
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Proor. For s = 0 or I — 1, (39) is seen to hold forall/ = 4. Forn =1—1
andany 1 < s <1 — 2, (35) becomes

Wwi_(s) = min{ 17 =1 ! ! } .

s =3) U—s—Di-2 si=2"°
Hence (39) will hold if

N (8 NN 1 L
Wf-l(s)— s(I — s — 1)(I — 3) =(I—2)<I—-s—1 + s>+c
B I — 1)
TW—s—ni=3 " ©
or equivalently, if
i —1)

<c
s —s— DI —2)I —3)

(40)

Since s(/ — s — 1) =1 — 2 for 1 <5 <1 — 2, then (40) holds by (38). This
completes the proof of the lemma.

It follows from the lemma, that whenever (38) holds, then N,* = N} ,. By
induction, N,* = N¥,, for all I = I(c), where I(c) is defined in (32). Therefore,
the optimal stopping rule is the bounded rule

(41) N* = lim,_, N,;* = N}, .

A further simplification may be had by observing that the problem exhibits
a modified form of the monotone case property as discussed in [5] and [6]. If
we stop at stage n, and if 1 < s, < n — 1, then the expected loss will be

_ (1)
(42) W.(s,) = G_m + nc.

If on the other hand one more observation is taken and then we stop, the expected
loss will be

(Sn + I)Wn+l(sn + 1) + (fn + l)Wn+l(sn) — n(n + 1)
(43) TR = " — s.f. + (n+ 1)c.

The inequality (42) < (43) is seen to hold if and only if

n(n + 1)
(44) Sl Z = 2

The left-hand side of (44) is increasing with n, while the right-hand side of (44)
is decreasing with n. Thus, once (44) holds, it will continue to hold thereafter.
Since the optimal rule N* is bounded, it follows that it must be of the form:
(45) N* = first n =3 suchthat (44)occursif 1<s, <n—1

=N, if sy, =0 or N,
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where N, = N,(c) < I(c) is the smallest integer n such that wl(0) = W,(0) =
(n + 1)/(n — 1) 4+ nc. The determination of N, requires that we go through the
backward induction (36) for I = I(c). The right-hand side of (44) is ~1/c as
n — oo, so that N* is, in fact, a slightly modified version of the heuristic rule N
of (7). In the next section we give numerical data, based on computations for
various values of ¢, to compare the perfomance of (N*, 6%.) and (n(p), 6,,,)-

4. Numerical examples. The computations required for this section were run
on an IBM 360 computer using a Fortran IV program. For different values of
¢, Table 1 lists the corresponding values of N,, N, I(c), B,. and B,./ct, where N,
denotes the lower bound on N* when s,.f,« = 1, and B,. is the Bayes risk of
the procedure (N*, 6}.). In the next section it will be shown that Bj./c} — 27 as
¢ — 0. The numerical evidence seems to indicate that this convergence is not
monotone in ¢, since By./ct exceeds 2z for relatively small c. However, the possi-
bility of computing errors for very small values of ¢ cannot be discounted, and a
better program than the one used here might give smaller values for the Bayes risk.

TABLE 1
¢ N Kc) No B B/ct
0.03 14 39 12 1.042360 6.01805
0.01 2 105 31 0.616042 6.16042
0.005 31 205 59 0.439559 6.21630
0.001 66 1005 280 0.198510 6.27745
0.0004 102 2505 695 0.125774 6.28871
0.0002 144 5005 1386 0.088983 6.29202
0.00015 166 6672 1847 0.077068 6.29261

The expected loss of the optimal rule (N*, 6}.), here denoted by R(p), was
computed for a grid of values of p and for different values of c. The grid used
is the following, with the quantity in brackets denoting the size of the jump in
the value of p:

.000025 — .0001 (.000025) , .0002 — .001 (.0001), .002 — .01 (.001),
.0125 — .02 (.0025), .03 — .1(.01), .125—.175(.025), .2—.5(.1).
Figure 1 compares R(p)/ct to E,L(n(p), 0,,,, p)/ct = 2/(pg)}, for ¢ = .005 and
¢ = .0002. These computations were also done for ¢ = .001, but for reasons of

clarity these points are not included in the graph. It can be seen that for values
of p away from 0 (or 1), where R(p)/ct is greater than 2/(pg)t, the difference

TABLE 2
c Da Db y2i p* br
0.005 0.0125 0.015 0.002 0.003 0.004
0.001 0.003 0.004 0.0005 0.0006 0.0007

0.0002 0.0005 0.0006 0.000075 0.0001 0.0002
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between the two is small, and decreases as ¢ decreases. In conjunction with
Figure 1, the following values of p are tabulated in Table 2:

p, = the smallest grid value of p for which R(p)/ct = 2/(pg)}
p, = the largest grid value of p for which R(p)/ct < 2/(pg)
p* = the grid value of p for which R(p)/ct is greatest

p, = the grid value of p immediately to the left of p*

p, = the grid value of p immediately to the right of p*.

200+

109.77—
100~
90
80
70 + C=.005

9 604 *+ C=.0002

E5oﬂ'

EXPECTED 1.O0SS

ES
o
L

19 65-20=,,

10
o
w 87
. 74
<
)
%) 6
[&]
o 5
—

FiG. 1.

Table 3 lists the corresponding values of R(p)/ct and the value R/ct =
(1 4 Nyc)/ct, the limiting value of R(p)/ct as p — 0.
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TABLE 3
c R(pa)lct R(py)/ct R(pi)/ct R(p*)[ct R(py)/c Ro/ct
0.005 17.3247 16.5308 19.5722 19.6517 19.6081 18.316
0.001 36.1270 33.0271 42.4253 42,4889 42.4879 40.506
0.0002 89.0718 83.4370 109.693 109.776 106.925 90.581

5. Asymptotic properties of the Bayes rule. For convenience in this section
N* is written as N. For any fixed 0 < p < 1, N satisfies the asymptotic property
(9). Thatis, asc— 0

(46) E,{(N(epg))} — 1 k=1,2, ...

This convergence is not uniform in p, so that, in order to find the asymptotic
value of the Bayes risk of (¥, d,*), it is necessary to show that ¢:E, Nis uniformly
integrable with respect to the distribution of p. This we proceed to show after
proving (46).

Proor oF (46). Define

(47) T =first n>=3 suchthat s,f, = mn+ 1)

" (n—1)(n—2)c
For all fixed 0 < p < 1, it can be shown that as ¢ — 0

(48) T(cpg)t —1 a.s.
(49) E {(T(cpg)h)*} — 1 k=1,2,...
Statement (48) follows immediately from the inequality
Lo T=2(T—1) 1 (T 1) (T=2T—1)
cT* T T (T + 1) cT? (T 4+ 1\(T — 3) (T + HT*?

and the law of large numbers. By an argument similar to the proof of (9),
statement (49) is seen to hold. Further,

(50)  E,Net = cINy(p" + ™) + E, T — §,, o, TctdP — §,,, _y, TetdP.

Noting that N, — oo as ¢ — 0, a fact which is proved later in this section, it
follows that both P, (sy, = 0) and P,(sy, = N,) converge to 0 as ¢ — 0. Thus the
negative part of (50) goes to 0 as ¢ — 0, and (46) follows on noting that as ¢ — 0

CANY(pYo 4 g¥0) - 0 .

This completes the proof of (46).

Letting 4 = {1 < s, < N — 1}, it follows from the preceding argument that
asc—0,
1
(51) CGE(NL) — —— .
T (g

In the following it will be shown that as ¢ — 0,

(52) c¢tE(NI,) —> .
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Yn:E<(_p%; xl,---,xn>.

The posterior density of p as given in (25) yields

(53) y = 4+ DlG 4+ HIL + 3) |
) T(s, + DI(f, + 1)

For 1 < s, < n — 1, an easily proved inequality on gamma functions gives

To this end define

1
54 Y, = e —— .
(54) O+ D) g
Replacing n by N and noting that for N = 4,
N — )N 6
(55) sy (N—s55) = N< sy (N—1 —sy.) < C(Nt 2)(N) R

inequality (54) becomes

(56) Y, = (Nj D) <% + N>'i .
Since N < I(¢) < 4/c, for a constant K > 0 (56) becomes,
(57) K.Y, = ctNI, .

Thus,

¢E(NI,) < K.-EYy,=K-.x,
and statement (52) follows by (51) and the dominated convergence theorem.
The Bayes risk is given to be

(38) B(N, 0,*) = E(Hy(sy) + ¢N)

(A o) (i +

where 4 = {(SNO = 0) U (SNO = No)}'

Using the fact that P(4) = 2/(N, + 1), it follows that

2

(59) BV, 0,)jet £ 28 E(VE) + s

+ 2ct .

For a particular value of N,, say N, = c¢~%, statements (52) and (59) imply that
as ¢ —0,

(60) lim sup B(N, 0,%)/ct < 2r.
It follows that statement (60) must hold for the Bayes procedure. Since
2
B(N, 0,%))ct > — = |
(Vs 0t >t

statement (60) implies that N, — oo as ¢ — 0.
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Making use of (55) it can be seen that whenever 1 < s, < N — 1,

(61) 1 é sN—l(N -1 SN—I)(N _ 2) + (N_ 2)
Hy(sy) NN+ 1) (N+1)
1
RO

which in turn implies that

(62) Hy(sy) Z (N — 3) — (N — 3y
Thus,
(63) E, H,(sy)/ct = tE,(N — 3)I, — ¢3E, NI, ,

and by (51) it follows that as ¢ — 0,
1

(64) lim inf E, Hy(sy)/ct = o
By Fatou’s lemma, as ¢ — 0

(65) lim inf B(N, d,*)/ct = 2x
and hence as ¢ — 0

(66) B(N, 0,*)/ct — 2z,

as was to be proved.

6. Results for general beta priors. If instead of a uniform prior on p, a beta
prior (23) with a, b6 > 1 is considered, then the problem exhibits the monotone
property for all sample paths. In particular if @, 5 = 2, then the Bayes estimator
is given by

(67) Gx—_Smta—2 n>1,
" n+a+b—4 =

and (29) becomes

(68) H,(s,) = (ntatb—lntatb—2) nz=1

Gta—D(ftb—Dintato—4’
The optimal rule is simply ‘

(69) N =first n>=1 such that

B 3 1 (nd+atb—1n+at+b—2)
Gtae—Difi+bo-1) = (mM+tat+b—_3)ntatb—_4)

As before, for any fixed 0 < p < 1, this rule satisfies properties (8) and (9).
Further, as ¢ — 0
I'(@a — HT'G — §)

T@re)

(70) AEN —(a+b—1)
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Making use of the above, it may be shown in a manner similar to the proof of
(66), that, in this case, as ¢ — 0

B(N, 6,*)
T ) 2@t b 1)

T'(@ — HIG — )
T(a)T' () ‘
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