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A GENERAL THEOREM WITH APPLICATIONS
ON EXPONENTIALLY BOUNDED STOPPING
TIME, WITHOUT MOMENT CONDITIONS'

By R. A. WIJSMAN
University of Illinois at Urbana-Champaign

The stopping time N of a sequential test based on an i.i.d. sequence
X, X1, Xz, --- with common distribution P is defined as the first integer
n = 1such that ; < L, < Iy is violated, where L, is a statistic depending
only on Xi, - -+, Xn. If for all 1, I; there exist constants ¢ > 0, p < 1 such
that P(N > n) < co®, n= 1,2, ---, then N is called exponentially bounded
under P. In the contrary case P is termed obstructive.

A general theorem is proved whose conclusion is of the from that N is
exponentially bounded under P unless P{f{X) = 0} = 1, with fa function
that depends on the particular testing problem. Among the applications
presented there are two new results. The first is for the sequential linear
hypotheses F-test. The function fis found, and the distributions for which
P{f(X) = 0} = 1 are shown to be supported on spheres. All these P’s, and
only these, are obstructive. The second result concerns the sequential two-
sample Wilcoxon test for the equality of the distributions of random vari-
ables X and Y. Here the result is simple: P is obstructive if and only if
PX=Y)=1.

Two auxiliary results of independent interest are presented. The first
is a generalization of the exponential convergence of empirical to theoreti-
cal distribution function. The second one shows that if random variables
X and Y have joint distribution P and marginal distribution function F,
G, respectively, then P{F(Y) = G(X)} = l ifand only if P(X = Y) = 1.

1. Introduction. Let X, X, X,, - - - be independent and identically distributed
(i.i.d.) random variables with values in an arbitrary space -2° and common dis-
tribution P. Suppose one hypothesis (in general composite) is to be tested against
another by means of a sequential test that has stopping time N (= random sample
size). Consider the following property: there exist constants ¢ > 0 and p < 1
such that

(1.1) P(N > n) < cp*, n=1,2,....
Only sequential tests will be considered whose stopping rule is determined by a
sequence L,, L,, - - - of statistics, L, depending only on (X, -+, X,), and a pair

of stopping bounds —oo < I, < [, < oo, such that N is the first integer n = 1
for which

(1.2) L<L,<l,
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is violated. Invariant sequential probability ratio tests have this form, and all
our examples are of that nature, but for the purpose of this paper it is irrelevant
how the test arises. If for a particular P and arbitrary choice of I, [, inequality
(1.1) is satisfied (where ¢, p may depend on /,, ), then we shall say (following
Berk [1]) that N is exponentially bounded under P. In the contrary case P will
be termed obstructive. It should be kept in mind that P is to be regarded as the
true distribution of X and need not belong to the family of distributions (the
model) that lead to the test in the first place.

In the Wald sequential probability ratio test for testing one simple hypothesis
against another the sequence L, (= log probability ratio of X,, - .-, X,) is a ran-
dom walk, and Stein [11] has shown that N is exponentially bounded under
every P, except under those P for which P(L, = 0) = 1. Thus, in this case a
complete characterization of the obstructive distributions has been achieved.

When composite hypotheses are being tested L, is no longer a random walk
and results on the classification of P’s are considerably less complete. There is
one example in the literature ([12], Section 3) where the family of obstructive
P’s is completely known. The next best type of result is of the following form:
There is a real valued function f on 2%, and P is obstructive only if

(1.3) P{(X) =0} =1.

The actual family of obstructive P’s could possibly be a proper subset of the
family satisfying (1.3). The first such result, where N was shown to be expo-
nentially bounded under any P not satisfying (1.3), was Sethuraman’s nonpa-
parametric example [10]. Parametric examples of this sort appeared in [13],
Sections 5 and 6 and [15], Section 3. It should be noted that these examples
have been treated on a more or less individual basis, rather than as applications
of some general theorem. It is true that in [15] the result was obtained as an ap-
plication of a certain theorem, but the scope of that theorem was very restricted.

On the other hand, there is a number of examples where the results follow
from the application of a theorem that is sufficiently general to cover a wide
class of models [1], [12]. However, this greater generality as regards the models
was bought at a price: only distributions P could be handled under which certain
functions of X have finite moment generating function (m.g.f.) in an interval
about 0. In [14], Section 3(a), the obstructive P’s among those for which X?
has finite m.g.f. were exhibited, but ndthing was known about P’s for which
X? has infinite m.g.f.

In [4] Lai was the first to demonstrate for the sequential #-test, in the case of
hypotheses symmetric about 0, the existence of obstructive P’s under which X?
has infinite m.g.f. It turns out, however, that this is impossible if the hypotheses
are not symmetric, and in [16] it was proved that in that case under every un-
bounded P the stopping time N is exponentially bounded. The method of proof
suggested a general theorem that would cover at least all the known examples,
and presumably more.
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The general theorem mentioned above is presented in Section 2, together with
several corollaries for easier application. In Section 3 applications are given to
several parametric examples, and in Section 4 to nonparametric examples. The
results in subsections 3.3 (sequential linear hypotheses F-test) and 4.1 (sequential
two-sample Wilcoxon test) have not appeared in the literature before.

In all examples application of the theory in Section 2 leads eventually to the
statement that N is exponentially bounded under P if P does not satisfy (1.3),
with f a function that depends on the model. Which, if any, of the distributions
P satisfying (1.3) are obstructive has to be investigated on an individual basis.
In the examples in subsections 3.1, 3.3, and 4.1 the answer is completely known.
The result is particularly simple in the sequential two-sample Wilcoxon test: P
is obstructive if and only if P(X = Y) =1, in which case P(L, =0,n =1,
2, ...) = 1. This result parallels very closely the situation where L, is a ran-
dom walk [11].

The method of proof uses the classical idea of Stein [11] as adapted to the
case where L, is not a random walk by Sethuraman [10]. This idea consists in
showing that there exists a positive integer r and p > 0 such that

(1.4) P{L,,,— L, >d|N>n}>p, n=12,...,

in whichd = [, — ;. In order to find convenient conditions under which (1.4)
holds we consider L,,, — L, for large n. If this behaves asymptotically as
215-1 f(X,;), then L, behaves asymptotically as a random walk, with steps
f(X,), and exponential boundedness of N can be concluded unless (1.3) holds
(the actual proof is of course more delicate). In general, however, the function
f will also depend on (X,, - - -, X,). One of the hypotheses of the main theorem
is that this dependence is through a statistic taking values in a certain fixed
space, and under certain conditions (for instance if that space is compact) the
desired conclusion can be drawn anyway. Thus, the theorem can be regarded
as a generalization of Theorem 2.2 in [15].

In Section 2 the main theorem (Theorem 2.1) is followed by two corollaries,
the second of which being convenient for the application to the nonparametric
examples in Section 4. For the applications to the parametric examples in Sec-
tion 3 the most convenient theorem is Theorem 2.2 (technically a corollary of
Theorem 2.1), which assumes more structure than does Theorem 2.1 but also
has the hypothesis in easier verifiable form. Theorem 2.3 is an easy and obvious
theorem that is often useful to help decide exponential boundedness of N in cases
where Theorem 2.1 fails.

Although the statement of these theorems and corollaries is not simple, they
are relatively simple to apply. The procedure is to compute L, ,, — L, (this is
sometimes the hardest part), replace X, ,,, - - -, X, by y;, - -+, ., and let n — oo.
In this process the function f is discovered, and also (if applicable) the statistics
U, and V, that appear in Theorems 2.1 and 2.2. All that remains is to verify
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details such as continuity properties of certain functions and exponential
boundedness of particular events.

In some problems the expression of L, in terms of X, . .., X, is sufficiently ex-
plicit to calculate L, ,, — L, directly. More often, though, this is not possible.
However, for the purpose of exponential boundedness of N (and for termination
with probability one for that matter) it is permissible to replace L, by a simpler
expression that differs from L, by a uniformly bounded amount. Thus, in the
treatment of the sequential #- and F-tests L, is replaced in two stages by a func-
tion linear in a certain statistic. In the applications in this paper it may not
always explicitly be indicated whether the L, used is the original one or a con-
venient replacement.

2. The main theorems. The following notation and conventions will be em-
ployed. If &7 is a space, 227" in the n-fold product of 2~ with itself, and the
points (x;, - - -, x,) € 2" will often be denoted x™. All spaces are measurable,
i.e., supplied with a sigma-field. As a rule no notation will be introduced for
the various sigma-fields since usually we shall not need them explicitly. A func-
tion on a space will be called measurable if it is measurable with respect to the
given sigma-field. Product spaces are equipped with the product sigma-field, and
in a topological space the sigma-field is generated by the open sets. Euclidean
n-space is denoted R", and R is the real line,

If A is a subset of a space, 4° denotes the complement of A4 in that space. If
S is a subset of a product space 22”7 x Z/, then for y € 2/ the Z%=section of S at
y is the set S, = {x e 27: (x, y) € S}. If X" is a random variable taking values in
&~" and U a measurable function on 27", then U(X™) will be called a sratistic.
Let, forn = 1,2, ..., X" e 22" be a random variable on a probability space
with probability measure P and A4, an event depending only on X, i.e., the in-
verse image under X" of a measurable subset of -27". We shall say that the
sequence A,, A,, - - - is exponentially bounded if there exists ¢ > 0 and p < 1 such
that P4, < co”, n=1,2, .... We shall often for short say that 4, is expo-
nentially bounded. A sequence Y,, Y,, ... of vector valued statistics will be said
to converge exponentially to 0, in symbols Y, —,, 0, if for any ¢ > 0 the se-
quence of events [||Y,|| > ¢], n = 1,2, ..., is exponentially bounded, where
[| || denotes Euclidean norm. If X is a real random variable it is said to have a
finite m.g.f. if Eexp(tX) < oo for ¢ in some interval about 0.

For the purpose of this paper it may be assumed that the stopping bounds
in (1.2) satisfy —/, = /,, and the common value will be denoted d/2. Thus,
throughout the remainder of this paper N will be defined by

2.1) N is the smallest integer n =1 suchthat |L,|>=d/2.
Throughout this paper 4, will stand for the event
(2.2) A, =[N >n], n=1,2,....

Then the definition of the property that N is exponentially bounded given in
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Section 1, and expressed by (1.1), can be given equivalently by saying that A4,
is exponentially bounded.

Since the statement of Theorem 2.1 is somewhat involved it may be desirable
to outline the main ideas in it. If it were possible to approximate L, , — L, by
a sum 7 f(X,,;), for every positive integer r, then L, would behave very much
like a random walk, and the Stein argument could be used to prove exponential
boundedness of N under those P for which f(X) is not degenerate at 0. In some
examples such a function f exists, but in general it does not. What seems to be
often possible is to approximate L,,, — L, by a sum of the form }}7 f(X,,;, U,),
where now f is a function of two arguments, and U,, with values in a fixed space
7/, is a statistic depending only on X,, ---, X,. Required now of fis not only
that f(X, u) be nondegenerate at 0 for every u, but uniformly so in a certain
sense. To make that precise one may demand that for some 6 > 0 and for any
u, f(x, u) > d for all x or < —d for all x. In general it is not possible to achieve
this for all x and u, but only for x in a subset S, of 27, and u in a subset T of
7/. The argument still goes through if S, has a positive probability, bounded
away from O as u runs through 7, and if [U, ¢ T] is exponentially bounded.
Even this is too strong an assumption for some applications. It suffices that
there exist a sequence of events C, such that 4,C, implies [U, e T] and 4,C,°
is exponentially bounded.

THEOREM 2.1. Let X, X, X,, - -+ be i.i.d. random variables with values in 27
and common distribution P. Let L, = L,(X") be a sequence of real valued statistics
and U, = U,(X™) a sequence of statistics with values in a space 7/. Let N and A,
be defined by (2.1) and (2.2). Suppose there exists a measurable subset T of 7/, a
measurable function f: 27 x T — R, a measurable subset S of 2° x T, real numbers
p>0,0>0,¢> 0, and for each integer r > 0 a sequence C, of events, with C,
depending only on X", such that the following conditions are satisfied:

(i) P(XeS,)>pVueT;
(i) ifueT, then either f(x,u) > 0V xeS, or f(x,u) < —0VxeS,;
(iii) A4,C,° is exponentially bounded,
(iv) forn=1,2, ..., the event A,C, implies the event [U, ¢ T and implies the
event

(2.3) [Lar (X7 y7) = Lo(X¥) — Bjes f(0 U] < €]
whenever y; €S, , j=1, ..., r.

Then N is exponentially bounded.

Proor. We have to show that 4, is exponentially bounded. Let d, 6 and ¢
be as given in (2.1) and the hypotheses of the theorem. Take integer r > 0
such that

(2.4) r>(d+ ¢)d.

Then with this r let C, be the sequence of events as given in the hypotheses.
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Exponential boundedness of 4, follows from the Lemma in [16], by condition
(iii) and the fact that 4, is a nonincreasing sequence, if we can show that there
exists p, > O such that P(4,,,C,,,|4,C,) <1 —p,n=1,2,.... It will even
be shown that P(4,,,|4,C,) <1 — p, or, equivalently, P(A4: .| A4,C,) > p,.

n+r
Now given 4,, the event A, is implied by [|L,,, — L,| > d]. Thus, it suffices

nI

to prove

(2.5) P(L,., — L,| > d[4,C)) > p, n=1,2,.
Let D, denote the event

(2.6) D, =[X,; eS8 ,j=1..-,r].

If U, e T, then by (ii) and (2.4) D, implies

2.7) | D5t (X Up)| > d 4 <.

Therefore, after replacing in (2.3) the y; by X,,;, we have that by (iv) and (2.7)

(2.8) 4,C,D,  implies [[L,,, — L,| >>d].

n+r

Now since the X, , ; are independent of 4,C, and of U,, and 4,C, implies [U, € T']
by (iv), it follows from (i) and (2.6) that

Then (2.8) and (2.9) together imply (2.5), with p, = p7. []

COROLLARY 2.1. Let X, X, X,, - - - be i.i.d. random variables with values in .7°
and common distribution P. Let L, = L,(X™) be a sequence of real valued statistics
and let N and A, be defined by (2.1) and (2.2). Suppose there exists a measurable
function f: 227 — R, a measurable subset S of 2" and 6 > 0 such that P(XeS) >0
and |f(x)| > 6 for every x € S. Suppose that for some ¢ > 0 and every positive inte-
ger r there is a sequence of events C, (depending on r) with

Co C [3Up {[ Lo r(X™ ") = Lo = DS 2s o5y €8} < 6]
such that A, C,° is exponentially bounded. Then N is exponentially bounded.

ProOF. Since |f| > 0 on S and P(X e S) > 0, there is a measurable subset S,
of Sand p > O such that P(X e S,) > p and either f > 6 or f < —d on §,. Then
in the hypotheses of Theorem 2.1 the space 7/ can be taken arbitrarily and f in
that theorem can be chosen to be the function fin the hypotheses of the corol-
lary, so that f does not depend on the second argument u. The set S in the
hypotheses of Theorem 2.1 can be taken to be S, x %. The hypotheses of the
corollary then imply those of Theorem 2.1. []

COROLLARY 2.2. Let X, X,, X,, - - - be i.i.d. random variables with values in .7~
and common distribution P. Let L, = L,(X™) be a sequence of real valued statistics
and let N be defined by (2.1). Suppose there exists a measurable function f: 7~ — R,
a measurable subset S of 527 with P(X € §) > 0 and f(x) + O whenever x ¢ S, and a
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set S, O S, such that for every positive integer r the function

(2'10) vKn = sup {an+r(Xn’ )") —-L,— fo(.yl)l D STIRRRER C= So}
is measurable. If K, —.., 0, then N is exponentially bounded.

Proor. Since |f| > 0 on S, thereis S, C S with P(X e S;) > 0and g > Osuch
that |f| > & on S,. This set S, can then be substituted for the set S in the hy-
potheses of Corollary 2.1. In those hypotheses ¢ > 0 can be taken arbitrarily
and C, = [|K,| < ¢]. Since by assumption K, —,,, 0, we have that C,° is expo-
nentially bounded, so a fortiori 4,C,° is exponentially bounded. Thus, the
hypotheses of Corollary 2.2 imply those of Corollary 2.1. []

The following theorem is technically a corollary of Theorem 2.1 since it reaches
the same conclusion while making stronger assumptions. These assumptions are
usually easier to verify in parametric applications than are those of Theorem 2.1.
An explanation is in order of the statistic ¥, that appears in the statement of the
theorem. In parametric problems it is often the case that L, (X", y") — L, de-
pends on X" through (U,, ¥,), with values in the fixed space Z x 7, where
(at least on 4,) V, has an exponential limit v, and U, lies eventually in the com-
pact set T (in the exponential sense). Then for suitably chosen neighborhood G
of v,, C, in Theorem 2.1 is taken as [U,e T] n [V, € G].

THEOREM 2.2. Let X, X,, X,, .-+ be i.i.d. random variables with values in a
sigma-compact topological space 27, possessing common distribution P. For n =1,
2,...let L, =L (X", U, = U,(X™), and V, = V,(X") be statistics with values in
R, Z/, and 7, respectively, with ZZ and 7 topological spaces. Let N and A, be
defined by (2.1) and (2.2). Suppose there exists a compact subset T of 7/, a real
valued continuous function f on 2 x T, a point vy 7, and for r = 1,2, ... a
real valued measurable functionl,on 27" x 7/ x 7" whichis continuousat (y", u, V,)
for every yr € Z°7, ue T, such that the following conditions are satisfied:

(i) A4, n[U,¢T] is exponentially bounded:

(il) A4, n [V, ¢G]is exponentially bounded ¥ neighborhood G of ;

(lll) Ln+r - Ln = lr(Xn+1’ A } Xn+r’ Un’ Vn) on An n [Un € T]’

(iv) L(y"s u,v0) = Ziflypu), yre uel;

(v) P{fiXx,uy=0}<1VueT.

Then N is exponentially bounded.

ProOOF. We shall show that the hypotheses of Theorem 2.2 imply those of
Theorem 2.1. From (v) it follows that for every u e T there exists d(u) > 0,
p() > 0, and e(x) which equals either 1 or —1, such that
(2.11) Ple(u)f(X, u) = 20(u)} > 2p(u) .

Since 22” is sigma-compact, there exists a compact 27, C <2~ with P(X € 227°) <
p(u). Define

(2.12) S(u) = 25 N {xe 2 e(u)f(x, u) = 20(u)},
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then since f is continuous, S(z) is compact. Furthermore,
(2.13) P{Xe Su)} > p(u),
(2.14) e(u)f(x, u) = 20(u) if xeSu).

Let u, be an arbitrary point of 7. Since f is continuous and S(x,) compact
there exists a neighborhood F(u,) of u, such that

(2.15) f(x, 4) — f(x, ug)| < O(no) X € S(up), 1 & F(uy) -
Write (2.14) for u = u, and combine with (2.15) to obtain
(2.16) e(up)f(x, u) > 0(u,) if xeS(u), ueF(u).

Since T is compact it can be covered by a finite subcollection of the neighbor-
hoods F(u,), u,e T, say by F(u,), ---, F(u,). Put

(2.17) 0 =min{ou):i=1, ..., m}

(2.18) p=min{pu):i=1, ..., m}.

Write (2.16) for u, = uy, - - -, u,, and replace on the right-hand side the d(x,) by
their minimum:

(2.19) e(u)f(x,u)y >0 if xeSw), weFu), i=1,...,m.

We may replace the F(u,) by disjoint, measurable sets F(#;) C F(u;) whose union
is T (some of the F’'(u,) may be empty). Define

(2.20) S=U{S(w) x Fl(u):i =1, -.., m}.

If (x, u) € S, then x e S(u,), u € F'(u,), for a unique i, 1 < i < m, and for this u
and i, S, = S(u,;). It follows then from (2.19) that (ii) of Theorem 2.1 is fulfilled.
Furthermore, for the # and i of the preceding sentence, after writing (2.13) for
u = u, and replacing p(u,) by the left-hand side of (2.18), we have P(Xe S,) =
P{X € S(u;)} > p, verifying (i) of the hypotheses of Theorem 2.1. Now put
(2.21) So=U{Sw):i=1,.--,m},

then S, is a compact subset of -2, Since for every u e T, §, is one of the S(x,),
it follows that

(2.22) S, CS,, ueT.

Thus, for every u e T, (x, u) € S implies x € §,. Now S, x T is compact, and so is
S," x T as a subset of 27" x Z/. By hypothesis [, as a function on §;" x T' x 7~
is continuous at (y", u, v,) for every y" € S,", u € T. Therefore, given ¢ > 0, there
exists a neighborhood G of v, such that

(2.23) Ly u,v)y — Ly u,v)<e, yeS,uel,veG,
or, equivalently, by (iv)
(2.24) LGOS u,v) — Difopw)| <es  ypoory.€8,uelT,veG.
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Define
(2.25) C,=[U,eTIn[V,eG].

Then 4, C,’ is exponentially bounded by (i) and (ii). Thus, (iii) of the hypotheses
of Theorem 2.1 is verified.

It remains to verify (iv) of Theorem 2.1. It is immediate that 4,C, = C, —
[U.eT], by (2.25). It remains to be shown, using (iii), that

(226) llr(}"a brn’ Vn) - ZIf(yj’ Un)l <e if Yis c s Y€ SU,,L
is implied by 4, C,. Now A4,C, implies [U, e T] and [V, € G], by (2.25), and
then (2.26) follows from (2.24) and (2.22). [J

The following theorem is much easier to prove than Theorem 2.1 but is also
much less powerful. However, it often is successful in some cases where Theo-
rem 2.1 or its corollaries fail. The theorem has been used before in the litera-
ture, e.g. in [8].

THEOREM 2.3. Suppose thar N is defined by (2.1) and L, /n —,. a + 0; then N
is exponentially bounded.

Proor. Take 0 < ¢ < |a|/2. Define C, = [|(L,/n) — a| < ¢] and 4, by (2.2).
Then 4, c 4,C, U C,°. In this union C,° is exponentially bounded by hypothe-
sis. The event C, implies |L,/n| > |a|/2 so that if n > df|a|, then |L,| > d/2,
implying 4,° by (2.1) and (2.2). Hence 4,C, is empty for n > df|a|. []

3. Parametric applications. In this section several examples are given of the
use of Theorems 2.2 and 2.3, especially the former. Subsection 3.3 treats the
sequential F-test and is a new result. The results in subsections 3.1 and 3.2 have
appeared in [12] and [13]. Subsection 3.1 has been included because it is one
of the simplest illustrations of Theorem 2.2, and subsection 3.2 because the
proof of Proposition 3.2.1 using Theorem 2.2 is so much simpler than the proof
in [12]. Moreover, this proposition is basic to other problems (see also Remark
2 following the proposition). Two more parametric examples of exponentially
bounded N are known: the sequential r-test [16], and a generalization of two
testing situations treated in [13], Sections 5 and 6, and in [15], Section 1. It
will be very briefly indicated here how Theorem 2.2 is used to deal with those
problems.

In the problem treated in [13] and [15], mentioned above, X, X}, X,, - .. are
i.i.d. random vectors in R* and L, = ||32 X|| + a 7 || X,|| + bn + clog (1 +
|23 X,||). After computing L,,, — L,, and denoting S, = Y7 X,, one sees that
the statistic U, in Theorem 2.2 should be taken as U, = §,/||S,||. Furthermore,
Vi = [|S.ll, % = oo, and f(y, u) = w'y + al|y|| 4+ b (prime denotes transpose), in
which u, y e R*, and |[u|| = 1. (This f was also found in [15], equation (3.2).)
Thus, N is exponentially bounded unless P(u'X +- a||X|| + b = 0) = 1 for some
u e R* with |[u|| = 1. Of the family of P’s satisfying this condition certain sub-
families have been classified as obstructive or not in [14].
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Exponential boundedness of N in the sequential ¢-test has been considered in
various stages of generality by Berk [1], Section 4; Wijsman [12], Section 4,
[14], Section 3(a); Lai [4], Section 3; and Wijsman [16]. Here the X’s are real
valued and p/o = 7, is to be tested against u/¢ = r,, with y, % r, given. The
test is expressible in terms of the sequence T, = n~* 37 X,/(n™* 17 X;’)}, and
the log probability ratio can be replaced (following Lai [4]) by L, = n(T, — 4),
in which 2 is a constant (|4] < 1) depending on 7, and 7,, and 4 = 0 if and only
if y, = —7, (symmetric hypotheses). The distribution P(X = 0) =1 is to be
excluded, otherwise T, would be undefined. After computing L, ,, — L, ([16],
equations (20) and (23)), and denoting S, = X7 X%, it is found for the applica-
tion of Theorem 2.2 that U, = S,/n, V, = (n, T,, S,), and v, = (o0, 4, o). Fur-
thermore, 27 = [0, o], and for T one can take [a, co] with any a such that
0 < a < EX* (observe that 0 < EX? < o0). Checking conditions (i) and (ii)
proceeds as in subsection 3.3. Letting n — oo one finds

(3.1 fu) = —=@)2) — A2~y +uty  if u< oo
= —22 if u=oco.

If |7y # |7, (asymmetric hypotheses), then 2 + 0 so that P{f(X, ) = 0} = 1 can
happen only with # < co, and reads then P(AX* — 2utX + Au = 0) = 1. This is
a two-point distribution so that X* has a finite m.g.tf. An application of Theorem
2.3 then narrows the possibly obstructive P’s down to the family of two-point
distributions found in [12], equation (4.19). These distributions were shown in
[14], Section 3(a), to be obstructive. On the other hand, if y; = —y, (symmetric
hypotheses), then 2 = 0 so that f{y, 4) could be = 0 simply by having u = oo.
That this can indeed happen was shown by Lai [4], Section 3, who demonstrated
in the symmetric hypotheses case the existence of unbounded obstructive distri-
butions. At present no complete description of all such obstructive distributions
has been given.

3.1. Sequential test about the variance in a normal population with unknown mean.
Under the model let X, X, X,, ... be i.i.d. N(g, ¢%), #, 0 unknown, and the
problem is to test sequentially one value of o against another. Put X, =
(1/n) 237 X, then the log probability ratio (apart from a nonzero multiplicative
constant) is

(3.1.1) L= 5t (X~ XY — (1 — 1)@

(see [12], Section 3), in which a > 0 is a constant depending on the hypotheses
to be tested. From (3.1.1) compute

(3.1.2) L,,.,—L,= PN X:_,,j — 2n(n 4 r)—lX/” St Xoys
- (ﬂ + r)_l(Z§=l Xn+j)2 -+ n(n + r)—ernZ — rat.

From this expression one sees that for large n, L,,, — L, ought to behave as
Dia (X2 — 2X, X,,; + X,? — @°) and this suggests that one should try to apply
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Theorem 2.2 with U, = X,, V, = n, and

n

(3.1.3) f,w)y=y"—2uy + v — @ if |u < oo,

= o0 if |u|=oo.

Although the possible values of U, are finite, it is convenient to add the points
at 4oo, so that 7 = T is taken to be [ —co, oo] with the usual topology that
makes this a compact space. Take 7" = {1,2, ..., oo} and v, = co. Lastly,
.consulting (3.1.2), define

Ly’ u,v) = 21y —2n(n 4+ r)"'u 331 y;
— (1 + Y + A D — 1
(3.1.4) if u<oo, 1< o0,
L(ysu, o0) = Ziy —2u Zly; +rwt —ra® if fu < oo,

L(y", 00, 0) = 0.

The continuity conditions in Theorem 2.2 can then easily be checked, conditions
(i)—(iv) are immediate, and N is concluded to be exponentially bounded unless
condition (v) is violated. That is, P can only be obstructive if P{f(X, u) = 0} = 1
for some ue T, with f defined in (3.1.3). Obviously this cannot happen if
|u| = oo so that P is obstructive only if

(3.1.5) PlX —ul =a} =1 for some ueR.

This is a two-point distribution, therefore X* possesses a finite m.g.f. From this
and Chernoff’s Theorem 1 [2] it follows easily that (1/n) 37 (X; — X,)? —exp 0%
where ¢’ is the variance of X under P. This, together with (3.1.1), implies that
L,/n—, , ¢* —a. ByTheorem 2.3, N is exponentially bounded unless ¢* = a’.
For P given by (3.1.5) this happens if and only if

(3.1.6) Pl X=uta =1%, —o U< o,

and each such P was shown in [13], Section 4, to be obstructive. Thus, in this
example the family of obstructive distributions is completely characterized by
(3.1.6).

3.2. Sufficient conditions for exponential boundedness of N if || X|| has finite m.g.f.
The following proposition is essentially Theorem 2.1 in [12], but restated here in
slightly different form. Its proof, using Theorem 2.2, is a great simplification
over the proof of Theorem 2.1 in [12].

ProposiTION 3.2.1. Let X, X,, X,, - - be i.i.d. random vectors with values in
R* (k a positive integer). Let the distribution P of X be such that E exp(t|| X||) < oo
for some t > 0 and let EX = §. Let {L,} be a sequence of statistics and let N be
defined by (2.1). Suppose there exists a neighborhood W of & and a real valued
function @ on W possessing a continwous gradient, such that

(3.2.1) IL, —n®X) <B if XeW (n=1,2,...)
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for some B < oo, where X, = (1/n) ,# X,. Let A = grad ® evaluated at §é. Then
N is exponentially bounded if

(3.2.2) PIAX -6+ D¢) =0 < 1.
Proor. By (3.2.1) it is permissible to pretend that L, = n®(X,) whenever
X, e W. There is a measurable, real valued function g on W x W, such that

9(x1, x;) — 0 as (x, %) — (€, §), and @(x,) — D(x;) = A'(xX, — x1) + g(x, X,)|[x; —
x| if x;, x, € W. With the help of g one computes

Ln+r - L'n. = (n + r)[q)("\-,n+r) - (D(‘Yn)] + rq)(Xn)
(3‘2'3) = A’(Z; X’n+.1' - r"‘_,n) + rq)("_,n)
+ ”Z{ Xn+:i - r’\-;n”g(‘yn’ (ll + r)_l(nl‘_fn + Z; Xn+i)) ’

provided X,, X,,, ¢ W. Letting n—oo and using X,—, & so that O(X,)— ., D(£),
it is seen that the statistic U, and space %/ in Theorem 2.2 are not needed, that
V, can be taken (n, X,), with v, = (o0, §), and that

(3.2.4) f) =480 =&+ 2.
From (3.2.3) the function /, in Theorem 2.2 follows easily, and the continuity
conditions can be verified. By hypothesis, P{f(X) = 0} < 1, with f defined in
(3.2.4), so that (v) of Theorem 2.2 is also verified. []

Remarks. 1. If ®(§) = 0, then @ needs only to be assumed continuous at
¢ in order to reach the same conclusion. This follows from an application of
Theorem 2.3 after observing that X, — . & implies L,/n — ., ®(&).

2. If (3.2.2) is not satisfied, i.e., f(X) = A/(X — &) 4+ ®(§) = 0 with proba-
bility one, then by taking expectation on both sides of this equation one sees
that ®(§) = 0 and therefore P{A'(X — §) = 0} = 1. If, in addition, @ has con-
tinuous second partial derivatives in a neighborhood of &, then it was proved in
[14] that P is obstructive. (For that result the only moment condition on P is
that E||X||* be finite.) An application of this remark will be made in the next
subsection.

3.3. Sequential F-test for the general univariate linear hypothesis. Let X, X,

X,, -+« bei.i.d. with values in R*, k = 2. Write x;, - - -, x, for the components
of X, x;;, - -+, x,; for the components of X;, j = 1, 2, . ... The model specifies
X, + -+, X, to be independently normal with common variance ¢ Integers ¢, s

are given, with 1 < ¢ < s < k. Put Ex; = p, and y = >} p1,’/o*. The problem
in its canonical form is to test one value of y against another, say 7, versus 7,,
with r, = 7, given nonnegative numbers. It is convenient to introduce the fol-
lowing shortened notation:

(3'3'1) Zl = Zg=1 ’ Zz = Z§=q+1 ) 23 = Zlic=3+1 ’ Z = Z?:x s
and %, = (I/n) 337, x,;. In this notation the usual F-statistic at the nth sampl-
ing stage is in 1-1 correspondence with

(3'3'2) Y,=n3, ifn/Z?:l {Z1x?j + Zz(xij — iin)z + Zs x?j}
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(see, e.g., [4], proof of Theorem 7). The sequential F-test is the sequential prob-
ability ratio test based on the sequence {Y,}. Lai[4], Section 5, showed that for
the study of asymptotic properties of the stopping time N it is permissible to
pretend that the log probability ratio is

(3.3.3) L,=n(Y,—B)+vlogn,

in which B and v are constants depending on the model, and 0 < 8 < 1. The
constant v depends also on (r,, 7,), and v = 0 if ¢ = 1 or if both y, and 7, are
> 0 (see [4]). Lai [4] proved termination with probability one and obtained
asymptotic results on the moments of N.

In this subsection it will be shown that N is exponentially bounded under P
unless

(3-3-4) P{Zl (x; — Bt + Zz(xi - P‘i)z + s x? = (18—2 — B 2h /11‘2}
=1.

Before doing that, a short discussion will be given about distributions satisfying
(3.3.4). First of all it has to be ascertained that there are such distributions. It
is convenient to put (3.3.4) in a different form. Let S(b, r) be the (k — 1)-sphere
with center b and radius r; then (3.3.4) is equivalent to

(3.3.5) P{XeS®b,n}=1
in which
b= B, =100,
(3.3.6) =, i=q+1,.-.,5,
=0, i=s+1,...,k,
(3.3.7) = (B — ) Tand

Observe that the distribution (3.3.5) is bounded, so that || X||* has a finite m.g.f.
Let x = EX and let B(b, r) be the closed k-ball with center b and radius r. Any
P satisfying (3.3.5) obviously has ¢ € B(b, r). Conversely, it is easy to see that
given any point y € B(b, r) it is possible to find a distribution P supported on
S(b, r) that has ¢ = y (in fact, many such P’s if y is in the interior of B(b, r)).
Expressing the condition x € B(d, r), using (3.3.6) and (3.3.7), leads to

(3.3.8) Dept S (BT = 1) Zopd

Thus, P satisfying (3.3.5) exists if and only if (3.3.8) is fulfilled.

The next question is whether every P satisfying (3.3.5) is obstructive. This
is indeed true if v = 0 in (3.3.3), for then (3.2.1) is satisfied, with ® having
continucus second partial derivatives, and obstructiveness is concluded from
Remark 2 following Proposition 3.2.1. If v = 0 (which is the more usual situ-
ation) the question whether P is obstructive reduces essentially to a problem of
random walk between tilted and widening absorbing barriers. This has been
solved recently by Portnoy [7], and by Lai and Wijsman [5]. The result is that
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P is obstructive also in this case. Therefore, P is obstructive if and only if it
satisfies (3.3.5).

By applying Theorem 2.2, exponential boundedness of N under P will now
shown provided P does not satisfy (3.3.4). This excludes in particular those P
for which x,, ..., x, and x,,,, - - -, x, are degenerate at 0, and x,,, -- -, x, are
degenerate at any constants (such P would also leave Y, in (3.3.2) undefined).
The following simplifying notation will be employed:

(3.3.9) Si = 27=1%ij» Z = Yo Dt Xy
(3.3.10) T, = 25y Xinei» W= 35 21 X3 s -
On the left-hand sides of (3.3.9) and (3.3.10) the dependence on n has been
suppressed. In the notation (3.3.9) and (3.3.1), (3.3.2) can be written
(3.3.11) Y, = X, 8(nZ — 3,87
In (3.3.11), replace n by n + r and use (3.3.10):
(3:3.12) Y., = (S + TP/l(n + N(Z + W) — L, (S + T).
From (3.3.3) compute L,,, — L, = 1Y, — B) + vlog(l + rn7?) 4 (n + r) X
(Ya+r — Y,), and in the last term substitute (3.3.11) and (3.3.12). The result is
Ln+r - Ln

(3.3.13) =rY,—p)+vlog(l 4 rn7Y)

+ [Z =+ W — (" + r)_l Zz(Si + Ti)2]~1{2 21 SiTi .

+ 2. T =Y, [rZ+ (n4r\W—-23%,85T, — 3, T
From this expression it can be deduced how the statistics U,, V,, and the func-
tions /., f in Theorem 2.2 ought to be taken. Define

(3.3.14) U,=nzZ1, 8272 ...,82Z7"
with values u = (uy, uy, - - -, u,) € R*+', and
(3.3.15) V,=(n Y, Z7

with values v = (v;, v, v;) € 77 = {1, 2, -+ -, o0} x [0, 1] x [0, oo0] (Observe that
v, = n). The limit point v, in Theorem 2.2 is
(3.3.16) Yy = (o0, $,0).

First condition (ii) in Theorem 2.2 will be checked. Taking a product neigh-
borhood G = G, x G, x G, of v, given in (3.3.16), it is sufficient to verify that
A, N [ngG], 4, n[Y,¢G,), and A, n[Z~'¢G,] are all three exponentially
bounded. The first and third of these assertions are even true without the inter-
section with 4, since n — oo and Z —,,, oo by [11], using P(||X|* = 0) < 1. In
the second, let ¢ > 0 be arbitrary and G, = (8 — ¢, 8 4 ¢). Further, choose
integer n, such that ne — |yv|logn = d/2 if n > n,. Using (3.3.3), (2.1), and
(2.2),if n > nyand Y, ¢ G, then |L,| = d/2 so that the event 4, does not happen.
In other words, 4, n [Y, ¢ G,] is empty for n > n,.
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The space 77 and subset T in Theorem 2.2 need to be defined, and condition
(i) checked. By (3.3.9) and an application of Schwarz’ inequality it is found
that 31:_, (S, Z7')* < nZ~*. Thus, the values u of U, defined ":1 (3.3.14) satisfy
> u? < uy. Therefore, define 2 = {u e R**': Y1 u? < u}. Denote o* = E||X|?
and observe that 0 < 7 < oco. Choose any real number a such that 0 < a < 7%
If the distribution of ||X||* is bounded under P, then by Chernoff’s Theorem 1
[2], [Z./n < a] is exponentially bounded. This is easily seen to be true also for
unbounded distribution, using a truncation argument. Define

(3.3.17) T={ueR*": Y3u<u <al},

then T is a compact subset of 77 and [U,¢ T] = [Z,/n < a] is exponentially
bounded so that condition (i) is satisfied.

In order to write down the function /, in (3.3.13) U, has to be replaced by
u, V, by v, and X,,,, ---, X,,, by the (nonrandom) vectors y,, ---, y,. The
latter substitution amounts to replacing T, by »%5_, y;; i = 1, - -+, s)and W by
21t |ly;lI>. Then letting v — v, (defined in (3.3.16)) furnishes the function f:

(3.3.18)  fy,u) =1 —u,* Fyu)?
X [2 Dvuyys — B+ ug Xy — 2 2 y)] s
in which now y,, - .-, y, are the components of the k-vector y. The continuity

conditions on /, and f, as well as (iv) of Theorem 2.2, are easily checked. Con-
dition (5) is also fulfilled unless P{f(X, u) = 0} = 1, with fof (3.3.18), i.e., unless

(3.3.19) P23 uyx; — B — Buy 33 x* + 2B Yyux, =0} =1

for some u e T, with T defined in (3.3.17). In (3.3.19) &, cannot be = 0 since
otherwise by (3.3.17) 4, = ... = u, = 0, whereas § + 0, contradicting (3.3.19).
Hence (3.3.19) restricts X to a (k — 1) sphere so that P is bounded. Therefore
|| X]|* has finite m.g.f. and Chernoff’s Theorem 1 [2] implies that U, (defined in
(3.3.14)) converges exponentially to #* = (7%, py7%, - - -, p,v7%). Foranyu == 4’
there is a compact neighborhood T, of #° in 7/ such that u ¢ T,. Since [U, ¢ T,]
is exponentially bounded, one can replace T by T, in the application of Theorem
2.2. Then P can be obstructive only if (3.3.19) holds for some u € 7,. Taking
the intersection of all such T it follows that P can be obstructive only if (3.3.19)
holds with ¥ = #°, i.e.,

(3.3.20) P> x> — 2B 2 pxy — 2%, + 2 =0} =1,
Taking expectation on both sides of the equality inside the curly brackets in

(3.3.20) shows z* = 8! 3, p® + 23, ¢°, and substitution of this into (3.3.20)
yields (3.3.4).

4. Nonparametric applications. Tests depending on ranks can often conven-
iently be expressed in terms of empirical distribution functions. Usually the
empirical distribution function F, of a sample X, -.., X, is taken to be right
continuous, i.e., nF,(z) = (number of X’s < z) = 71 _,, ;(X;), where for any
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set A, I, denotes its indicator. The theoretical distribution function F is then
also right continuously defined. If possible occurrence of ties between the ob-
servations is dealt with by assigning midranks, then it may be more convenient
to define both empirical and theoretical distribution functions in a way that
constitutes an average between right and left continuity:

(4.1) nF,(2) = § 27 [licwa(Xs) + 11w o(X0)] 5

(4.2) F(z) = JPX < 2) + P(X < 2)],

if X has distribution P and distribution function F.

In the sequel two results on exponential convergence of empirical distribution
functions will be needed and are stated below as Lemmas 4.1 and 4.2. The first
one follows from Dvoretzky, Kiefer and Wolfowitz [3], equation (2.6). It is
also implied by Theorem 1 in Sethuraman [9], but that theorem is stronger than
necessary for our purpose. Both lemmas are valid no matter how F, and F are
defined, as long as they are defined in the same manner. That is, both right con-
tinuous, or left continuous, or a fixed mixture of the two as in (4.1) and (4.2).

LemMma 4.1. Let X, X,, - .. be i.i.d. real valued random variables with distribu-
tion function F, and let F, be the empirical distribution function of X, ---, X,,.
Then sup {|F,(x) — F(x)|: x € R} —., 0.

Now let Y, Y,, Y,, --- be another sequence of i.i.d. real random variables
with arbitrary common distribution. Since F(Y) is a bounded random variable it
follows from Chernoff’s Theorem 1 [2] that n=* 317 F(Y,) — ., EF(Y). Combin-
ing this with Lemma 4.1 proves the next lemma.

LemMMA 4.2, Let X,, X,, - - - bei.i.d. real random variables with distribution func-
tion F, let F, be the empirical distribution of X,, ---, X,,, and let Y, Y, Y,, - - - be
i.i.d. real random variables. If {c,} is a sequence of members such that nc, — 1 as
n— oo, then ¢, 31 F (Y;) —qxp EF(Y).

A generalization of Lemma 4.1 will be needed in subsection 4.2. Suppose for
definiteness that the F, and F are right continuously defined so that F, (x) =
(I/n) 221w (X)) and F(x) = § I _, ,1(?2)F(dz). The generalization consists in
replacing / _,, ,j by a function f(x, «) that is monotonic in x.

Lemma 4.3. Let Z, Z,, Z,, - - - be a sequence of i.i.d. random variables taking
values in a measurable space (Z, A) and let P'be the distribution of Z. Furthermore,
let I be a real interval (possibly infinite) and let f be a bounded, real valued function
onI x Z such that f(x, +) is A-measurable ¥ x € I and f(+, z) is nondecreasingV z € Z
or nonincreasing ¥ z € Z. Define

G.(x) = - Tt fix, Z)

G(x) = { f(x, )P(dz)
H, = sup{|G,(x) — G(x)|: xel}.
Then H, —.., 0.
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ProoF (the essence of the proof is contained in the union of [6], page 20, and
[9], proof of Theorem 1). The random variable f(x, Z) is bounded and has
therefore a finite moment generating function. The same is true for f(x+, Z)
and f(x—, Z). By Theorem 1 of Chernoff [2],

(4.3) G (X) > exp G(X) for every xel,

and likewise with x replaced by x--, and by x—. Let ¢ > 0 be arbitrary. Since
f is bounded and monotone (in the same direction for every z), the same is true
for G. This is used to construct a finite set of points, say x; < - .. < x,, such
that |G(x;,,—) — G(x;+)| < ¢/2 for all j, i.e., G changes by less than ¢/2 between
any two successive x;. Denote by {y,: k € K} the set of “points” {x; —, x;, x;+ :
j=1, ..., m} and define the random variable

M, = max {|G,(y,) — G(y.)|: keK}.
Since K is a finite set, (4.3) implies M, —,;, 0, i.e.,
(4.4) P(M, > ¢/2) < co™, n=1,2,...

for some ¢ > 0, p < 1. From the fact that G, and G are monotonic in the same
direction it can easily be established that |G,(x) — G(x)| < M, + ¢/2 for every
x e l. Taking the sup over all xe/ yields H, < M, + ¢/2. Then use (4.4) to
obtain P(H, > ¢) < co",n=1,2,.... ]

The next and final lemma will be needed in subsection 4.1 and is also of in-
terest in its own right. As in Lemmas 4.1 and 4.2, the distribution functions
F and G in Lemma 4.4 may be right or left continuous, or a mixture of these,
as long as they are defined in the same way. The proof will be given in a way
that is valid for any definition.

LemMaA 4.4. Let X and Y be real valued random variables with joint distribution
P and distribution function F, G, respectively. Then P{F(Y) = G(X)} = 1 if and
only lf P(X: Y) = 1.

Proor. The “if”” part is of course trivial. To prove the “only if” part it will
be shown first that F = G. The proof will be by contradiction. If F(x) = G(x)
for every x that is a continuity point of both F and G, then F(x) = G(x) for all
x. Suppose then, on the contrary, that there is a continuity point x of both F
and G such that F(x) # G(x). Without loss of generality it may be assumed
that F(x) > G(x). Then

(4.5) F(x—) = F(x) = F(x+),

(4.6) G(x) < F(x) .

Using (4.6) and the first of the equalities (4.5) there is y < x with
4.7) G(xy < F(y) .

The implication
(4.8) [X = x]=[G(X) = G(x)]
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is immediate from the monotonicity of G, and the implication
(4.9) [F(Y) = G(x)]=[Y <]
follows from (4.7) and the monotonicity of F. By hypothesis, F(Y) and G(X)
have the same distribution, which implies
(4.10) P(F(Y) £ G(x)} = P{G(X) < G(x)}.
There results the following string of inequalities:
F(x) = P(X £ x) by 4.5)

< P[G(X) = G(x)} by (4.8)

= P{F(Y) £ G(x)} by (4.10)

= P(Y <y by@49)

S P(Y<x) since y<x

= G(x)

< F(x) by 4.6),
which is a contradiction. Hence F = G, and replacing in the hypothesis G by
F it follows that
(4.11) P{F(X) = F(Y)} = 1.

Now let 4 be the complement of the support of the distribution on R defined
by the distribution function F; that is, P(X € A) = 0, and 4 is the largest open
subset of R with that property (4 may be empty, of course). Clearly, 4 is a
disjoint union of open intervals on each of which F is constant. The following
characterization of A is useful:

(4.12) xe A if and only if there exists ye A4 with y = x and

F(x) = F(y) .
From (4.12) follows
(4.13) {(x,)eR: x+y, Fx) = F(y)lcAx 4.

Hence
P(X # Y) = P{X # Y, F(X) = F(Y)} using (4.11)
< P(XeAd,YeA) by 4.13)
S P(XeAd)=0.
Therefore, P(X = Y) = 1. []

4.1. Sequential two-sample Wilcoxon test. With a slight change from the gen-
eral notation used in Section 2, let (X, Y), (X;, Y)), - -+ be i.i.d. random vectors
in R* and let F, G be the distribution functions of X, Y, respectively. The
Wilcoxon test is based, at any sampling stage n, on the sum of the ranks of the
Y’s in the combined sample. It is not strictly a probability ratio test but can
be considered the limit, as A — 0, of the probability ratio test based on the
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ranks of the Y’s for testing the hypothesis G = F against the alternative G =
F + A(F* — F), or, alternatively, G is F shifted to the right by A if F is the
logistic. (Also, it is to be understood that under the model, X and Y are inde-
pendent.) Possible ties between the X’s and Y’s will be dealt with by assigning
midranks. Consequently, definitions (4.1) and (4.2) are to be adopted for F,
and F, with similar definitions for G, and G. As a consequence, the following
useful equation is valid, no matter what ties occur:

(4.1.1) D1IFAX) + Gu(X)) + Fu(Y:) 4 G(Y))] = 2n

(for a proof consider (F, 4+ G,)/2 as the empirical distribution function of the
X’s and Y’s combined). The log probability ratio based on the ranks of the
Y’s at the nth stage (or rather its limit as A — 0) is

(4.1.2) L, =2n(2n + )7 Z7[F(Y)) + G, (Yy) + (2n)] — n.

The test stops according to (2.1), and exponential boundedness of N is to be
investigated with no assumptions on the distribution P of (X, Y) (in particular,
it is not assumed that X and Y are independent).

Suppose X and Y were equal under P:

(4.1.3) PX=Y)=1.

Then from (4.1.2) and (4.1.1) it follows that P(L, =0,n=1,2,...) =1 so
that P is obstructive as was to be expected (worse: the test never stops). It will
be shown now that the distributions (4.1.3) are the only obstructive ones. For
this purpose L, may be replaced by another statistic that differs from it by a
uniformly bounded amount. It is convenient to replace (4.1.2) by

Corollary 2.2 will be applied now. In that corollary &2 = R?; due to our change
in notation, X" in the corollary is to be replaced by (X*, Y*) and y* by (x", y").
Furthermore, the set S, can be taken to be R*. Next, L,,, — L, has to be com-
puted and the function f identified. Put X,,, =x;, Y,,,=y;, j=1,---,r,
then from (4.1.4) one obtains
Ly (X", Y% 57, y7) — L,

(4.1.5) = =7+ D1 [Fuir(y) + Gusr(35)]

+ Lt [Fasr(Ye) = Fu(Y)] + 23 [Curn(Ye) — Gu(Y))] -
The third and fourth terms on the right-hand side in (4.1.5) are dealt with as
follows. First (4.1) yields
(4.1.6)  (n 4 NF,(2) = nFy(2) + § D1 Hicwn(X3) + T 0(%5)]
and a similar equation with F replaced by G, x by y. Replace z by Y, and sum

overi =1, ..., nto obtain

(4'1'7) (n + l‘) Z'{b Fn+r(Yz) =n Z? Fn(Yz) +nr—n ZI Gn(xi) ’
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and a similar equation with F replaced by G, x by y. Substitution of (4.1.7)
into (4.1.5) leads to

Ln+'r(Xn’ Y"; X7, )’T) - Ln
(4.1.8) = LilFusrys) + Gusrly5)] — n(n + 17 TT[Ga(x,) + Gou(y))]
—r(n+ 7 RHFAY:) + Gu(Y)] + r(n — r)(n + 1)t
By letting n — oo the function f is discovered:
(4.1.9) f(x,y) = F(y) — G(x) — E[F(Y) + G(Y)] + 1.
In the present notation the random quantity K, defined in (2.10) reads
(4.1.10) K, = sup Ly, (X", Y™ X7, y7) — Ly — E1f(x575)] 5

where the sup is taken over all real values of x;and y;, j=1,...,r. After
substituting (4.1.8) and (4.1.9) into (4.1.10) it is obvious that K, is measurable.
It remains to show that K, —, . 0. This follows from the four convergence
relations below.

(4.1.11) SUP ez [Forr(y) — F(p)| —exp 0,
(4.1.12) SUp, ez |Gpy (y) — n(n + N7G,(Y)| 2exp 05
(4.1.13) SUp, e [n(n 4 r)7'G,(x) — G(x)| —exp 05

4.1.14)  (n 4 N7 SEFY) + G(Y)] — E[F(Y) + G(Y)] =1 0,

all four for fixed r, as n — co. Of these four, (4.1.11)—(4.1.13) follow from
Lemma 4.1 (after adding a few trivial steps), and (4.1.14) follows from Lemma
4.2.

Since in the present situation S can be taken as any subset of R* which has
positive probability and on which f = 0, the conclusion of Corollary 2.2 applies
unless P{f(X, Y) = 0} = 1, i.e., unless

(4.1.15) P{F(Y) — G(X) = E[F(Y) + G(Y)] -1} =1.
On the other hand, from (4.1.4) and an application of Lemma 4.2 it is seen that
(4.1.16) L,/n—., E[F(Y) + G(Y)] -1,

so that by Theorem 2.3 N is exponentially bounded unless the right-hand side
of (4.1.16) equals 0. Combining this with (4.1.15) it follows that N is expo-
nentially bounded unless

(4.1.17) P{F(Y) —GX)=0}=1.
By Lemma 4.4 (4.1.17) is equivalent to (4.1.3). Thus, P is obstructive if and
only if (4.1.3) holds.

4.2. Sequential rank-order test based on Lehmann alterndtives. Let (X, Y), (X,,
Y)), - - . be i.i.d. random vectors, with X and Y real valued, having joint distri-
bution P and marginal distribution functions F, G, respectively. It will simplify
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the exposition if all distribution functions are taken to be right continuous (but
see Remark 1 at the end of this subsection). For the sequential probability ratio
test based on ranks for testing G = F against G = F“ (and assuming in the model
X and Y to be independent), for some 4 > 0 with 4 = 1, Savage and Sethuraman
[8] obtained partial results for the exponential boundedness of N, and Sethuraman
[10] obtained a nearly complete solution of the form: N is exponentially bounded
unless P{f(X, Y) = 0} = 1. The function f in this statement is given in (4.2.12)
below. It will be outlined in this subsection how Sethuraman’s result follows
rather easily from an application of Corollary 2.2, and how the function f is
discovered in the course of that application.

Let F, and G, be the empirical distribution function of the X’s and Y’s re-
spectively, at the nth stage. Following Sethuraman [10] define

(4.2.1) W, = F, + 4G,
(4.2.2) W =F+ 4G,
(4.2.3) ‘ W(x, y; 2) = liew,(X) + Al o0, i()) -

From [10], equation 13, it is seen that
(4.2.4) L, = Yt [—log W (X)W, (Y;) + log44 — 2] 4 §logn

differs from the log probability ratio by a uniformly bounded amount. Writ-
ing (4.2.4) down with n replaced by n 4 r, setting X, ; = x;, Y,,; = y;, | =
1, ..., r, and taking the difference with (4.2.4) yields

Ln+r(Xn’ Yn; X7 yr) - Ln
(4.2.5) = N1 [—log Wy (x;)Way ()] + r(log 44 — 2)
+ ZT’ [log Wn(X1)Wn(Yl) - log Wn+r(Xi)Wrn+r(Yl)]
+ ilog (1 + rnt).

The last term on the right-hand side in (4.2.5) converges to 0 as n — co so that it
may be ignored when verifying the exponential convergence of K, to 0 in (2.10)
(as in subsection 4.1, in (2.10) X™ is to be replaced by (X", Y*), y" by (x", y)).
In order to treat the first term on the right-hand side in (4.2.5), it should be
realized that although Lemma 4.1 implies sup |W,, (x) — W(x)| —x, O (sup over
all real x), it cannot be concluded that sup [log W,,, — log W(x)| —., 0 since
W{(x) is not bounded away from 0 (and, in fact, could equal O for some x). This
points to the fact that the set S, in Corollary 2.2 cannot be taken as the whole of
R2. In order to find a subset that can serve as S, first observe that P{W(min (X,
Y)) > 0} = 1. As a result, if P{f(X, Y) = 0} > 0, then also P{f(X,Y) # 0,
W(min (X, Y)) > 0} > 0. Hence there exists w, > 0 such that P{f(X,Y) # 0,
W(min (X, Y)) = w,} > 0. Define z, by z,=inf{ze R: W(z) = w}, then
W(z) = w, if and only if z = z,. Now take S, = {(x, y) € R*: min (x, y) = z}
and S = {(x,y) € S,: f(x,y) # 0}, then S S, P{(X, Y)e S} > 0,and f == 0O on
S, as required by the hypothesis of Corollary 2.2. In(2.10) the supremum is now
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OVer X; = z,, y; = 2, j = 1, - -+, r. As aresult, W(x;) and W(y;) are bounded

below by w, > 0; moreover, by (4.2.2) they are bounded above by 1 + 4. This,
together with Lemma 4.1, shows that

4.2.6)  sup{llog W, (x)W,.,(y;) — log W(x)W(y;)l} —exy O

In order to treat the third term on the right-hand side in (4.2.5), first observe
that (n + r)F, ,(2) = nF,(2) + X711 _. ,(X,.;), and similarly with F replaced
by G, X by Y. Now put X, ;= x;, Y,,; =y, and use (4.2.1) and (4.2.3) to
obtain
4.2.7) (n+ W, (2) = nW,(2) + 237 W(x;, )5 2) -
Replacing in (4.2.7) z by X;, taking log, and summing over i from 1 to n gives

(4.2.8) = nlogn(n + r)~!

+ Ztlog [l + (nW(X0))™" Z5aa W(xy y55 Xi)] -
The first term on the right-hand side in (4.2.8) converges to —r as n— co. In
the spirit of approximating log (1 4 ¢) by ¢ if ¢ is small, and W, by W, it may
be expected that the second term on the right-hand side in (4.2.8) may be re-
placed by

(4.2.9) L1 (nW( X)) X W(xy5 y55 X0)

in the sense that the supremum (over x;, y; = z,) of the absolute difference of
the two expressions converges exponentially to 0. This is indeed not hard to
prove (Lemma 4.1 is used again). Consulting (4.2.3) it is seen that (4.2.9) con-
tains expressions of the form n=* 333 (W(X,))™/(_e (), With x being an x; or
y;. Its exponential convergence is governed by

(4.2.10)  sup {|n~" ¥ (W(X0) ™ (oo x2(%)
— VW(@) e () F(d2)] 1 X Z 2} =5, 0 -
This follows from Lemma 4.3 by taking in that lemma f(x, z) = (W(2))~I _.. ,(x),

which is bounded for z > z, and nonincreasing as a function of x for each z.
Therefore, (4.2.9) may be replaced by

(4.2.11) 51 § (W)W (xj5 y55 2)F(d2) -

In the third term on the right-hand side in (4.2.5), the terms involving the Y,
are treated similarly, and the only change in (4.2.11) will be to replace F by G.
Putting everything together it is seen that
(4.2.12) f(x,y) = —log W(x)W(y) + log44

— §(W(2)7'W(x, y; 2)(F(d2) + G(d2)),
in agreement with [8] and [10]. According to the conclusion of Corollary 2.2
N is exponentially bounded under P unless P{f(X, Y) = 0} = 1.
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REMARKs. 1. Ties between the X’s and Y’s can be dealt with by assigning
midranks, as in subsection 4.1. Thus, the empirical and theoretical distribution
functions should have been defined in the manner of (4.1) and (4.2) in order to
cover arbitrary ¥ and G. This amounts to replacing indicators of the form 7 _,,
by $(/(—w,,) + I(-,,). If care is taken to choose w, > 0 in such a way that z, is
a continuity point of W, then it is still true that W(z) = w, if and only if z > z,.
It is easy to verify that with this change in definition of the distribution functions
all equations remain unchanged, and the conclusion is therefore also the same.
The proof could have been given in that way but would have been slightly more
cumbersome, although essentially the same.

2. In this example the conclusion does not say whether distributions P for
which P{f(X, Y) = 0} = 1 are obstructive, or whether such distributions even
exist. Positive results on these questions have been obtained, but will be pre-
sented elsewhere [17].
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