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MAXIMIZATION OF AN INTEGRAL OF A MATRIX FUNCTION
AND ASYMPTOTIC EXPANSIONS OF DISTRIBUTIONS
OF LATENT ROOTS OF TWO MATRICES!

By A. K. CuaTtTtoraDHYAY, K. C. S. PiLLAI AND HunG C. LI
Purdue University and University of Southern Colorado

The noncentral distribution of latent roots arising in several situations
in multivariate analysis involves the integration of a hypergeometric func-
tion of matrix variates over a group of orthogonal matrices in the real case
and that of unitary matrices in the complex case. In this paper the sub-
group of the orthogonal group (unitary group) for which the integrand is
maximized has been found under mild restrictions. The results of earlier
authors (Anderson, Chang, James, Li and Pillai) follow as special cases.
Further, the maximization results concerning the integrand have been -
used to study asymptotic expansions of the distributions of the character-
istic roots of matrices arising in canonical correlation analysis and
MANOVA when the corresponding parameter matrices have several multi-
ple roots. :

1. Introduction. In multivariate analysis, the distribution of characteristic
roots arising in testing the equality of two covariance matrices, in MANOVA,
or in the canonical correlation problem, involves the integration of a hyper-
geometric function of the form
(1) - S = SO(p) sFt(ap ceey Ay by ey by, AHRH’) d(H) ’
where O(p) is the group of orthogonal matrices H(p X p), A = diag (l,, - - -, 1),
R = diag (r,, - - -, r,), d(H) is the invariant or Haar measure over the group O(p)
normalized so that the measure of the whole group O(p) is unity, ,F, is a hyper-
geometric function of matrix variates (James[9]) and ay, - - -, a,, b, - - -, b, are
functions of df and are positive real numbers. In the one sample (covariance
matrix) case, Anderson [1] has shown that the maximum of the integrand
(s = t = 0) for all possible variations of R, the sample characteristic root matrix,
is attained when H takes a special form. Chang [2], and Li and Pillai [12], [14]
found the same form for H when maximizing the integrand in the two sample
(two covariance matrices) problem (s = 1, t = 0). In the complex analogue of
both one sample and two sample cases, Li and Pillai [12], [14] obtained a similar
form of the unitary matrix U. The purpose of this paper is to generalize their
results both in the complex and real situations with aj, - - -, a,, b, - - -, b, satisfy-
ing some suitable conditions.
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We develop the idea in a series of lemmas and theorems and show that the
results of Anderson [1], Chang [2], James [10], and Li and Pillai [12], [14] are
special cases of our results. The generalization has not only been in regard to
J-hypergeometric functions but also when /,;’s are equal within each of several
sets. We have further proved that the integral under different forms of the ma-
trix A is invariant under choices of different submatrices of H and our general
results cover some earlier ones of the above authors.

The maximization results concerning the integrand of (1) have further been
used to study asymptotic expansions of the distributions of the characteristic
roots of matrices arising in I. Canonical correlation analysis and II. MANOVA
when the corresponding parameter matrices have several multiple roots.

2. Maximization of some special functions. First we prove the following
lemma:

LemMA 2.1. Let f(T) be a real valued function of the elements of the matrix
T(p X p) = (t;;). Then _
dfiT) = tr (Q dT)

where
of ... of
o, on, dty, - -, dty,
Q=|{ : and dT =|
of . of dty, -+, dt,,
E; 9 9 a_tp—p

Proof follows directly from the definition. We give below some special cases.
Case 1. If B be a nonsingular square matrix, then
) d|B| = [B| tr [B-X(dB)] .
This is Hsu’s result as reported by Deemer and Olkin [8], proved in a different
way.
Casg 2. Ifin (2) B = I + AHRH' where
A =diag(l, ---,1,), R =diag(r, ---,71,),
3) o>L>--->0[>0, co>r,>r,,>--->rn>0 and
HeO(p),
then Lemma 1 of [2] is obtained.
Case 3. Take f(T) in Lemma 2.1 to be
“4) f(AHRH') = exp[—tr (AHRH')],

where A, R and H satisfy (3), and H is the only variable matrix.

By Lemma 2.1
df(AHRH') = tr [Q d(AHRH')] .
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But Q in this case is a nonzero scalar matrix. Hence,
dffAHRH') = 0 = tr [d(AHRH')] = 0
(%) = tr [A(dH)RH’ + AHR(dH")] = 0
— 2 tr [RHPAH(H' dH)] = 0.

But (H’ dH) is a skew symmetric matrix. Hence for allR > 0

(5) = RH’AH is symmetric
= RH'AH = H'AHR
= H'AH = diag (#,, - - - ,x,)

and as R in (3) is diagonal with distinct roots implies the form for H as
(i) Hhas &1 in each row and column once and once only and zero elsewhere.

Now H of the form (i) after some algebra gives Anderson’s result ([1], page
1158). In the above two cases although the functions are not exactly special
forms of the integrand in (1), they are equivalent forms. Hence the parallel
results in both cases suggest a similar approach for this general integral (1) but
unfortunately attempts in this direction proved futile. Hence we give an alter-
native approach to handle this general problem and give special results as occa-
sions arise.

3. Maximization of _# when [’s are all distinct. LetS(p X p)be asymmetric
matrix and C (S) denote the zonal polynomial of the matrix S corresponding to
the partition x as defined by James [9]. Let us consider the integrand in (1),
i.e. let

(6) f(H) = F(ay, ---,a;by, -, b, AHRH') .
Also let
) az%%(]?—l), b]g%(p—l), i=1,~'-,S,j=1,---,t.

Now, by James [9],

— o (al)x U (as)x C/c(AHRH’)
T = B By, R

where £ = (k;, - - -, k,) is a partition of k and the multivariate hypergeometric
coefficient (a), is given by

@), =TIt (a — 40 — D), and @,=a(@+1)---(@a+k—1).
Under (7)

(8) MaXye o, fIH) = Maxye o, 2o 216

(ay), - - (a,), C.(AHRH')

(bl)x e (bt)x k!

C.(AHRH')
k!

a) ---(a
2o wamaxneo(m

(bl)x Ut (bt)x

A
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Also
(@), - - - (a,), C.(AHRH)

(ba)s -+ (B)e K

(al)lc T (as)lc : Clc(AHRH,)
= k=0 2ix mmmueo(m T

Now we prove the following lemma.
LEMMA 3.1. Let A and R be (unlike in (3))
%) A =diag(l, ---, 1), R = diag(r, ---, r,)
co>hL> - >0 =20 and 0o >r> - >r,>0.

ming. o, fAH) = minge,,) 2= 2«

Then
(10) maxy. o, C.,(AHRH') = maxy.,,, C,(H'AHR) = C,(AR),
However, if A and R satisfy (3), then

ming.,,, C,(AHRH’) = miny,,, C.(H'AHR) = C (AR).

H in both cases is of the form (i) i.e. H has +1 in each row and column once and
once only and zero elsewhere.

ProOF. We prove the first part of the lemma regarding the maximum of the
zonal polynomial. For complete proof refer to [4], [5]. The following proof is
due to the referee. We have from Constantine [7]

C.(ST) = d, ,t,)}1 - - - 1,F2|S)|F1=*2|S,|a=Fs . .. |S |F» 4 “lower terms”

where
S; = (5,4) » r,s=1,..-,1,

(ky, + -+, k,) is a partition of x which is lexicographically the highest and 7, =
Chy(T),i=1, ..., p, Chy(B) denoting the ith characteristic root of B. Thus

C.(H'AHR') = d, ,.r,*1 - - - r,Fs|(H’'AH),|*1~%2 . . . |(H'AH),|¥»
+ “lower terms,”
where (H’AH), is defined as above. Hence
C.(H'AHR) < d, (r )" - - - (r,1,)f» 4+ “lower terms” = C,(AR).
As a further generalization of the above we consider

R =diag(r, --+,r,), co>rn>--->r,>0,

k, k,,
A=diag (- s lnly ool ool s b D1 s D) s
(11) o >h> e >h > > >, 20,
or alternately
(12) °°>lp>"‘>lk1+---+km+1>lm>"'>11§0,

(13) H=diagH,, ---,H,, I(p — ky — --- — k,)),



800 A. K. CHATTOPADHYAY, K. C. S. PILLAI AND HUNG C. LI

where H(k; X k;) is an orthogonal matrix of order k;, j=1, ..., m and
I(p—k — .- —k,) =diag(*1, ---, £1) of order (p — k; — --- — k,) X
(p—k — .-+ —k,). Then we have

LEMMA 3.2. Under (11)
maXyc o, C.,(H'AHR) = maxy,,, C,(AHRH') = C,(AR),
under (12)
ming ., C,(H'AHR) = ming.,,, C.(AHRH’) = C,(AR)
and the optimum values are attained iff H has the form (13).

For detailed proof the reader is referred to [4], [5].‘ Now, corresponding to
the Lemmas 3.1 and 3.2 we have the following two theorems:

THEOREM 3.1. If A and R are given by (3) or (9), the class of orthogonal mat-
rices for which f(H) in (6) subject to (7) and for all R > 0 is optimum is given by
H = diag (1, - .-, &£1). Further, when (9) is satisfied

C.(AR)

MaXye o, f(H) = 25, 2. EZI;" Ezs;x k! ’

and when (9) is replaced by (3)

miny, ., f(H) = 2, 2. EZI;,C EZS;K CK(I:R) '

Before stating the general form of this theorem let us observe some special
cases.

COROLLARY 3.1. If s =t = 0 in (6) then
f(H) = F(AHRH’) = exp(tr AHRH')
and under (9) we get
maxy.,,, f(H) = exp(tr RA) .

This is Anderson’s result [1] mentioned earlier as Case 3. Asa further appli-
cation we consider

g(H) = I + AHRH'|-" = F(n, — AHRH'),

where n = 4(p — 1) and A and R are defined as

(14) A =diag(l, ---,1,), R =diag(r, ---,1,),
co>Il,>--->5L=0 and co>r>--->r,>0.

As it stands, Theorem 3.1 is not direclty applicable to this function. So we
write following Khatri [11],

I + AHRH'| = |I + R||I — (I — A)HR(I + R)~'H| .
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We now assume Ch(A) < 1, i =1, ..., p. This is no loss of generality since

for k >0
I + kAHRH'| = [Tz, (1 + ka,)

where @, = Ch,(AHRH') > 0,i=1, ..., p.
Thus the problem of finding the maximum or minimum of |I + AHRH'| with
respect to H € O(p) is the same as that of |I - kAHRH’|. Hence
I + AHRH'|-* = |I + R|=*|I — (I — A)HR(I 4 R)"*H'|"
= |I + R|-",F,(n, BHCH') ,
where
B=(I— A)=diag(b, ---,b,)
and
C = R(I + R)™* =diag (¢}, -+, ¢,) -
Hence from (14), we get
1>b>..->b,=0 and o >¢> - >¢,>0.
Thus
g(H) = |I + R|-" F(n, BHCH') ,
and now we can apply Theorem 3.1 and get the following corollary:

COROLLARY 3.2. Under the conditions stated immediately above

maxXg. o, 9(H) = |I 4+ R|[™" maxg. ., Fo(n, BHCH')
= |I + R|™,Fy(n, BC)
= I + AR|™.
This corresponds to Chang’s result [2]. We now restate the above two results
in a different form.

CoOROLLARY 3.3. Let (3) hold. Then }?_, l,r; and T]?_, (1 + L;r;;) are both
minimized whenr,; = ry, i = 1, -+ ., p. They are both maximized when r;; = r,_; .1,
i=1,- .., p-

The latter two results are implicitly assumed in Anderson [1] and Chang [2].

In fact we can go a step further and get the following: Let f be a nonnegative,
nondecreasing function defined on [0, co]. Then, under (3),

fRtaliry) < (Xt lr)  and Q1L (1 + L)) = (1L (1 4+ L)) -

These results follow directly from the above discussion but are mentioned
separately, since they cover a broader ground in the sense that with modifica-
tion, the results apply to positive convex combinations of two symmetric matrix
functions.

We now state the general form of Theorem 3.1.

THEOREM 3.2. Let A and R satisfy (11) or (12). Then the class of orthogonal
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matrices for which f(H) in (6) subject to (7) and for all R > 0 is optimum is given
by (13). Further when (11) is satisfied

maXye o, f(H) = 25 2. EZI;E EZS;" CE:?B)

and when (11) is replaced by (12)
ming. ., f(H) = 55, 3, @ @), CAR)
He0(p) f( ) Zk—-o ZIC (bl)x . (bt),‘ k'
This is the main result which will be used in the sequel to obtain asymptotic
expansions of _# in (1) under different situations.

4. Asymptotic expansion for canonical correlation-population roots all dis-
tinct. Let X, -+, X, Xy, -+, X}, p < ¢ be distributed N(0, X), where

(15) z= P(’:u 212) .
q Z;.Z 222
P9
Let o i =1, -.., p, be the roots of
(16) 12y, 25" Zyy — 0°2y| = 0,
and p2 i =1, - .-, p, be the maximum likelihood estimate (m.l.e.) of p?, i =
1, ---, p, from a sample of size n = p 4 ¢g. For the sake of uniformity of nota-

tion let us put [, = pfand r, = p% i =1, ---, p, and let

(17) R:diag(rn"',r,,), A:diag(ln"',l,,),
I1>4>->101,=20 and 1>rn>--->r,>0.

Then the joint density of elements of R is given as ([7], [9]),

(18) D, $op o Fi(3n, $n, 19, AHRH') d(H) ,

d(H) is defined in (1) and

(19) Dy = {="T,(3n)/T,(39)T,(3(n — 9)T,(5p)}
X U — AR DL — R [T, (r — 1)

The density (18) involves an integral and following Anderson [1], Chang [2],

and Li and Pillai [12], [14], we try to maximize this integral. Let us now denote
the integral by

(20) E = {,, o F(5, 5, t, AHRH') d(H) ,

where for notational simplicity we put s = 3n, t = }g. Now with a mild re-
striction on s we get by Theorem 3.1 that for variations of H € O(p), ,Fy(s, s, t,
AHRH') is maximized when H has the form (i) of Case 3 and the optimum
Fi(s, s, t, AR). In order to obtain an asymptotic expansion for the density of
sample roots we proceed as follows: First we use Kummer’s formula and get

(21)  ,F(s, s, t, AHRH') = |I — AHRH'|-®-0,F,((t — s), (t — 5), &, AHRH') .
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Now varying H around N(I), a neighborhood of I(p X p), i.e. varying AHRH'
around AR we get

(22) Fi((t — 9), (t — 5), t, AHRH') = ,F\((t — 5), (t — 5), t, AR) + O(e) .
We prove below a more general result.

Lemma 4.1. If HeN(I), a, =2 4(p— 1), b, =2 4p—1), i=1, -, p, j=
1, ---, 7, then
Wy, -5 a, by, -, b, AHRH')

i q(al, crrs Ay bl’ ) ‘b”, AR) + 0(5) ’
provided t;, — ¢ < Ch(AHRH') < ¢, + ¢, where t;, = Chy(AR), i =1, ---, p.

@

Proor. Let f(H) = ,F, (a4, ---,a,, by, -+, b,, AHRH'). Now f(H) is an in-
creasing function of each of its characteristic roots. Thus varying H € N(I), we
note that the first partial derivative of f(H) with respect to each characteristic
root exists, except possibly over a set of zero measure. Agian as f(H)|,_, exists,
the mean value theorem applies and hence the lemma.

Now an application of Lemma 4.1 in the last expression in formula (21) gives
(22). Following Anderson [1], Chang [2], Li and Pillai [12], [14], and using
(22) we get for large values of (25 — 1)

E =27, I — AHRH'|-®-9 d(H) ,F,((t — 5), (t — 5), t, AR) ++ O(e) .
Further, we consider
(23) F=27§,5|T — AHRH'|-®-9 4(H) .
The integrand in (23) is quite similar to that of Chang [2] and hence using the
technique given in his paper as modified by Li and Pillai [12], [14] we get Theo-

rem 4.1 below. For details the reader is referred to [4], [5], and the references
mentioned therein.

THEOREM 4.1. For large n, an asymptotic expansion of the distribution of r,, - - -, r,
(m.l.e. of the squares of population canonical correlation coefficients) where
L>r> ... >r,>0 and the population characteristic roots from (16) are such
that 1 > 1, > ... > 1, = 0is given by

2
D A
N

X [Dues it + a(p)] + -} Filg — n), 3g — 1), 3, AR) + 0(9)

1

3
I — AR|-i-0 {1 _t
) | | + 2(2n — q)

where R and D, are given by (17) and (19) respectively,
a(p) =p(p — D(2p + 512, ¢y = (t; — tit;r,)r; = €545
=1t —t;, ry=r,—r; and t,=1(1 —ILr)™?,

i,j:l,---,]).
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5. Asymptotic expansion for canonical correlation—several multiple popula-
tion roots. Let A and R be as in (17), however, A being modified as

k, k.,
(24) A=diag(ll’"'ld!ld+1’"'!ld+1""’ld+m’"’!ld+m) and
1>4L> - >SL>Ly> - > lyym =03
then, following Li and Pillai [13], we obtain the extension of Theorem 4.1.
This result is available in [5] and in Chattopadhyay and Pillai [6].

6. Asymptotic expansion for MANOVA —population roots all distinct. Let
B(p X p) have a noncentral Wishart distribution with s df and matrix of non-
centrality parameter A, and W have a central Wishart distribution with ¢ df,
covariance matrix in each case being X, and A, = Lpp/Z-" where p(p X s) is a
matrix of mean vectors. Then the probability density function of the roots of

R, = B(B 4+ W)~'is given by [7],
T, Soip F1(3(s + 1), %s? AHRH') d(H) ,
where
(25) T, = =2 T (§(s + HT,GHT,(39)T,(3p)) " exp[—tr A]
X (T2 )PP T (U= r 2P0 Tl (re — 15)

where

R =diag(r, ---,r,), 1>rn>--.>r, >0,
(26) A =diag(l, ---,1), c0o>L>-..>1,=20,

I, = Chy(A)) and r, = Chy(R)), i=1,...,p.
As earlier, we consider

E, = (o 1F1(3(s + 1), 35, AHRH') d(H) .
The integrand as it stands is not easy to work with, hence we apply to the
integrand the confluence relation (James [9]):
(27) ' lim,_, ,F\(a, ¢, b, c'S) = ,Fy(a, b, S) .
Applying the dominated convergence theorem, since the functions involved are
well defined and satisfy the conditions of the theorem, we get, using (27),
lim, .., §o0 oF1(3(s + ), @, §s, a'AHRH') d(H)
= Soip M., ,F1(3(s + 1), a, s, a*AHRH') d(H)
= Yo 1F1(3(s + 1), 35, AHRH') d(H) .
Thus for evaluating E; we consider, for large a,
Ey = Sou sFi(3(6 + 1), @, §s, aAHRH') d(H) .

We now apply the earlier technique with slight modification which, together
with other details, may be referred to [4], [5]. Thus after some algebra we
obtain the following theorem:
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THEOREM 6.1. For large t (and hence for large sample size), an asymptotic ex-
pansion for the distribution of the characteristic roots of R, with parameter matrix
A, where R and A satisfy (26) is given by

2m \? 1 _
T,27 [[%cj= (t TE) {1 + E;[Ziq’ it + a(p)] + - }
X exp[tr AR],Fy(—4¢, 15, —AR) + O(e),

)

where T, is given by (25) and other constants as defined earlier.

7. Asymptotic expansion for MANOVA —several multiple population roots.

Let A and R be as defined in (26), however, A being ‘rnodiﬁed as
ky ko
(28) A=diag (L, -5 Iy Ly s lgyrs =5 Lygms =5 Liym)
o°>11>lz> >ld>ld+1> >Id+mgo‘

Then, following Li and Pillai [13], we have obtained the extension of Theorem
6.1 which is available in the references given above for the extension of Theo-
rem 4.1.

8. Complex analogues of previous results. All the above results extend to
the complex case as well. Corresponding to each theorem in the real case above
we may obtain the complex counterpart. These results in the complex case are
available in [3].

9. Remarks. In this section, we make the following remarks:

1. The method as outlined above is a generalization of Anderson’s result [1]
and all his comments apply here also.

2. In approximating ,F, by Kummer’s formula we note that if N(/) involved
in each case be sufficiently close to I, which is possible for large enough sample
size, we can neglect O(¢) in each case for good enough approximation.

3. The ordering of roots in each case is immaterial as shown in [4], and as
such the only restriction is that the roots of the sample matrix and those of
population matrix be ordered in the same direction.

4. From the previous remark it may be seen that the expansion for one
extreme multiple population root covers the largest root case although results
given in this paper are for the smallest.

5. Each formula, as displayed, gives a considerable simplification in I, func-
tion since each population root goes with its sample counterpart.

6. In the real case when a in (a), is a negative integer, the hypergeometric
function involved reduces to a polynomial.

7. When all population roots are equal, we note that O(¢) term is identically
zero. Here we take any empty product as unity.
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