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COMPARISON OF SOME BOUNDS IN
ESTIMATION THEORY

By P. K. SEN' AND B. K. GHOsH
University of North Carolina and Lehigh University

Conditions are given for the attainment of the Hammersley-Chapman-
Robbins bound for the variance of an unbiased estimator, in both regular
and nonregular cases. Comparisons are made between this bound and the
Bhattacharyya system of bounds for a wide class of distributions and pa-
rametric functions. Sufficient conditions are provided to determine wher
one bound is sharper than the other one.

1. Introduction. Let (27, %7, ¢) be an arbitrary measure space with y sigma-
finite. Let X be a random variable (rv) taking values in .2” with probability
distribution P,(dx) = f,(x)p(dx) for x € 2”and 6 € O, where O is a known subset
of the real line. In the sequel, it is taken that 227 is the n-dimensional Euclidean
space (n = 1) and % is the Borel field on 2.

Let 7 be a real-valued estimable function on 0, not identically constant. Let
#(X) be an unbiased estimator of r(#) with E,(*(X)) < co. We are primarily
concerned with the following three well-known lower bounds for the variance
of #(X).

(i) The classical Cramér-Rao inequality states that, under certain regularity
assumptions A4 (see [6]),

(LI)  Var, (X)) Z {(d/d0)=(6)}/Var, ((3/30) log f4(X)) = A(8), say.
Assumptions A include, among others, that © be an open interval and = be dif-
ferentiable. The strict equality in (1.1) holds for all § € O iff fy(x) is of the form
(1.4) with g(x) replaced by #(x).

(if) The Bhattacharyya system of inequalities states that, under more stringent
(than A) regularity assumptions B, for k = 1 (see [2]),

(1.2) Var, (¢(X)) = z,/Vs7'zy = By(0), say,
where 7, = (¢ (), - - -, t®(0)), Vo = ((V:;(0))):,5-1,...., With
(1.3) () = (d*/d6%)z(0) and

Vii(0) = Effo~(X) - (9°/06°)f5(X) - (97/06°)fo(X)} -
It is well known that B,(0) = A(#) and B,(¢) = B,_,(d) for all k > 1 and 6 € O.
A sufficient condition for the attainment of the strict equality in (1.2) for all ¢
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is that #(x) be a polynomial of degree k in some real-valued function g on 27
and f,(x) be of the form

(1.4) Sfo(x) = a(B)h(x) exp{r(d)9(x)}, forall xesZ” and 6eO,

in which « > 0 and y (monotonic) are continuously differentiable, and £ is
positive except, perhaps, on a p-null set in 227 which is independent of ¢ ¢ 0.
Fend (1959) also showed that, under (1.4), any ¢ achieving the equality in (1.2)
is necessarily a polynomial in g.

(iii) Finally, the Hammersley-Chapman—Robbins inequality ([1, 3]) gives a bound
without any regularity assumptions. Define .27 < 2 by

(1.5) fo(x) >0 ae. xe27, fo(x) =0 ae xeZ—-2Z5,

and let @, C O be the set of all ¢ € O satisfying

(1.6) @) £ 0), Z5S 2.

Then

(1.7)  Vary ((X)) = supseq, {t($) — (6))/Var, (f,(X)/fo(X)) = C(0) , say.

If @, is empty for some 6 ¢ ©®, we define C(§) = 0. Chapman and Robbins
(1951) proved that, when assumptions 4 hold, C(§) = A(f) for all §. No re-
lation is known to exist between C(6) and B, (#) when B,(f) > B,(0) for some
k> 1.

The purpose of this paper is to explore some further properties of C(#). Sec-
tion 2 deals with conditions under which the equality in (1.7) holds. The results
provide a method of recognizing the UMVU estimator in many situations where
B,(0) fails to provide tne answer for every k > 1. In Section 3, we investigate
the relative status of C(#) and B,(¢) when assumptions B, hold for some k > 1.
Sufficient conditions are given under which C(#) is greater or less than B,(6).
Finally, Section 4 deals with certain aspects of C(#) when assumptions 4 (and
therefore B, for any k > 1) do not hold.

We conclude this section with the following example illustrating the scope of
our results in a simple situation. Suppose X = (X, - -+, X,), n = 1, where the
X, are i.i.d. rv’s with the normal distribution with 0 mean and an unknown
variance § > 0, and let s = (357, X;)/n. (i) If =(@) = 6, it is well known [1]
that s is the UMVU estimator and B;(#) = C(d) = Var, (s) for all §. (ii) If
7(0) = (1 4 )", then exp(—ns/2) is unbiased and its variance equals C(6) for
all ¢, so that exp(—ns/2) is the UMVU estimator (Theorem 2.2). Moreover,
C(6) > B,(0) for all ¢ and k = 1 (Theorems 3.1, 3.2). (iii) If (§) = 6*, then
ns*/(n 4 2) is unbiased and its variance equals B,(f) which is greater than C(6)
for all  (Theorem 3.3). Moreover, C(§) > B,(0) for all § (Theorem 3.1). (iv)
If z(0) = 6%, then B,(0) < C(0) < B,(0) for all 6 (Theorems 3.1, 3.4). In this
case, {I'(n/2)/T'((n + 3)/2)}(ns/2)} is the UMVU estimator [5] and its variance
exceeds B,(f) forallk > 1and 6 [2]. (v) Ift(f) =fand 0ec® ={1,4,4, -},
then Var, (1(X)) > C(0) for any unbiased #X) (Theorem 4.2). Assumptions A4
do not hold in this case, but it can be shown by the Lehmann-Scheffé [5] theorem
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that s is still the UMVU estimator. As n-— oo, C(f)/Var,(s) — 0 for every
6 € O, so that the bound C(¢) does not serve any useful purpose. (vi) Finally,
if 7(#) = 6* (see Example 2 in [1]), then the variance of the UMVU estimator
{L(n/2)/T((n + 1)/2)}(ns/2)* exceeds both C(#) and B,(f) for allé > O0Oand k > 1
(Theorem 2.1 and [2]), and C(6) > B,(0) for all § > 0 (Theorem 3.1). However,
in this case, our general results fail to provide any information about the rela-
tive magnitudes of C(f) and B,(0) for any k > 1. In fact, direct computations
show that for all § > 0, C(0) > B,(#) when n = 1,2 and C(f) < By(¢) when
n = 3.

2. Attainment of C(f). We state without proof, the following theorem which
is a simple extension of the results in [1, 3].

THEOREM 2.1. Given any fixed 6 € ©,

2.1 Var, (1(X)) = {z(¢) — <(0)F'/Var, (f,(X)/fo(X))
= C(9,0), sa,

for all ¢ € ®,, and the strict equality in (2.1) holds for any ¢ € @, iff

(2.2)  {fu®)fo(x) — 1}/{z($) — =(0)}
= {t(x) — =(B)}/Var, (1(X))  a.e. xeZ,.

CoROLLARY 2.1.1. If (2.2) holds for some ¢ = ¢*(0) € ©,, then Var, (¢(X)) =
C(0) and the supremum in (1.7) is achieved by ¢ = ¢*(0).

CoroLLARY 2.1.2. If Var, (¢(X)) = C(0) and C(6) = C(¢*(0), 8) for some
d*(0) € @y, then (2.2) holds for ¢ = ¢*(0).

CoRrOLLARY 2.1.3. Suppose assumptions A hold. Then Var, (t(X)) = C(0, 6)
implies (2.2) at ¢ = 0 and the equality in (1.7). Conversely, if (2.2) holds at ¢ = 0
then Var, (¢(X)) = C(4, §) = C(9).

CoROLLARY 2.1.4. Suppose (X)) is sufficient for the family P,, 6 € ©, and, for
all § €0, ((X) can assume only two distinct values, t, and t, with probabilities p,
and 1 — p, respectively (0 < p, < 1). Then Var, (t(X)) = C(0) for all 0.

PrROOF OF THE COROLLARIES. Corollaries 2.1.1 and 2.1.2 are immédiate
consequences of the theorem and the definition of C(f) in (1.7). In either
case, ¢*(f) may not be unique. Next, assumptions 4 imply (see [1])
€@, 0) = lim,_, C(¢, 0) exists and equals A(¢). Moreover, by L’Hospital’s
rule, the left side of (2.2) yields lim,_,{f,(x)/fy(x) — 1}/{z($) — =(0)} =
{(9/06) log f,(x)}/{(d|dO)z(6)} a.e. x € 2. The assertions of Corollary 2.1.3 now
follow from the well-known necessary and sufficient condition, (9/d6) log f,(x) =
a(0)t(x) + b(0) a.e. xe 2, for the attainment of (1.1). Finally, to prove
Corollary 2.1.4, observe that 7(¢) =1, + (1, — t,)p, and Var, (1(X)) = (¢, —
t)ps(1 — pg). If 250 < &5 denotes the set in which #(x) = 7, then suf-
ficiency of #(X) implies that, for all ¢ € @,, both sides of (2.2) equal (f, — #,)™*
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a.e. xe 25" and (1, — 1) a.e. xe 25 — 25", Hence, by Corollary 2.1.1,
we get that Var, (#(X)) = C(0) for all . ]

The assumption C(f) = C(¢*(#), 6) in Corollary 2.1.2 holds trivially when
®, is a finite set. On the other hand, Example 3.1 of Section 3 cites a case
where Var, (1(X)) = C(0) for all § € © but relation (2.2) does not hold for any
¢ € @,. Assumptions 4 in Corollary 2.1.3 always hold for the family (1.4) (see
[5]), provided of course 7(0) is differentiable. Theorem 2.1 and its corollaries give
a method of finding MVU estimators. An obvious consequence of Corollary 2.1.1
is that, if ©(0) = E,(fy,(X)/f5,(X)) for a given pair 6, 6, in ©, then #(X) =
Jo,(X)[f5,(X) is a locally (at § = ¢,) MVU estimator of z(f). The following theo-
rem exploits this fact more fully to give a general chatacterization of f,(x) and
7(#) for finding UMVU estimators.

THEOREM 2.2. Suppose that fy(x) is given by (1.4), and let 8, + 0, be a specified
pair in © satisfying 2y(0,) — 27(0,) + 7(0) e I for all 6 € ©, where T is the range
of 7(0). Then an unbiased estimator of
(23) 7(0) = a(0)/a(r~{r(62) — 7(62) + r(6)})
is (X) = exp({r(6,) — r(6,)}9(X)) with Var, (t(X)) = C(8) for all 6.

Proor. The monotonicity of y(¢) implies that I' is an interval, and therefore
conditions y() € I and 2y(6,) — 27(8,) + 7(0) € I imply that y(6,) — 7(8,) +r(6) e T.
Consequently, Ey(/(X)) = a(0) § h(x) exp{[r(6,) — 7(6,) + 1(6)]g(x)}x(dx) = =(6),
and similarly Var, (1(X)) = a(0)/a(y"{27(0,) — 27(6,) + r(0)}) — *(#). For any
0 €0, let ¢*(0) = r~*{r(6,) — 7(0,) + r(6)} which clearly belongs to ®,. Sub-
stituting f,(x) of (1.4) and ¢ = ¢*(0) in (2.2), one easily verifies that the relation
(2.2) holds. It follows from Corollary 2.1.1 that Var, («(X)) = C() for all
6 € ©. Note that, since 7(#) is monotonic, ¢*(8) is unique for every 6. [

If one reparametrizes (1.4) by 7 (instead of ¢), Theorem 2.2 essentially states
that exp{cg(X)} is the UMVU estimator of the parametric function z(y) =
a(y)/a(y + ¢), ¢ # 0 being a given constant. In any practical situation one of
course makes an objective judgment as to whether such a parametric function
has any statistical motivation. This is also true, we may add, when one speaks
of g(X) in (1.4) being the UMVU estimator of z(y) = —a'(y)/a(y).

We now give four examples as applications of Theorem 2.2. It will be shown
in Section 3 that, in all these cases (with » > 1 in Example 2.2), Var, («(X)) >
B,(0) for all k = 1 and 6 € ©.

ExampLE 2.1. Let X = (X;, ---, X,), n > 1, where the X, are i.i.d. Poisson
rv’s with mean 6 > 0, and let () = exp(—0) = Py(X; = 0). In(1.4), we now
have «a(f) = exp(—n6), y(¢) =logéd and g(X)= 7., X,. Choosing 6, =
(I — n7%)0, and @, as any positive number in Theorem 2.2, we conclude that
(X)) = (1 —n")=% js the UMVU estimator of ¢(f) with Var, (#(X)) =
{exp(—20){exp(f/n) — 1} = C(#). If n = 1, the theorem does not work because
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one can not choose 6, # 6, such that r(§) = exp(—0) (but the theorem still
applies to find the UMVU estimator of exp((c — 1)¢) for and positive ¢ # 1).
If n = 1, one verifies directly that the only unbiased estimator of exp(—¥6) is
#(X) = 1if X = 0 and #(X) = 0, otherwise.

ExXAMPLE 2.2. Let X = (X, .-+, X,), n = 1, where the X, are i.i.d. Bernoulli
variables with mean 6 € (0, 1), and let 7(f) = (1 — 6 + cf)", ¢ # 1 being a given
positive number. Clearly, 7(6) is the moment-generating function M,(¢) of 3 X;
at t = logc. Here, a(d) = (1 — 6)*, y(0) = log {#/(1 — )} and g(X) = ¥ X,.
Choosing 6, = ¢,/(1 — 6, + cf,) and 6, as any number on (0,1), we get
H(X) = ¢=%*: as the UMVU estimator with Var (#(X)) = (1 — 0 + )" —
(1 — 6 + cb)™ = C(6).

ExAMPLE 2.3. Let X = (X, ---, X,), n = 1, the X, being i.i.d. normal rv’s
with mean 6 € (— oo, o) and variance 1, and let () = exp(cf), ¢ = 0. Here,
a(0) = exp(—nb?2), y(0) = 6 and g(X) = 3, X,. Choosing 6, = 6, + c/n and
6, as any real number, we get #(X) = exp{cn~ 3} X; — ¢*/(2n)} as the UMVU
estimator with Var, (#(X)) = {exp(2cf)H{exp(c*/n) — 1} = C(6).

ExXAMPLE 2.4. Let X = (X, ---, X,), n = 1, the X, being i.i.d. exponential
variables with mean 6 > 0, and let 7(¢) = (1 + cf)~", where ¢ is any given
positive number. Here, a(f) = 6", y(f) = 6~* and g(X) = — 3 X,. Choosing
6, = 6,/(1 + cb,) and 6, as any positive number, we get #(X) = exp(—c J X))
as the UMVU estimator with Var, (#(X)) = (1 + 2¢6)™" — (1 + )~ = C(9).

Since #(X) of Theorem 2.2 is a complete sufficient statistic (see [5]) for the
family (1.4), the UMVU character of the estimators in Examples 2.1-2.4 also
follows from the Lehmann-Scheffé theorem. However, the following example
shows that C(6) can be attained even in the absence of a complete sufficient
statistic (and when B,(6) is unattainable for any k > 1, see Example 3.2).

ExampLE 2.5. Let X be a nonnegative integer-valued rv with density f,(x) =
00,0 + (1 — 0,)(1 — 0)*6°-, 0 € [0, 1]and d,; is the usual Kronecker delta. Let
7(0) = (1 — 0)* = P,(X = 1). Here fj(x) can not be expressed in the form (1.4).
Moreover, the sufficient statistic X is not complete, for E, (X — 1) = 0 but
Py(X # 1) > 0 for all §e(0,1). Hence, the Lehmann-Scheffé¢ theorem does
not apply. Consider now #(X) = 6,;, X = 0, so that E,(#(X)) = (1 — 0)* = =(0)
and Var, (1(X)) = 6(1 — 6)*(2 — ) for all #¢[0,1]. If 6§ =0 or 1, then
Var, (t(X)) = 0 = C(¢). For any 6¢€(0, 1), Corollary 2.1.1 with ¢*(0) =0
shows that relation (2.2) holds for all x = 0. Consequently, Var, (t(X)) = C(8)
for all 8 € [0, 1], and #(X) is the UMVU estimator of z(6).

3. Comparison between C(¢) and B,(f). We assume throughout this section
that regularity assumptions B, hold for some k > 1. As mentioned earlier, we
always have C(f) = B,(6) = A(0) for all 6O, and C(f) = B,(0) for all 4O
in densities of the form (1.4) with g(x) = #(x). To formulate general conditions
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under which C(0) > B,(0) we define the z® and V,; as in (1.3), and let

(3.1) Bi(0) = @)= @), i=1, vi(0) = Viu(6)/V0u(9) ,
v(0) = {Vu(0)Vu(0) — 1O}/ Vi) -

THEOREM 3.1. If assumptions B, hold, then B,(6) + v,(6) implies C(6) > B,(6).
If By(0) = v,(0) but assumptions B, hold, then By(6) > 3v,(0) + V,3(8)/V(6) im-
plies C(0) > B,(0).

Proor. To prove the first part, if assumptions B, hold, then for sufficiently
small |2 > 0 we have

B{(0 + ) — (O)) = [ OF(1 + hB,0) + o(R)},
1= Var, (fa(OUfAX0) = Va(0){1 + h(0) + o(B)}

It follows from (1.2) and (1.7) that C(6) = B,(6){1 + h[By(f) — vi(8)] + o(R)},
which shows that C(6) > B,(f) whenever §,(6)  v,(0). The second part is proved
similarly by expanding z(¢ + %) and f,,,(X) up to order #* under assumptions
B;. [] '

COROLLARY 3.1.1. Assumptions B,, t®(6)=0and V,,(8)=0imply that C(6) > B,(6).

Note that if fy(x) = f{x — 6) where fis symmetric about 0, then, under as-
sumptions B,, f is twice differentiable and flx) = f{—x), f'(x) = — f'(—x) and
S"(x) = f"(—x), forallx = 0. Consequently, V,,(8) = E,(f,~*(X)f/(X)f;""(X)) =
—§ [7%x) f'(x) f"(x)#(dx) = 0, and hence from Corollary 3.1.1 we arrive at the
following

CoroLLARY 3.1.2. If7®(0) = 0 and f,(x) = f(x — ) where fis symmetric about
0, then under assumptions B,, C(6) > B(0).

It is clear from the proof of Theorem 3.1 that conditions involving higher
order derivatives of 7(¢) and fj(x) can also be framed to assert C(d) > B,(6).
One easily verifies that Corollary 3.1.1 applies to our Examples 2.1-2.5 and to
the example of [1] for all § € © (6 = 0, 1 excluded in Example 2.5). In fact, in
these examples as well as in many others (e.g., Cauchy distribution with scale or
location parameter ¢, logistic distribution with parameter 6 etc.), whenever
7(0) has a nonzero second derivative, C(6) > B,(9).

The method of Theorem 3.1 cannot be used to compare C(6) and B,(f) when
k = 2. However, for the family (1.4), we are able to specify simple conditions
on 7(6) such that C(¢) > (or <) B,(#) for allk > 1 and § ¢ O.

THEOREM 3.2. Under the assumptions of Theorem 2.2, Var, (#(X)) = C(6) >
B,(0) for all k = 1 and 6 € ©.

Proor. Defining #(X) and 7(f) as in Theorem 2.2, we have from there
E,(t(X)) = 7(0) and Var, (#(X)) = C(f) for all # € ©. On the other hand, #(x) is
not a polynomial in g(x) but f)(x) is of the form (1.4), and hence it follows
from Fend (1959) that Var, (1(X)) > B,(f) forall k > 1 and 6 € ©. [
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The conclusion of Theorem 3.2 applies to Examples 2.1-2.4 but not to Ex-
ample 2.5 where fj(x) is not of the form (1.4).

THEOREM 3.3. Suppose that X has the density of the form (1.4), and let
(3.2) 2(0) = Ef( Lz a:9(X)) = E,(1(X)) , sy, k>1

where ay, - - -, a, + 0 are arbitrary constants. Assume that, for all § € ©, (i) C(9) =
C(¢*(0), 0) for some ¢*(0) € © and (ii) P,(g(X) € A) < 1 for all Borel sets contain-
ing k 4 1 elements. Then Var, (1(X)) = B,(6) > C(0) for all 6 ¢ ©.

Proor. Since fy(x) is of the form (1.4) and #(x) is a polynomial in g(x) of
degree k, it follows from Fend (1959) that Var, (#(X)) = B,(f) forall§ ¢ ©. We
shall now show that Var, (1(X)) > C() for all 6 € © by forcing a contradiction.
Suppose Var, (X)) = C(f) and ¢*(6) = 6. Then, by Corollary 2.1.3 and (1.4),
we must have

(3.3 K,(0)g(x) + Ky(0) = 23k a,9%(x) a.e. xeZ,

where K, and K, are nonzero functions on ©. But, since a polynomial in g of
degree k > 1 can have at most k zeros, the identity (3.3) is impossible to hold
under assumption (ii). Suppose, next, Var, (#(X)) = C() and ¢*(8) = 6. Then,
by Corollary 2.1.2 and (1.4), we must have

(3.4)  K($*, 0) exp({r(¢*) — r(6)}9(x))
= K,(¢*, 0) + >ty a,9%(x) a.e. xe =2,

where K, and K, are nonzero functions on ©. But, since the equation e =
>k _ob;y7 has at most k 4 1 real roots for every set (b, - - -, b,) of constants,
the identity (3.4) is impossible to hold under assumption (ii). Hence, we must
have Var, (1(X)) > C(9) for all 6. []

In Examples 2.1-2.4, 7(0) of (3.2) turns out to be a polynomial in 6 of degree
k (Example 1 in [2] is a special case of our Example 2.4). There are, of course,
many special cases of (1.4) where this may not be true (e.g., f;(x) = 6 exp(—0x),
x = 0). Assumption (ii) of Theorem 3.3 holds, in particular, for every k =1
when (1.4) is a Lebesgue density and g is continuous everywhere in .2° (e.g.,
Examples 2.3, 2.4). It also holds in Example 2.1 for every k = 1 and in Example
2.2 when 1 < k < n. It is easily verified that assumption (i) holds in Example
2.3 and 2.4, so that Theorem 3.3 applies in estimating any second or higher
degree polynomial in the mean of a normal or exponential distribution. On the
other hand, the validity of assumption (i) in Examples 2.1 and 2.2 depends on
the choice of the coefficients @, in (3.2). This aspect and the fact that the con-
verse of Theorem 3.3 is not true are clarified in the following example.

ExAmpLE 3.1. In Example 2.2, letn = 2and ¢(f) = b, + 5,60 + b,6% where b,,
b,and b, = O are given constants. Here k = 2, g(X) = X, + X,, and the estimator
H(X) = by + (b, — b)g(X) + £b,9%(X) is easily verified to be unbiased for «(6)
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with Var, (#(X)) = 36(1 — 6)(b,* + 2b,(2b, + b,)0 + 2b,’0%) = B,(f) forall§ € © =
(0, 1). Now, assumption (ii) does not hold for 4 = {0, 1, 2} and therefore the
conclusion Var, (#(X)) > C(6) does not follow from Theorem 3.3 for any ¢ € 0.
Note that here C(¢, 0) = 0*(1 — )b, + b,¢ + b,0)*/{(¢ — 6)* + 20(1 — 6)},
which has a unique absolute maximum at ¢* = (b, + 2b,)0/(b, + 2b,60), and
C(¢*, 0) = B,(0). However, depending on the choice of 5, and b,, ¢* may be
an inner point of © (assumption (ii) holds), or a boundary or external point of ©
(assumption (ii) does not hold). Thus, if 7(6) = (1 + 6), then ¢* = 36/(1 + 26)
(0, 1) and C(f) = B,(@) for all § (Corollary 2.1.1 applies here). If z(6) = &,
then ¢* = 1 is a boundary point and C(f) = B,(9) for all §, which incidentally
shows why the second condition of Corollary 2.1.2 is needed. Finally, if 7(f) =
6(1 — 6), then ¢* = 6/(20 — 1) is exterior to © and C(6) < B,(0) for all §, which
also shows that assumptions (i) and (ii) are not necessary for the assertion of
Theorem 3.3.

When the form of f,(x) is different from (1.4), or the form of #(X) is different
from those in Theorems 3.2 and 3.3, it seems difficult to formulate general con-
ditions under which C(6) < (or >) B,(d) for k > 1. Nevertheless, the following
theorem provides a partial answer.

THEOREM 3.4. Suppose that assumptions B, hold for some k > 1, V, is con-
tinuous in 6 € ©, and for ¢ in the neighbourhood of ¢*, where the supremum in (1.7)
occurs, we have

(3.5) [7($) — =(O)] = | Tt (6 — O)=(9)/il]
and
(3.6) Var, (fu(N)/fo(X)) 2 L Zia ($ — OV (0)/@ ) -
Then B,(0) = C(0) and the strict inequality holds if (3.5) or (3.6) is a strict inequality.
Proor. Using (3.5) and (3.6) in (1.7), we obtain that
{Zfa (6 — )= (0)/i'}
@7 00 s e (G B G i)
< sup, {(A'T)(AV,A) . A= (6 — O)/LL, - -+, (§ — O)FRLY

where 7, and V, are defined in (1.3), and the supremum in (3.7) extends over
the range {A: ¢ € ©,}. Obviously, (3.7) becomes a strict inequality if either
(3.5) or (3.6) is the same. Since {A: ¢ € ®,} < R*, (3.7) yields

(3.8) C(0) < sup,e e {(A'7y)*/(A'V,A)} = 7,/V, 77, = By(0) .

The penultimate equality in (3.8) follows from the well-known fact that, if A =
aa’ and B (positive definite) are two p X p matrices, then sup, {(x’aa’x)/(x'Bx)} =
largest characteristic root of aa’B~! = a’B~'a. []

Assumption (3.5) holds for all § when 7(6) is a polynomial in §. It also holds
for some ¢ for functions like 7(6) = 6™, § > 0, 0 < m < 1, and =(#) = 6 log 4,
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6 > 1. Unfortunately, it does not apply to Example 2 in [1] (i.e., our Example
(vi) of Section 1) nor to Example 2 in [2] (i.e., our Example 2.4 with () = 6™,
0 < m < 1) for ¢ in the neighbourhood of ¢*. Assumption (3.6) holds for all
¢ when f,(x)/f,(x) possesses an orthogonal expansion (e.g., Examples 2.3, 2.4).
Example (iv) of Section 1 is an application of Theorem 3.4.

There are situations where Theorems 3.2-3.4 do not apply, but we may have
C(0) > B,(0) for all k = 1 and 6 € ©. The following is a case in point.

ExampLE 3.2. Consider the problem of Example 2.5 where we showed that
Var, (#(X)) = C(6) for all 6 € [0, 1]. We shall now show that Var, (¢(X)) > B,(9)
for all k > 1 and 6 ¢ (0, 1). It is easily verified that assumptions B, hold for
each k > 1 and all # € (0, 1). Now, the strict equality in (1.2) holds (see [2])
iff «(X) = 7(0) + Xk, a,(0)f, " (X)(0°/06")f,(X) with probability one, where
a,(0) # 0 for some k > 1. In our case, a necessary condition for this identity
to hold is easily shown to be

(3.9) a O — 2(9)6 + (7)) = (1 — 6)%a,*(0) ,
for x=2,3, ...,

where a,*(0) = il a,(6)/6°, i = 1. But, for any 6 e(0,1) and k = 1, (3.9) is a
polynomial in x of degree k and can therefore hold for at most k values of x.
It follows that a,(f) = O for all k = 1 and 6 € (0, 1), and, by contradiction, the
equality in (1.2) cannot hold for any k£ > 1 and 6 € (0, 1).

4. C(9) in nonregular families. One chief advantage of C(¢) over B,(0),k = 1,
is that the former applies to many situations where the Cramér-Rao regularity
assumptions (and hence B, for kK = 1) do not hold. This is true, in particular,
when O is a countable set or when the range .2, depends on . Hammersley
(1950) proposed C(f) in the context of former possibilities, while Kiefer (1952)
proposed a refinement of C(f) to handle the latter possibilities. We shall now
show that, for a wide class of such nonregular families, the lower bound C(6)
is unattainable by the UMVU estimator.

As an extreme example, suppose that X = (X}, ---, X,), n = 1, where the X,
are i.i.d. uniform rv’s on [§ — },0 + }], 6 € (— o0, o) being the unknown
location parameter. Then @, defined by (1.5) and (1.6) is empty for every 6,
so that C(f) = 0 for all§. On the other hand, any unbiased estimator #(X) of
every estimable (nonconstant) z(6) has Var, (#(X)) > 0 for all §. The following
theorem provides an answer in the same direction for less extreme cases (where
@, is not empty).

THEOREM 4.1. Suppose there exists a ¢* = ¢*(0) € ©, such that (i) C(0) =
C(p*, 0), (ii) Py(X € 27,4) < 1, and (iii) Py(t(X) = constant, X € 27 — Z°,.) = 0.
Then Var, (t(X)) > C(0). Moreover, if 1(X) is sufficient for the family P,, 0 ¢ ©,
then Var, (t*(X)) > C(0) for every unbiased estimator t*(X) of =(0).

Proor. Condition ¢* ¢ ®, and the definition of ®, imply 27, < 27 and
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fi(x) = 0ae. xe 25 — 2. We shall prove the first part of the theorem by
forcing a contradiction.. If Var, (#(X)) = C(6), then by assumption (i) and Co-
rollary 2.1.2 we must have

(4.1)  1(x) = 2(6) + {r(8) — =($*)}* Var, (¢(X))  ae. xe.2% — Zp.

By assumption (ii), relation (4.1) has positive probability under P,, which con-
tradicts assumption (iii). Hence, we must have Var, (¢(X)) > C(f). The second
part is a direct consequence of the Blackwell-Rao theorem (see [5]). []

CoROLLARY 4.1.1. Suppose that fy(x) = a(0)h(x) for all xe 27, and 6 € ©. If
(i) C(0) = C(¢*, 0) and (ii) either Py(t(X) = constant, X € Z7;) = 0 or Py(t(X) =
constant, X € 27y — 27,) = 0, then Var, (1(X)) > C(0).

Proor. If Var, (#(X)) = C(0), following (4.1), we must have #(x) = K,(0) a.e.
xeZ, and 1(x) = K,(0) a.e. xe 27 — 2, contradicting assumption (ii) of
the corollary. []

Note that, if .27 is not monatomic and .27, is not a subset of .27 for any
¢ + 0, then we have trivially Var, (¢(X)) > C(6) = 0. We now give two ap-
plications of Corollary 4.1.1.

ExamrLE 4.1. Let X = (X,, ---, X,), where the X, are i.i.d. rv’s with the
uniform [0, #] distribution, and let z(#) = 6™, m > —} being specified. Here,
a@) =0-", h(x)=1, ® =(0,00) and 25 ={(x, -+, %,): 0 x, £ 0,i =
1, ..., n}, so that (1.5) and (1.6) imply ®, = (0, §) for and & > 0. It is easily
verified from C(¢, 6) = (¢™ — 0™)*/{(6/p)" — 1} that C(¢, #) attains a maximum
at some ¢* € (0, 6) (p* depends of course on ¢, m and n). Thus assumption (i)
of Corollary 4.1.1 holds for all § > 0. The unbiased estimator #(X) =
n~(n + m){max,,., X,} is sufficient and satisfies assumption (ii) for all § > 0
(1(X) is in fact UMVU). Consequently, Var, (t*(X)) > C(#) for all 6 > 0,
m > —%, n > 1 and unbiased r*(X). As a matter of added interest, it can be
shown that {Var, (#(X))}/C(#) — 1.54 as n — oo, for any ¢ > 0 and m > —}.
Taking m = 1, one gets Kiefer’s (1952) Example 1. His Example 2 (i.e., same
fo(x) but z(f) = —log @ and #(X) = —n~' — log (max,.,, X;)) can be treated
similarly, and it has the same features as above.

ExampPLE 4.2. Consider fy(x) = ({)7*(2Z}), n = 1 being a given integer, x €
Zy={nn+1,...,0},0c0® ={n,n+1,-...}, and let z¢(¢) = 0. If 6 =n,
then .2, becomes monoatomic so that C(f) = 0 = Var, (#(X)) for any unbiased
estimator. If # = n + 1, then (1.5) and (1.6) imply ®, = {n, -..,6 — 1}, and
assumption (i) holds obviously. The unbiased estimator #(X) = n~*(n + 1)X — 1
satisfies the second part of assumption (ii) so that Var, (#(X)) > C(@) for all
6 = n + 1 (here #(X) is unique).

It is well known that, when 7(¢) = 6 in Examples 2.1.-2.4, the bound C(6) is
actually attained for every 6 € © by the corresponding UMVU estimator. How-
ever, the picture may change quite drastically if the natural parameter spaces
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in these situations are reduced to a countable set. Hammersley (1950) showed
this for r(f) = 6 in our Example 2.3. The following theorem formalizes this
aspect and it complements Theorems 2.2 and 4.1.

THEOREM 4.2. Suppose that fy(x) is given by (1.4) but © is a countable set, and
assume that C(0) = C(¢*, 0) for some ¢* = ¢*(0) + 6 in ©. Then Var, (1(X)) =
C(0) only if t(x) = A(0) + B(0) exp{[r($*) — r(0)]g(x)} a.e. x € 2 for some A(0)
and B(0), and then ©(0) = A(6) + B(0)a(0)/a($*).

Proor. The result follows by substituting (1.4) in Corollaries 2.1.1 and 2.1.2,
and we have, in fact, B(0) = [a(¢*)/a(0)][z($*) — =(6)]* Var, (¢(X)). [

ExaMPLE 4.3. Suppose 7(f) = ¢ in Example 2.2 and © = {0/M, 1/M, - .-,
M|M}, where M (> 1) is a given integer. If # = 0 or 1, 22° becomes mon-
atomic so that C(#) = 0 = Var, (#(X)) for any unbiased estimator. If 6 ©®" =
{1/M, ..., (M — 1)/M}, then fy,(x) is of the form (1.4) as shown earlier. From
C(¢, 0) = (¢ — 0)/[($* — 260 + O)"0-"(1 — 6)~" — 1] we find, for any 6 € ©’,
C(0) = C(¢*, 0) with ¢* = 0 + M. Consider now the unbiased estimator
HX)=n"2r, X, If n=1, we can write #(x) as stipulated in Theorem 4.2
by taking 4(¢) = 6(1 — M 4 M) = — B(0), so that Var, (X)) = C(9) for all
6 € ®’. On the other hand, if n > 1, #(x) can not be expressed this way for any
6 € 0, so that Var, (#(X)) > C(9) for all # € ®’. It can be shown that #(X) is in
fact the UMVU estimator when M > n, and interestingly enough one finds
{C(0)} - Var,(t(X)) — 1 as M — co for any n > 1 and § € ®’. This asymptotic
property is comparable to the standard result that, in the case of unrestricted
®' = (0, 1), Var, (#(X)) = C(f) for alln = 1 and 6.
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