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ON ASYMPTOTICALLY OPTIMAL SEQUENTIAL
BAYES INTERVAL ESTIMATION
PROCEDURES!

By LEON JAY GLESER AND SUDHAKAR KUNTE

Purdue University and University of Poona

A theory of sequential Bayes interval estimation procedures for a
single parameter is developed for the case where the loss for using an in-
terval I is a linear combination of the length of I, the indicator of non-
coverage of I, and the number of observations taken. A class of stopping
rules {#(c): ¢ > 0} is shown to be asymptotically pointwise optimal (A.P.O.)
and asymptotically optimal (A.O.) for the confidence interval problem as
the cost ¢ per observation tends to 0. The results require generalization of
Bickel and Yahav’s (1968) general conditions for the existence of A.P.O.
and A.O. stopping rules to the case where the terminal risk Y, satisfies
f(n)Yy — V for f(n) a regularly varying function on the integers.

1. Introduction and summary. There has been much recent interest in decision-
theoretic approaches to fixed-sample confidence interval estimation [for example,
Winkler (1972), Cohen and Strawderman (1973), and Joshi (1969)]. Fixed-width,
fixed-confidence, sequential confidence interval estimation has also received
attention in papers by Chow and Robbins (1965), Sen and Ghosh (1967), Paulson
(1969), and Weiss and Wolfowitz (1972), among numerous others. Along with all
fixed-sample designs, the fixed-sample confidence interval approach has the dis-
advantage of potentially inefficient use of data. On the other hand, the sequential
fixed-width, fixed-confidence approach involves choices for the width and con-
fidence of the intervals which may not correspond to any rational balancing of
the merits of high confidence as opposed to narrow intervals.

In the present paper, we develop asymptotically optimal sequential Bayes
interval estimation procedures in the case where the loss is a linear combination
of the length of the interval, the indicator function for noncoverage, and the
sample size. Apart from the cost of sampling, this loss function is the one con-
sidered by Joshi (1969) for fixed-sample inference on the mean of a normal
distribution, and is a special case of the loss function of Cohen and Strawderman
(1973). Our loss function has been used for sequential interval estimation of
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686 LEON JAY GLESER AND SUDHAKAR KUNTE

the positive mean of a folded normal distribution with known variance by
Blumenthal (1970), and for sequential interval estimation of the mean of a
normal distribution with both known and unknown variance by Kunte (1973).
Kunte (1973) also gave some theoretical results on sequential Bayes interval esti-
mators for a parameter of a general distribution. These results are completed
and generalized in the present paper.

In Section 2, the fixed-sample Bayes interval estimation problem is solved in
its entirety—including representations for the optimal interval and for the pos-
terior Bayes risk Y, based on n observations. In the sequential case, the Bayes
terminal decision rule for a given stopping rule ¢ is easily seen to be ‘“when
t = n, use the fixed-sample Bayes rule based on n observations,” but discovery
of the explicit form of the Bayes optimal stopping rule appears intractible,
prompting us to turn to asymptotic methods.

We assume that the cost, ¢, per observation tends to 0 and adopt an approach
parallel to that previously followed by Kiefer and Sacks (1963) and Bickel and
Yahav (1967, 1968, 1969a) in the cases of sequential Bayesian rules for hypothe-
sis testing and point estimation. That is, we determine a collection of stopping
rules {#(c): ¢ > 0} which is asymptotically pointwise optimal (A.P.O.) and asymptot-
ically optimal (A.O.) for our Bayesian sequential interval estimation problem.
Bickel and Yahav (1967, 1968) have given sufficient conditions for stopping
rules to be A.P.O. and A.O. Their regularity conditions include the condition
that for some 8 > 0,

nfY, —V, as.,

where V is a positive random variable, and Y, is the posterior risk of terminal
decision of the Bayes rule based on n observations. The results of Blumenthal
(1970, Lemma 4.1) and Kunte (1973), however, suggest that in our interval
estimation problem,

(n/log n)tY, — V, a.s.

Thus, in Sections 3 and 4, we extend the results of Bickel and Yahav to cover
both this rate of convergence, and other similar rates of convergence. The
context of these sections are abstract and, except for the main results (Theorems
3.1 and 4.1), can be skipped by readers only interested in the interval estimation
problem.

In Sections 5 and 6, we return to the interval estimation problem, and deter-
mine a collection of stopping rules {t(c): ¢ > 0} which is both A.P.O. and A.O.
Although the conditions which we adopt for proving asymptotic pointwise opti-
mality (Section 5) and asymptotic optimality (Section 6) closely parallel the
conditions in Bickel and Yahav (1968, 1969b), and although we make use of
some of their results, our large-sample analysis bears the same relationship to
their work as the theory of moderate deviations [Rubin and Sethuraman (1965a,
1965b)] bears to the theory of large deviations.
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2. Bayesian sequential interval estimation. Suppose that we observe inde-
pendent, identically distributed random variables X, X, --- whose common
probability measure P, belongs to a family {P,: § € ©} of measures defined on a
measure space (2, &), indexed by an open subinterval © of the real line, and
dominated by a o-finite measure . Let f(x|0) = dP,/du be the density function
of P, with respect to , and let (@) be a prior density (with respect to Lebesgue
measure) on 0.

For our terminal action space, we take the class .# of all subintervals (in-
cluding point sets and the empty set) of ®. For our loss function, we choose a
linear combination of the length of our interval, the indicator of noncoverage
of our interval, and the cost of sampling. That is, if n observations have been
observed, the loss for choosing /€ . when @ is the true parameter is

2.1) L@, 1, n) =alI) + b(1 — 6,0)) + cn,
where a, b, c are finite positive constants, /(1) is the length of /7, and

5, (0)=1, if 6el

=0, otherwise.

Our decisions are pairs (I, t), where ¢ is a stopping rule, and 7, is a terminal
decisionrule. It followsdirectly from the work of Arrow, Blackwell and Girshick
(1949) that for every stopping rule ¢, the Bayes optimal terminal decision rule
I*, when t = n, is the fixed-sample Bayes estimation procedure based on n ob-
servations. This fixed-sample rule is determined as follows.

Let us first note that we could have started with a wider action space—namely,
the class & of all Lebesgue measurable subsets of ®—and a loss function

L(8, C, n) = al(C) + b(1 — 3,(6)) + cn,

where [(C) is the Lebesgue measure of C and d,(f) = 1 if # € C and Q otherwise,
Ce¥%. LetX, = (X, X,, - -+, X,) represent the vector of sample observations.
A regional estimation procedure, C(X,), is then a measurable assignment of re-
gions Ce & to samples X,. There is at least one procedure with finite Bayes
risk (namely, C(X,) = empty set, all X,). Hence, in finding the Bayes procedure
C*(X,) against the prior ¢, we need consider only procedures with finite Bayes
risk. For any such procedure, application of the Fubini-Tonelli theorem [cf.
Royden (1968, Theorem 20)] yields

(2.2) R(¢, C(X,)) = § o» [0(¢, C(X,)) + ¢n] dG,(X,) ,
where
(2.3) p(¢, C(X,)) = al(C(X,)) + b[1 — (o, 9(0]X,) db]

= [l + fox,) (@67 — 9(0]X,)) d0]

is the posterior Bayes risk of terminal decision, ¢(¢ | X,) is the posterior density
of ¢ given X,, and G,(X,) is the marginal distribution function of X,. From
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(2.2) and (2.3), a Bayes regional estimation procedure C*(X,) against ¢ based
on n observations is

2.4 C*(X,) = closure (in ©) of {6:¢(@|X,) = adb™'},

since (2.4) clearly minimizes (2.3) and can be shown to be a measurable assign-
ment of subsets of © to samples X,.

If C*(X,) is an interval I*(X,) for each X,, then I*(X,) provides us with our
Bayes interval estimation procedure based on n observations. If C*(X,) is not
always an interval, then our search for an interval estimation procedure can be
justified only on the grounds of convenience, since any Bayes interval estimation
procedure (i.e., a procedure which minimizes (2.2) over the subclass of pro-
cedures which assign only intervals in © to samples X,) will be improved upon
by C*(X,). Hence, in the remainder of this paper we make the assumption:

A.O. The region C*(X,) defined by (2.4) is a closed (in ©) subinterval
I*(X,) = [af(X,), ax(X,)] of © for almost all X,,, where “almost all” is defined
by the measure corresponding to G,(X,).

We note that it is possible for I*(X,) to be empty (when ¢(0|X,) < ab~?, all
6 € ©) or a one-point set. In both of these cases, p(¢, I*(X,)) = b. In general,

(2.5) af(X,) = inf {6: ¢(0|X,) = adb7'},
ax(X,) =sup{f: ¢@|X,) = ab7'},
and

(2.6) Y, = p(¢, I*(X,)) .
= a(af(X,) — afi(X,)) + b(1 — {27 9(0]X,) db) .

am(x”

ExAMPLE. (Blumenthal (1970), Kunte (1973)). If X, X,, ---, X, are i.i.d.
N(6, 1), and ¢ has a normal prior distribution with mean p and variance ¢%, then
the posterior density ¢(f|X,) is that of a normal distribution with mean

0,(X,) = (Tima Xi + a7p)/(n + 07)
and variance n~(1 + ¢,), where ¢, = —(no® + 1)~*. The Bayes interval estima-
tion procedure is determined by the endpoints

2.7) ax(X,) = 0.(X,) + (=1)yn¥(1 + ¢,)t log? (nb*2za*(1 + ¢,)),

i=1,2.
For future use, we note that in this case
(2.8) (n/log n)tY, — 2a, a.s.,
as can be seen from (2.6), (2.7) and the well-known inequality
(2.9) {eet?dt = {z5, e ¥ dr < x7le i, x>0.

Let us now return to the sequential Bayes interval estimation problem. We
have seen that for any stopping rule ¢, the Bayes risk of terminal decision is
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minimized by choosing the interval /*(X,) defined in (2.5) whenever sampling
terminates with + = n. The Bayes risk for any stopping rule ¢, using the optimal
terminal decision I*(X,), is given by

(2.10) R(¢, I*(X)s 1) = Limo Siemm [0(95 1¥(X,)) + en] dGo(X,,)
= E(Yt -+ Ct) 5

where the expectation of Y, + ct is taken over the joint distribution of ¢ and
X,, X,, ---. We must now seek a stopping rule t* which minimizes (2.10), and
then we will have found the Bayes sequential interval estimation procedure
(I*(X,:), t*). This minimization problem appears to be intractible in general,®
so we instead assume that the cost ¢ of sampling is very small (¢ — 0) and look
for asymptotically pointwise optimal (A.P.O.) and asymptotically optimal (A.O.)
stopping rules in the sense defined in Bickel and Yahav (1967, 1968) and in the
next section (Section 3). To date, the most general set of sufficient conditions
used to find A.P.O. and A.O. rules are those given by Bickel and Yahav (1968).
Their sufficient conditions assume that

nfY,—V, a.s.,

for some 8 > 0, and some positive random variable ¥, whereas we have seen
in our example (see equation (2.8)) that a function (n/log n)t not of the form n?
is needed. Thus, in Sections 3 and 4, we generalize Bickel and Yahav’s results
to cover cases where f(n)Y, — V, a.s., where f(x) is a member of a certain
general class of functions containing x and (x/log x)* as special cases. Because
this generalization may have applications beyond the present problem, our re-
sults in Sections 3 and 4 are stated in terms of the general abstract framework
introduced in Bickel and Yahav (1968). Once we have the necessary generali-
zation of the results of Bickel and Yahav, we return in Sections 5 and 6 to
derivation of the A.P.O. and A.O. stopping rules for our interval estimation
problem.

3. A.P.O. stopping rules. Let {Y,} be a sequence of random variables defined
on a probability space (Q, &, P), where Y, is & ,-measurable and F,C
F,C --- C .Z is an increasing sequence of sub g-fields. Let K(x) be a strictly
increasing positive function of x = 0 satisfying
(3.1) ' lim,_, K(x) = oo .

Let T denote the class of all proper stopping variables ¢ defined on (Q, &, P),
where a proper stopping variable ¢ is a natural-number-valued random variable
for which the event {t = n}je % ,, n=1,2, ---, and P(t < o) = 1. Define

(3.2) X(n,¢) =Y, + cK(n).
The goal is to choose ¢ € T to minimize E(X(z, ¢)).

2 In our example of estimating the mean of a normal distribution, however, the optimal se-
quential procedure is known, and has a fixed sample size.
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Following Bickel and Yahav (1968), we say that a class {#(c): ¢ > 0} of stop-
ping variables is asymptotically pointwise optimal (A.P.O.) if

i X)) _ 11l =
(3.3) P{hmﬁom = 1} -1,

and is asymptotically optimal (A.O.) if

. E(X(t(c), ¢)) ] _
(3.4) hmc—»o|: inf, ., E(X(s, c)):l =1

We make the following assumptions:

B.0. P{Y, > 0} =1, all n, and P{lim,_, Y, = 0} = 1.
B.1. There exists a strictly increasing, positive function f{x) defined on [0, co)
and an almost surely positive random variable V" such that
P{lim, ., f(n)Y, =V} =1.

B.2. For each x > 0 and ¢ > 0, there exists an integer N(x, ¢) which mini-
mizes the function '

(3.5) h(x, ¢, n) = (f(n))™'x 4+ cK(n) .
Further, N(x, ¢) may be taken as the first integer n such that Ah(x, ¢, n) =

h(x, ¢, n + 1) — h(x,c,n) = 0.
B.3. The function

(3.6) G(x) = K+ D(Ax + 1) = f(x))
SOOK(x + 1) — K(x))

is bounded, and

3.7) lim,_, G(x) = M, 0= M<L .
B.4. Either f(x)/f(x + 1) > 1 or K(x + 1)/K(x) — 1 as x — oo.
Under these assumptions, we have the following result.

THEOREM 3.1. For each ¢ > 0, let

(3.8) H(c) = first n =1 such that <1 —f(L—rll-)l_)> Y, < cAK(n),
n

where AK(n) = K(n + 1) — K(n). Then the class of stopping rules {t(c): ¢ > 0} is
A.P.O.

In order to prove Theorem 3.1, we need some preliminary results. Let

(3.9) H(x) = G()/ftx + DK(x + 1),
and note that
(3.10) f(c) =first n>=1 suchthat H(n)f(n)Y, < c.

By using (3.6) to rewrite H(x) solely in terms of f(x) and K(x), and using the
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fact that f{x) and K(x) are strictly increasing, we see that H(x) > 0 for all x.
Also by (3.1), assumption B.3, and (3.9), we have

(3.11) lim, .. H(x) = 0.

x—00

LemMA 3.1. For each ¢ > 0, 1(c) is a proper stopping rule; that is P{t(c) <
oo} = 1. Also,

(312) P{limc_,o t(c) = oo} =1,
(3.13) P(lim,_, ()Y, = V} =1,
(3.14) P{lim,_, cK(t(c))f(t(c)) = MV} = 1.

ProoF. From assumption B.1 and (3.11),
(3.15) P{lim,_,,, H(n)f(n)Y, =0} = 1.

Hence, since ¢ > 0, the inequality defining #(c) in (3.10) is a.s. satisfied by some
n < oo, thus proving that #(c) is proper. On the other hand, H(n)f(n)Y, > O,
a.s., for all n = 1, as can be seen from assumptions B.0 and B.1 and the fact
that H(x) > 0. It therefore follows from (3.10) and (3.15) that (3.12) holds.
The result (3.13) now follows from (3.12) and assumption B.1. Finally, it fol-
lows from the definition (3.10) of ¢ = #(c) that

K(f(1) . b
(3.16) (K(, e +1))G<z>f<r>Yt§cK<t>f<r>§G(r Dt — 1Y, .

Also, (3.12), (3.13) and assumption B.3 imply that
(3.17) lim,_, G(OA(1)Y, = lim,_,G(t — 1)f(t — 1)Y,_, = MV, a.s.

c—0

When M >0, we can use assumptions B.3 and B.4 to show that
lim,_,, [K(x)f(x)/K(x + Df(x + 1)] = 1. Use of this result, (3.12), and (3.17)
in (3.16) establishes (3.14). When M = 0, the right-hand inequality in (3.16),
(3.17), and the fact that cK(¢)f(r) = 0 show that (3.14) holds. []

Let
(3.18) n*(c) = first n =1 suchthat AA(f(#(c))Y,,,c,n)=0.
It follows from assumptions B.0—B.2 that
(3.19) h(f(1(€))Y ), ¢, n*(c)) = min, A(f(t(c))Y,.,, ¢, n) .
Using the definition (3.9) of H(x), we can also define n*(c) equivalently by
(3.20) n*(c) = first n =1 such that H(n)f(#(c))Y,, < c.
By using arguments similar to those used to prove Lemma 3.1, we can show that
(3.21) P(lim,_, n*(c) = o) = P{lim,_, f(n*(¢))Y o, = V} = 1.
(3.22) P{lim, _, cK(n*(c))f(n*(c)) = MV} = 1.
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We need to define one additional random variable. Let
(3.23) nfc) = first n =1 satisfying X(n,c) = min, X(k, c).
The a.s. existence of n(c) follows from (3.1) and assumption B.0. Also
(3.24) P{lim,_, ny(c) = oo} = P{lim,_, fin(c))Y, ., =V} =1.

The proof of this resdlt, which follows from assumptions B.0—B.2, is given in
Gleser and Kunte (1973, Lemma 2.3), and will not be repeated here.

Comparing (3.10) and (3.20), we see that n*(c) < #(c), a.s. Hence, since f{x)
is increasing in x, it follows that f(n*(c))/f(#(c)) < 1, a.s. Thus, letting 1 = #(c),
n* = n*(c), and making use of (3.2) and (3.19),

X(te)  _ fOY,+ KON
inf, A(f(1)Y,s ¢, m) — fOY, + cK(n*)fn*)

Taking lim sup,_,, on both sides of this inequality, we conclude from (3.13),
(3.14) and (3.22) that

X(#(c), )

(3.25) P {lim P S R o) 1} 1.
Similarly, with t = t(c), ny, = ny(c),
(3.26) (Y, ¢ n) _ fOY, + cK(n,)f(n) .
X(ny, c) f(”o)Yno + cK(ny)f(n,)

Noting that cK(n,)f(n,) = 0 and thus is bounded away from —V for all ¢ > 0,
it follows from (3.13), (3.24) and (3.26) that
(3.27) P{limﬁow - 1} —1.

X(ny, c)

Since by Lemma 3.1, #(c) is a proper stopping rule, we know that X(z(c), ¢) =
inf,. , X(s, ¢), a.s. Thus, to prove that (3.3) holds, and hence verify Theorem
3.1, it is enough to show that
X(1(¢), ©) 1} =1,
X(ny(c)s €)

A

(3.28) P { lim sup, .,

since X(ny(c), ¢) < inf,., X(s, ). However, letting t = #(c), n, = ny(c),

X(t, ¢) < X(t, ¢) h(f(H)Y,, ¢, ny) ,

X(ng, ¢) — inf, A(f()Y,, c, n)  X(n,, c)
and (3.28) follows directly from (3.25) and (3.27). This completes the proof of
Theorem 3.1.

REMARK I. Bickel and Yahav (1968, Theorem 2.1) prove our Theorem 3.1
for the case f(x) = x?, # > 0. Our assumptions B.0—B.2 directly generalize
the corresponding assumptions [(2.1)—(2.3), A.1, A.2] in their paper, but their
assumption A.3 is less restrictive than our assumptions B.3 and B.4 [which in
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the case f(x) = x? are satisfied if K(x + 1)/x(K(x + 1) — K(x)) > M < oo, as
x — co]. On the other hand, there is a major gap in Bickel and Yahav’s proof.
In place of our equation (3.25), they claim that

(3.29) min, A(f(t)Y,, ¢, n) = X(t,c), t=t(c).

If A(x, ¢, n) is strictly convex in n (as it is, for example, when f(x) = x?, K(x) = x),
then (3.29) can hold only when #(c) = n*(c), a.s. However, as we noted in the
discussion leading to (3.25), the best that can be inferred from (3.10) and (3.20)
is that n*(c) < t(c), a.s. We remark that Bickel and Yahav have noted the gap
in their proof (personal communication from Professor Bickel), and have sug-
gested assumptions and a proof which, in the case f{x) = x?, closely resemble
those for our Theorem 3.1. Whether their original assumptions are sufficient to
prove the theorem is still an open question.

RemArk II. In applications, assumption B.2 is likely to be the hardest to
verify. It thus may be of some help to note that assumption B.2 holds if 1/f{(x)
and K(x) are both convex on the integers.

4. A.O. stopping rules. In the special case where K(x) = x, we now consider

sufficient conditions for the class {#(c) : ¢ > 0} of stopping rules defined in Theo-
rem 3.1 to be asymptotically optimal. Note that when K(x) = x,

(4.1) G(x) = (x + 1)(ﬁf(x +1) _ 1),

fx)
and assumption B.4 is trivially satisfied. We noted in the proof of Lemma 3.1
that when lim, ., G(x) = M > 0, then lim,_, K(x + 1)f(x + 1)/K(x)f(x) = 1.
When K(x) = x, this last result implies that lim,_, f(x + 1)/f(x) = 1. Since we
need this consequence of M > 0 in our proof of asymptotic optimality, we
replace assumption B.3 by the following.

B.3’. The function G(x) defined by (4.1) is bounded and
lim,_., G(x) = M, O<M<Loo.
THEOREM 4.1. When K(x) = x and assumptions B.0—B.2 and B.3’ hold, the
class {t(c): ¢ > O} of stopping rules defined by

(4.2) t(c) = first n=1 such that <1 — L) Y, < ¢
fln + 1)

is A.P.O. Further, if

(4.3) sup, E(f(n)Y,) < oo,

this class of stopping rules is A.O.

The class {t(c): ¢ > 0} defined by (4.2) is just the class of rules defined in
Theorem 3.1 specialized to the case K(x) = x. Since K(x) = x and assumptions
B.0—B.2 and B.3’ imply assumptions B.0—B.4, the A.P.O. character of the
stopping rules (4.2) follows from Theorem 3.1.



694 LEON JAY GLESER AND SUDHAKAR KUNTE

To prove that the class of rules (4.2) is A.O., we proceed in a series of lem-
mas. We begin by noting some consequences of assumption B.3'.

Lemma 4.1. If assumption B.3' holds, then

(a) lim, . f(x + Dfix) = 1,
(b) T (1/nfin)) < oo,

(c) there exists an increasing positive function h(x) such that for every x € [0, co),

lim inf, ., Sy >1
S(x)h(y)
2ime1 (1/nh(n)) < oo .

Proor. We have already noted that assumption B.3’ implies (a). From (4.1),
we see that

oo 1 — o 1 1 - 1
(4.4) Z”ﬂ;ﬂﬁ_) = Ziv= G(n — 1)<f(n —1) f(”)>

and

1 - 1 1
= inf, ., G(x) 2= (f(n —1) f(n)>'

Since f(x) is strictly increasing, we see from (4.1) that G(x) > 0, all x. This
fact, the fact that f{0) > 0, and assumption B.3’ can now be used to show that
the upper bound in (4.4) is finite, thus proving (b). Kunte and Gurjar (1973)
have shown that (a) and (b) together imply (c). [I

LEMMA 4.2. Define
(4.5) ' L(x) = x"f(x),

where M = lim,_,, G(x). If {u,} and {v,} are two sequences of integers for which
u, <, all n, and u, — co as n — co, and if there exists an integer k such that
v, < ku, for all large enough n, then

(4.6) lim, . (%) _ 1.
L(u,)

Proor. From (4.1), it is easily demonstrated that for any integer j,
. ; Gi—1
f0) = £0) Tt (1 + CE=1)

- PG+ M+1) PR G(i — 1) — MY
_f(O)F(MJr DI + l)eXP{ZM' l°g<1 + i+ M M>}

so that if we let
N S0 TE+M+1) o — G(i — 1) — M\
W(i) = TM 1) TG D (1)_log<1 + ST > 4

we have

L(j) = W) exp (T X2).
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Using the well-known fact that lim,_, I'(n + M)/T'(n)n* =1, it follows that
lim,_,, W(n) = f(0)/T(M 4 1) # 0. Using assumption B.3’, it can easily be
established that

4.7 lim,_,, e(n) = 0.
Now

Lw,) _ W(v,) e(i)
(4-8) L(u,)  W(u,) eXP<Zi Suatt T >

Also, by the given, for large enough n,

(4.9) \Zz w4l s(l) = Zz =ug+l TN Ie(l)l >

and (4.7) and the given fact that u, — co as n — oo can be used to show that
the right-hand side of (4.9) tends to 0 as n — co. Thus,

(410) n—»oo Zi U +16—(l‘)‘ =

KO
Since we have already shown that lim,_. W(n) # 0, (4.8) and (4.10) imply
(4.6). [

Loosely speaking, Lemma 4.2 establishes that f(x) is regularly varying on the
integers, behaving almost like x* for large values of x.
Let

(4.11) 7(c) = first n =1 suchthat nf(n) = c'M.

Since, from assumption B.1, xf(x) strictly increases from 0 (at x = 0) to oo,
7(c) is well defined for all ¢, and lim,_,y(c) = co. It therefore follows from
assumption B.1 that

(4.12) P{lim_, fiy(c)Y,, =V} =1.
From (4.11), we have

4.13 M 7(r) > > M,
(4.13) G =1 z crfr) =

where 7 = y(c). Hence, since lim,_, y(c) = oo, it follows from Lemma 4.1 (a)
and (4.13) that

(4.14) lim,_, cy(c)f(r(c)) = M
LeEMMA 4.3. For the class {t(c): ¢ > O} of stopping rules defined by (4.2), we have
(4.15) P {lim J(e) _ V—M/(M+l)} —1.
B)
Proof. From (4.14) and (3.14) with K(x) = x, we see that (4.15) will hold
if we can show that

(4.16) P {anL - V1/<M+“} =1,
7
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where y = 7(c), t = #(c). Let
(4.17) u=u(V,c)=[V¥*+y(c)],

where
[x] = largest integer < x .

It follows from the definition of u that with probability 1

lV“‘M“’ — % <1, all ¢>0,all V.
Thus, since lim,_, y(¢) = oo, we have
(4.18) P {limc_,o% - VW‘““} —1.
It also follows from the definition of u that
r<u<[V+ 1y, it =1,

n<y <[V 41w, if V<1,

so that from Lemma 4.2 and the fact that lim,_, y(c) = oé, we have

(4.19) P {umH, 22’3 - 1} .

Now
M+ L(u)
L(y) ’

cuf(u) = W L(K) = cPL(y) <l>
r
and thus from (4.14), (4.18) and (4.19),
(4.20) P{lim,_, cuf(u) = MV} =1.
In turn, it follows from (3.14) with K(x) = x, and (4.20) that

(4.21) P{limcw;ﬁ% = 1} —1.

However, since f{x) is strictly increasing,

L llgli(’_)_ 1',
u uf(u)

and hence
(4.22) P {anL - 1} —1.
Equation (4.16), and hence the result (4.15), now follows directly from (4.18)
and (4.22). [
LemMmaA 4.4.
(4.23) lim,_, E(f(y)et) = ME(VY01+Y) & oo .



SEQUENTIAL BAYES ESTIMATES 697

ProoF. Since y(c) is not random, it follows from (4.14) that (4.23) is equiva-
lent to

(4.24) lim,_, E(l_) — E(PVO0y & oo
7
We will prove (4.24). Let N = [my], and let
(4.25) a,n = P{tr?*>m}.
Then from (4.2) and (4.25),
1 1 -t
=P N} £ P{f(N)Y, — .
Gem = P> N} = {f( ) ”>c{f(N) fIN + 1)} }

Using Markov’s inequality, (4.1), (4.3), and assumption B.3’, we have

(4.26) acmég_{ 1 __ 1 }é ap ,
' ¢ LAN) fIN+1) N+ DAN + 1)

where a = sup, E[ f(n)Y,], 8 = sup, G(n) < o. However, since xf{x) is increas-
ing in x and N + 1 > my, we have from (4.11) and (4.26) that

(4.27) tom = —2 < o :
' emyfimy) — Mm{ f(my)/f(7)}

It follows from Lemma 4.1 (c) that given ¢, 0 < ¢ < 1, there exists N, such that
m = N, implies

Um0 5 (1 — eyh(m) all x
fx)
where Y 2_, (mh(m))~ < oco. Therefore, for all m = N,,
(4.28) a, =sup,a, , < __aB , all m=N,.
’ (1 — e)Mmh(m)

It thus follows from (4.28) that > %_ a, < oco. Since from (4.14) and (4.15)
we have

(4.29) P{lim, , 7=t = PV} —

Lemma 3.2 of Bickel and Yahav (1968) can now be used to show that (4.24),
and thus (4.23) holds. []

The previous analysis was necessary to allow us to replace the random quantity
f(t(c)) by the nonrandom quantity f(7(c)) in our operation with expectations.
The importance of this step is already apparent in the proof of Lemma 4.4, and
is further apparent in the conclusion of our proof of Theorem 4.1, which now
follows.

CoNCLUSION OF PROOF OF THEOREM 4.1. From (3.4) and the fact that #(c) € 7,
all ¢ > 0 (Lemma 3.1), we see that the class {r(c): ¢ > 0} is A.O. if

lim sup { E(X(1(¢c), ¢)) }sl
™ Uinf, ., E(X(s, ¢))) =
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or, equivalently, if for every s e T we can show that

(4.30) lim sup,_, EX(1(c), ¢)) <l1.

E(X(s, ¢))
We note that from (3.13), (3.14), with K(x) = x, and (4.15),
(4.31) P{lim,_, f(y)X(t, ¢c) = (1 + M)VV¥+} =1,

and since the class {#(c): ¢ > 0} is A.P.O., it thus follows that for every se T,
P{lim inf,_, f(7)X(s, ¢) = (1 + M)pyV¥+} =1,

Fatou’s lemma then yields,

(4.32) liminf,_, E( f(7)X(s, ¢)) = (1 + M)E(VY/™+V)

Since

o S IO

for every se T, we see from (4.32) that (4.30) will hold if we can show that
(4.33) lim_, E(f(r)X(t, ¢)) = (1 + M)E(VY¥+D) |

From (4.1) and (4.2),

V<o UEDAED 1 g,
B fly G T

where (as explained in the proof of Lemma 4.1)

K = sup, (x+ Dftx+ 1) (inf, G(x))!' < oo .
xf(x)
Thus,

(4.34) JnX(1, ¢) = (1 + K)f(y)et .

Using a well-known generalization of the dominated convergence theorem [see
Royden (1968, page 89)], (4.34), (4.16), Lemma 3.1, (4.23), and (4.31), we con-
clude that (4.33) holds. This in turn, as already explained, proves that {r(c):
¢ > 0} is A.O., completing the proof of Theorem 4.1. ]

As we will see in Section 6, the condition (4.3) in Theorem 4.1 is not always
easy to verify. However, some condition like (4.3) seems to be required, as
shown by the following example.

ExaMpPLE. Let the probability space be the interval [0, 1] under Lebesgue
measure. Let f{x) be any increasing positive function satisfying assumptions B.2
and B.3’ (where K(x) = x). For each w ¢ [0, 1] and each positive integer n, let

f(n)Y (@) = (f(ln) -~ ir 1))"1 v, if we [0, %)

=V, otherwise,
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where V' > 0 is any positive constant. It is easily shown that f(x)and Y,, Y, - - -
satisfy assumptions B.0—B.2 and B.3, but that E(f{(n)Y,) — co as n— oo,
violating (4.3). It is also straightforward to show that if 0 < ¢ < V, then
P{t(c) > n} = n~', and thus E(#(c)) = co. Hence, for 0 < ¢ < V, E(X(t(c), ¢)) =
co. However, the stopping rule s which a.s. takes exactly one observation has
E(X(s, ¢)) = E(Y; + ¢) bounded for all ¢, demonstrating that {#(c): ¢ > 0} can-
not be A.O.

5. A.P.O. sequential Bayes interval estimation procedures. In Section 2, we
saw that when assumption A.O. holds, the prior distribution has density ¢(6),
and the loss function is (2.1), then the Bayes optimal interval estimation pro-
cedure is to use the interval

“(X,) = [afi(X.), adi(X.)] 5
where the endpoints a(X,), i = 1, 2, are defined by (2.5). The posterior risk
Y, = o(¢, I* (X))

of this Bayes procedure is given by (2.6). For any stopping rule ¢, the Bayes op-
timal terminal decision rule is to use /*(X,) when ¢t = n, incurring the Bayes risk

R(¢, I*(X,), t) = E(Y, + c¥).

The example of estimation of the mean of a normal distribution N(f, 1) under
a normal prior for § (see Section 2) suggests that if we can establish sufficient
conditions for the posterior density ¢(6|X,) obtained from f(x|6) and ¢() to
have approximately the form of a normal density for large n, then we will be
able to show that

(5.1 lim,_., (n/log n)}Y, = 2aK*(0), a.s. (Py),

where K() is a certain function of the parameter 6, and a.s. (P,) refers to the
conditional distribution of X;, X,, - --, given §. [To verify assumption B.1 of
Section 3 in this context, we need to show almost sure convergence with respect
to the joint probability distribution of X;, X,, - -, and 6,. However, since we
are dealing with probabilities, use of (5.1) for all 6, ¢ © and the dominated con-
vergence theorem will establish the desired result.]

One set of conditions which is more than sufficient to make ¢(¢ | X,) asymptot-
ically of normal form can be obtained by taking k =1, r = 0 in assumptions
A2.2, A2.6, A2.7, A2.8 and A2.9 of Bickel and Yahav (1969b). In order to
make the present paper as self-contained as possible, and because our notation
is slightly different, we restate these conditions here.

A.1. The prior density ¢(6) is continuous, positive and bounded on ©.

A.2. The first two derivatives ¢¥(6, X) = d'o(0, X)/(d0)", i=1,2, of
@(6, X) = log f(X|6) exist and are continuous in 6, a.s. (P, ), for all §,¢€ ©.

A.3. For each 6 € ©, there exists ¢(6) > 0 such that

E,(sup {¢(s, X): |s — 6] < &(6), s€ ©)) < o0,
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where the expectation, E,, is taken over X with respect to the density f(x|6).
A.4. The function
A(6) = Eo(p™(0, X)) = —Ey(¢™(0, X))*
is a strictly negative function of 6 € ©.
A.5. Forall#e® and all ¢ > 0,
E,(sup {[e(s, X) — 0@, X)]: |s — 0| = ¢,5€0}) < 0.

We note that since ¢(6) is a density, and from assumptions A.1 and A.2, it
follows that for all 4, € O,

0 < Yo ¢(0) IIims (X |0)dO < 00y ais. (Py) -

This result corresponds to assumption A2.5 of Bickel and Yahav (1969b).

Under our assumptions A.2—A.4, Bickel and Yahav (1969b, Lemma 2.1)
show that for each ¢,e ©, a strongly consistent estimator 6, = 0,X,,0,) of 6,
can be constructed by maximizing the likelihood over the subset U, = {s:
|s — 8, < 27%(0,), s € ©} of O, where ¢(¢,) is defined by assumption A.3. They
further show that there exists N, = N(X,, X,, ---; 6,) such that 9n a.s. (P,,o)
satisfies the likelihood equation

(5-2) Tt 90, X) = 0
for all n = N,. They then consider the posterior density
(5.3) ¢*z|X,) = nig(n~tz + 0,]X,)

of z = n¥®, — 6,), and show [Bickel and Yahav (1969b, Theorem 2.2)] that
¢*(z|X,) is closely approximated for large n by the density, N(z; 0, K(6,)), of a
normal distribution with mean 0 and variance

(5-4) K = (—A4(0,))" .
Indeed, what they show is that
(5.5)  lim, .. {=. [¢*(z|X,) — N(z; 0, K(f))|dz =0,  as. (P,).

The strength of the approximation (5.5) gives us every reason to hope that under
the assumptions A.0—A.5, the result (5.1) will hold.

Before stating the main result of this section, we digress briefly to take care
of one minor technical problem—namely, that (x/log x)? is not well-defined for
x < e. However, for log x > 3%, (x/log x)} is positive, strictly increasing, and
strictly concave. Thus, it is clearly possible to define at least one function f*(x)
which equals (x/log x)? for log x > 3% and which is positive, strictly increasing
and strictly concave on [0, co). By Remark II of Section 3, such an f*(x) will
satisfy assumption B.2, and, since f*(x) equals (x/log x)* for large x, will also
satisfy assumption B.3’ with M = }. For asymptotic purposes, the beginning
few values of f*(x) are unimportant. Therefore, if we can demonstrate the
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validity of equation (5.1), the following theorem will be an immediate con-
sequence of the above discussion and Theorem 4.1.

THEOREM 5.1. Under assumptions A.0—A.S, the class {t(c): ¢ > 0} of stopping
rules defined by
3
(5.6) t(c) = first n =3 such that <1 — (nlog(_n-[—_ll) ) Y, Zc
(n+ 1)logn
is A.P.O.
As already remarked, Theorem 5.1 holds if we can establish (5.1). We first

establish the asymptotic properties of o, = a(X,), and then use these properties
to verify (5.1). To this end, fix arbitrary 6, ©. Let

(5.7) v.(2) = exp{ S, (¢(ntz + 0,, X)) — ¢(b,, X))} ,
and

(5.8) € = Zuva(2)p(n~tz + 0,) dz,

where 4, = 6,(X,, 6,). It is easily veriﬁéd that

(5.9) PH(z]X,) = (e) 7tz + G, )v,(2) -

From equation (2.29) of Bickel and Yahav (1969b, page 263), assumption A.1,
the strong consistency of 9n, and the dominated convergence theorem, it can be
shown that

(5.10) lim, ., ¢, = ¢(0,)(27K(6,))? , a.s. (Py).
Using (5.10), the strong consistency of §,, and the continuity of ¢(s),

(5.11)  lim,__ ¢*(0|X,) = lim, . 90 _ Q@7K(B)F >0,  as. (Py);
C

while, on the other hand, it is not hard to show, using assumption A.S, that for
all d == 0 such that 6, + 6 € ©, we have
(5.12) lim, ., ¢(0, + 0|X,) = lim,_,, n=4¢(n(0, + 6 — 9n)]Xn)

= O 3 a.s. (Poo) .

Let
(5.13) Bk = n¥af, — 0., i=1,2.
From (2.5) and (5.3), it is apparent that
(5.14) B = inf{z: ¢*(z|X,) = ab~'n~t, n~4z 4 6, € O},

B3 =sup{z: ¢*(z|X,) = ab~'n~t, n-tz 4 én €0}.

LeEMMA 5.1. There exists N, = N(X,, Xy, - -3 0,), such that for all n = N,,
B% < 0 and By, > 0, and

(5.15) PHBLIX,) =ab it i=1,2, as. (P,).
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Further,
(5.16) lim,_., Bf, = —o0, lim,_, B% = oo, a.s. (P,,o) .

Proor. By (5.3) and assumptions A.1 and A.2, ¢*(z|X,) is continuous in z.
Hence, the existence of N, follows from (5.11), (5.12) and (5.14).

To prove (5.16), we proceed by contraposition to (5.5). Taking 55, for ex-
ample, we note that for every sequence of observations X, X, - - -, for which
B% > oo, there exists a subsequence {n,}, lim,_., n, = o0, and Q, 0 < Q < oo,
such that 8 < Q, all k. Hence, from (5.14), we have ¢*(z|X, ) < ab='n,t
for all z > Q, and applying the dominated convergence theorem, we obtain

lim, ... {¢* [¢*(z] X,,,) — N(z: 0, K(8)| dz = §§* N(z3 0, K(9)) dz > 0.,

which contradicts (5.5). Similarly, g# -+ —oo leads to a contradiction with

(5.5). 0

LEMMA 5.2.

(5.17) lim, ., n~%p% =0, i=1,2, as. (Py).
Proor. Let

(5.18) 9. = K¥(0,){log n + log (b*/27a*K(0,)}* -

It is easily shown that N(=+gq,; 0, K(6,)) = ab~'n"t. Also, since the normal den-
sity is unimodal

(5.19) N(z; 0, K(0,)) = ab~'n~? if and only if ze[—g,, q.] -
We prove (5.17) for i = 2; the case i = 1 follows in similar fashion. Thus, let
Jo = [min (85, ¢.), max (85, 4.)]
and note that by (5.14) and (5.19),
A(z) = lab='n~F — N(z; 0, K(6,))] < |¢*(z|X,) — N(z; 0, K(6y))|
for all ze J,. Thus, from (5.5), it follows that
(5.20) lim,_ . §; A(z)dz=0.
However,
(5:21)  mHBg — qu| = 7t §, dz < ba7{§,, A(2) dz + §,, N(z; 0, K(6y)) dz} »
and since g, — oo [see (5.18)] and By, — oo, a.s. (P,), it follows that
(5.22) lim,_,, §, N(z;0,K(0,))dz =0, a.s. (Py)-
Thus, from (5.20) — (5.22), we have
lim, . n 4 |B% —q. =0, a.s. (Py,) -

Noting from (5.18) that lim,_, n~*g, = 0 completes the proof of (5.17) for
i=2.0
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As an immediate consequence of (5.13), the strong consistency of é,, and
(5.17), we have
(5.23) lim, ., af =lim,_ .0, =0,, i=1,2, as. (Py).
Also, from (5.9), (5.13) and (5.15), we have
5.24 5= 2,
( ) v‘n(ﬁin) bn*g{}(al*n)
while expansion of log v,(8}) in terms of n=#8}, by means of Taylor’s formula,
using (5.2), yields
(5.25) tog ,(85) = CRLLL w00, X))

n

where 4, lies between §, and a¥, = 0, + n=28%.

Using assumptions A.2—A.4 and Lemma 2 of DeGroot (1970, Section 10.6),
we see that ¢®(s, X) is a supercontinuous function at all values s ©. It then
follows from Theorem 1 of DeGroot (1970, Section 10.8) and (5.23) that
(5.26)  lim, .1t Xr, 000, X) = AB),  i=1,2, as. ().

Noting that assumption A.l and (5.23) imply that lim,_, ¢(af) = ¢(6,), a.s.
(Py,), i = 1,2, we conclude from (5.10), (5.24), (5.25) and (5.26) that

- (B
(5.27) lim,_ ., \Pl — K@), i=1,2, as. (P;).

log n

Thus, remembering from Lemma 5.1 that for large enough n, 8} < 0 and
8% > 0 a.s. (P,), we conclude that

(5.28) lim,_,., (n/log n)}(af, — af,) = lim,_, (log n) (¥, — B)
= 2K*@,) , a.s. (P,,O) .

Comparing (2.6) and (5.28), we see that (5.1) will be established, and Theo-
rem 5.1 verified, if we can prove the following result.

LeMMA 5.3. For all ,€0,
(5.29) lim,_., (n/log n)t §oe ¢(6X,) d6
= lim,_., (n/log n)* {*i» ¢(0]X,)df =0,
or equivalently
(5.30)  lim,_, (n/logn)t \z ¢*(z|X,)dz
= lim, _, (n/log n)* {#i» ¢*(z|X,)dz = 0, a.s. (Py).

Proor. The equivalence of (5.29) and (5.30) is apparent from (5.3) and (5.13).
We will demonstrate that

(5.30a) lim, ., (n/logn)t {52 ¢*(z|X,)dz =0, as. (Py).
The other equality in (5.30) follows by a similar proof.
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Bickel and Yahav (1969b, equation (2.40), with k = 1)® have shown that for
each ¢ > 0, there exists d(¢) > 0 and N, = N(X,, X,, - - -, 0,, 6(c)) such that for
every n = N, and all z, |z| < n¥d(e),

(5.31) vo(2) < exp{—1/2K(0,, )},  as. (Py),

where

K(0y €) = (—A(0)) — &)7" -
Note that by assumption A.4, we may choose ¢ > 0 as small as we wish and
still have K(f,, ¢) > 0. Let g,(c) be g, of (5.18) with K(f,, ¢) substituted for
K(8,). It follows from (2.9), (5.9) and (5.31) that

boL 1 4.%e)
nJ:E) *(z]X,)dz < < n > {___ qn },
<log ) el $7(E X0 dz logn/ c,q,(¢) P 2 K(0,, ¢)
where L = max {¢(s): s € ©} < oo by assumption A.1. Using the definition of

4.(¢) and (5.10), we see that the right-hand side of this inequality goes to 0 a.s.
(P,,o) as n — oo, and thus

(5.32) 1imw< ) e gx(z|X)dz =0, as. (Py)-

Next, it follows from (5.9), (5.10) and equation (2.30) of Bickel and Yahav
(1969b) that

. i oo
(5.33)  lim,.. (1_02_,) S 0% X)) dz =0, as. (Py).

Finally, it follows from (5.14) that
i *(z]X,) dz < ab7nHg,(e) — Bl
and thus, using the fact that lim,,_, (log n)~1q,(c) = K*(0,, ¢) and (5.27), we have

. K nle -
(5:34)  lim, o (1) G 941X dz S @b (K0 €) — K30 -
Since lim,_, K*(6,, ¢) = K*(6,), and since, as we have remarked above, ¢ can be
chosen arbitrarily small, it follows from (5.34) that
lim, ... (L)* (29 g*(z|X,) dz = 0 .
log n

'921:,

This last result, together with (5.32) and (5.33), establishes (5.30a). []

Lemma 5.3 completes the proof of (5.1), and thus establishes Theorem 5.1.
Note from (5.28) and (5.29) that asymptotically, as n — oo, the posterior 3ayes
risk of the Bayes optimal terminal decision rule /*(X,,) is dominated by the length
of I*(X,). That is, the length /(I*(X,)) = O((log n/n)t), while the posterior prob-
ability of noncoverage is o((log n/n)t), a.s. (Py,).

3 The “}” in the exponent of (5.31) is mistakenly omitted in equation (2.40) of Bickel and
Yahav (1969b), as can be seen from their equation (2.36).
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6. A.O. sequential Bayes interval estimation procedures. It follows from the
discussion in Sections 2 and 5 and Theorem 4.1 that the class {#(c): ¢ > 0} of
stopping rules defined by (5.6) is A.O. if we can show that

(6.1) sup, {(n/log m)* § o.» p($, I*(X,)) dG,(X,)} < oo .

THEOREM 6.1. If there exists any sequence {I.(X,)} of interval estimation pro-
cedures for which

(6-2) sup, {(n/log n)* § .n p(¢, I,(X,)) dG,(X,)} < oo,

then (6.1) holds, and (under assumptions A.0—A.5) the class of stopping rules {1(c):
¢ > 0} defined by (5.6) is A.O.

Proor. Since /*(X,) is Bayes for each n,
Vo 0(¢s I*(X,)) dG (X)) = [ on p(¢; 1u(X,)) dG(X,) 5
and (6.1) follows directly from (6.2). [

We exhibit a sequence {/,(X,)} satisfying (6.2) under the following assump-
tions.

C.1. There exists a function g(f) on O, a positive integer k, and a function
v(Xy, X,, - -+, X}) from 27% to the range g(0) of g(+) such that

(6.3) Eo(Xy, X,y -+, X,) = g(6) all 6e0O,

and

(6.4) Ejlv(X;, Xy, -+, X)P < 00, all 0e0.
C.2. Let

o0) = Efo(X,, Xy -+, Xi) — 9O,
17(0) = (%) 2Ep|v(X,y, Xy, - -5 Xp) — g(O)* -
Then
(6.5) (o 0(0)p(0) db < oo and o 7(0)g(6) df < oo .

C.3. The function g(#) has an inverse function A: g(®) — © which satisfies
a uniform, first-order Lipschitz condition. That is, there exists ¢ > 0, Q > 0
for which

la— bl <e, a beg(®) = [ha) — h(b)| < Qla — b].

THEOREM 6.2. Under assumptions A.0—A.5, C.1—C.3, the class of stopping
rules {t(c) : ¢ > O} defined by (5.6) is A.O.

Proor. Define m(n) = [nk~'] = greatest integer < nk~* and let
(6'6) ’I)n(xn) = (m(n))—l Z:’L:(;” ?)(X(i—l)k+1’ R} Xz’k) ’
(67) Snz(xn) = (m(n))_l Zz"b:(;” (v(X(i—l)kH’ Tty Xik) - vn(xn))z *
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Let

(6.8) r(X,) = Q(log m(n)/m(n))ts,(X,)(1 + )
where ¢ > 0 and Q > 0 are defined by assumption C.3, and let
(6.9) u,(X,) = h(v,(X,)) .

Finally, let

(6.10) L(X,) = [#,(X,) — 1a(X,), 4n(X,) + ru(X,)] -

By the Fubini-Tonelli theorem,
(6.11)  §on p(¢, I(X,)) dGo(X,) = (o {2aEy(ru(X,)) + bPy(E,)}(0) 40 ,

where

En = {Xn {un(xn) - 0! = r'n(xn)} ’
provided either side of (6.11) is finite. To show that the right-hand side is finite,
note that P,(E,) < 1, and that

(6.12) B ) = @01 + o (B A s, X,

< 0( + o (1051;z (rgn))t o(0),

since E,s,(X,) < (Eys,2(X,))? < 0(f). Since Py(E,) < 1 and ¢(0) is a probability
density, we have from (6.12) and assumption C.2 that the right-hand side of
(6.11) is finite.

We now attempt to bound P,(E,). Let

(6.13) 0,(0) = (log m(n)/m(n))ta () ,
and let
F, = {X,: [u,(X,) — 0] > Q3,(0)}
G, = {X,: [v.(X;) — 9(0)] > 0.(0)},
H, = {X,: r,(X,) = Q3,(0)}

and
D,=1{0:0,0)=¢}.
Note that R
Vo Po(E,) d0 = (o (P{E, N H,} + PyE, n H, })J(0) db

(6.14) = Yo (Po{H,} + Py{F,})¢(0) db
‘ = (o P{Ha}p(0) dO + §p, $(0) d0 + N, PolFa}4(6)d0 .

By Markov’s inequality,
(6.15) $p, $(0)do < % (log m(n)[m(n))* g a(0)¢(6) db .

On the other hand, when ¢ € ®\D,,, so that J,(¢) < ¢, we can apply the contra-
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positive of assumption C.3 to show that
F,=(F,nG,) U (F,nG,)
C G, U {X,: Qv,(X,) — 9(0)] = |u.(X,) — 0]}
C G, U {X,: [v,(X,) — 9(0)] = ¢}
c(G,uG,)=0G,.

Hence,

(6.16) Sevn, PolFu}P(0) d6 < o\p, Po(G,)P(0) db .

Applying the well-known result of Berry and Esseen, we find that

(6.17) Po{G,} < 2§ ogmnyt (2m) 24 dt + Hr(9) all n and 6,
(m(n))

where 0 < H < oo is a constant independent of 6 or n. Therefore, from (2.9)
and (6.17), we obtain

(6.18) P,{G,} < 2(2zm(n) log m(n))~* + Hy(0)(m(n))~*, all n and 6.
Finally, for all ¢, n,
Py{H,} = Pyfs,(X,) < (1 + ¢)7ta(0)}

(6:19) < Po{[s2X) = 7O > () 0|

_ ElsA(X,) — a*0)]!
= T+ 9)Xo(0))

< 7(0) 8 K s
—wmuuwmwﬁ(+mw>

where K is a constant independent of n and §. The last inequality follows from
the following lemma, which may be of independent interest.

LeMMA 6.3. Let U, U,, .-, U, be i.i.d. with mean p, variance o and & =
E\U, — p|*, 1 < r < 2. Then there exists a constant K, 0 < K < oo, such that

Els,* — ¢*|" < n*~"E[2* 4 Kn7'], all n,
where 5,> = n~* Y.7_, (U, — U)? is the sample variance.

Proor. Without loss of generality we can assume that z# =0. Let Y, =
U;* — ¢%, and note that by the C, inequality,

ElYtlr é 2r—1(E|Ui|2r _|_ 0-21') é 21'5 s

while
Ejs,t — o?" < 2Eln SiL Yol + E|OP) -

By Theorem 2 of Von Bahr and Esseen (1965),
Ent v, Y,|" < 2n'TE|Y|",
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while by Chung’s inequality (see Bickel and Yahav (1968, page 451)) we have
E|U" < (n7)(K,)E s

where K, is a finite constant depending only on r. Putting all of these inequali-
ties together (with K = 27-'K,), yields the desired result. []

It now follows from (6.11), (6.12), (6.14), (6.15), (6.16), (6.18), (6.19), assump-
tion C.2, and the fact that

(n/log n)(m(n)/log m(r))™* < 2k,
that (6.2) holds. This, by Theorem 6.1, completes the proof of Theorem 6.2. []

Perhaps the most restrictive condition in assumpiions C.1—-C3is C.3. If
g(0) = @, then (of course) this condition is satisfied trivially, resulting in the
following important corollary to Theorem 6.2.

CoROLLARY 6.4. If assumptions C.1 and C.2 are satisfied for g(6) = 0 [in par-
ticular, if 0 is estimable by a statistic with finite third absolute moment, all 6], and
if assumptions A.0—A.5 hold, then the class of stopping rules {t(c): ¢ > 0} defined
by (5.6) is A.O.

Corollary 6.4 in particular covers the problem of estimating the mean in an
exponential family, and many other estimation problems connected with the
exponential family. It is not obvious, however, that either Corollary 6.4 or
Theorem 6.2 covers the problem of estimating the natural parameter § =
log [p/(1 — p)] in the exponential family representation of the binomial distri-
bution, since @ in this case is not estimable and the obvious choice g(f) = p =
e’(1 + €)' to use in Theorem 6.2 does not have an inverse which obeys a
uniform Lipschitz condition. In cases, however, in which

ftx|0) = &m0 dp(x)
where p(x) is a o-finite, nonnegative measure, and ¢”’(#) = ¢ > 0, all § € ©, then
Theorem 6.2 is applicable with g(f) = ¢/(0), k = 1, v(X) = T(x). Here, g(0) is
strictly increasing since

c’(0) = Var (T(X)) > 0,
and g~'(¢) exists and satisfies a uniform Lipschitz condition since

d _, 1 1
—_— 0) = ——— < .
a0 =Gy =<
Of course, ¢(0) is still restricted by (6.5), but the major obstacles to application
of Theorem 6.2 (namely, C.1 and C.3) have been overcome.
In cases where Theorem 6.2 does not seem to be applicable, an almost com-
plete relaxation of C.3 combined with a stronger version of C.2 may sometimes

help. Let g(@) satisfy condition C.1, and define for each 6 € ©, ¢ > 0,

|la — 0]

Q;(e) = SUPa_gj<e;aco W— g(0)| .
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Replace C.2 by the stronger requirement:

C.2'. Equation 6.5 holds; in addition there exists ¢* > 0 such that
(6.20) o Qu(0)a(6)(0) db < oo .

Then, except for assuming that g(f) has an inverse function, we can delete con-
dition C.3, and repeat the proof of Theorem 6.2, replacing the constant Q in
that proof everywhere by Q.(6). This approach yields:

THEOREM 6.5. Under A.0—A.S, C.1, C.2" and under the assumption that g(@)
defined in C.1 is invertible, the rules defined by (5.6) are A.O.

7. Generalizations and conclusions. The present paper has dealt only with
interval estimation of a scalar parameter #. This specialization has been partly
for the sake of clarity and convenience, but mostly because the criteria which
we have used to evaluate regional estimators in the scalar parameter case (length
and coverage) have a variety of possible generalizations when vector parameters
are considered. Indeed, although intervals are the natural region to use in the
scalar case, the “natural” region to use in the vector case is far from clear. We
could use spheres [Gleser (1965)], ellipsoids [Albert (1966)], rectangles [Callahan
(1969)], or any other convex region. Nonconvex regions could also be con-
sidered, although these do not necessarily yield interval estimators for linear
combinations d’@ of the parameter via the standard projection method (a desirable
property in applications).

Given that we have chosen a desirable shape for our regions, what do we use
to replace length in the loss function (2.1)? The Lebesgue measure (volume) of
the region is one obvious choice, but an equally good choice [Gleser (1965),
Callahan (1969)] is the diameter of the region, since this is the longest length
of any derived interval estimator for a linear combination d’6.

Suppose we decide to use the volume, /(C), of the region C. That is, suppose
that our loss function is of the form

(7.1) L(8, C, n) = al(C) + b(1 — 5,(0)) + cn .

The results of Section 2 are then easily generalized to show that the region
(1.2) C*(X,) = closure (in ©) of {0: 9(OX,) = %}

is the Bayes-optimal terminal estimation procedure against the prior ¢/(6)—pro-
vided, of course, that C*(X,) has the shape which we desire. We can refer to
the multivariate normal posterior distribution for guidance as to the proper
choice of the function, f,(x), to be used to replace (x/log x) when #isp x 1. It
can thus be shown that f,(x) = (x/log x)»?. Under conditions similar to those
in Bickel and Yahav (1969b), and which straightforwardly generalize conditions
A.1—A.5 of Section 5, it should then be possible to construct a class of A.P.O.
stopping rules. Then by suitably generalizing conditions C.1—C.3 we can prove
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that this A.P.O. class of stopping rules is A.O. The sufficient conditions and
details of these results are planned for a forthcoming paper.

Another generalization which is left for future work is the problem of esti-
mating a scalar function g(@) of a vector parameter 8. One special case of this
problem—estimating the mean of a normal distribution with unknown variance
under a conjugate prior—is treated in detail in Kunte’s thesis (1973). When
9(0) has bounded first partial derivatives in the elements of &, this problem can
also be treated by the methods of Sections 5 and 6. Treatment of the case when
the function g(0) is vector-valued is planned for a forthcoming paper.

Finally, we have not treated questions of the robustness of our sequential
procedures against changes in the prior distribution § (asymptotic minimaxity).
This problem appears to be amenable to the kinds of arguments used in Bickel
and Yahav (1968) and in Pessoa’s thesis (1971).

What we have shown in the present paper is that there exists a class of asymp-
totically optimal (and asymptotically pointwise optimal) stopping rules for our
Bayes sequential interval estimation problem. This class is clearly not unique,
and much work remains to be done, both in determining A.O. stopping rules
which have superior second-order asymptotic properties, and in comparing the
resulting stopping rules to the sequential rules of the kind proposed for the more
classical fixed width, fixed confidence statistical approaches to sequential confi-
dence interval estimation (see Section 1).

8. Acknowledgments. The authors are indebted to Herman Rubin and David
H. Root for helpful discussions, and to an associate editor and referee whose
careful reading found several mistakes and missing references.
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