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WHEN ARE THE MEAN AND THE STUDENTIZED
DIFFERENCES INDEPENDENT?

By LENNART BONDESSON
University of Lund and Institute Mittag-Leffler

Let Xy, - -+, Xn bei.i.d. rv’s. Let further X = 3> X;/n, S2 = 3 (X; — X)2,
and U = (X1 — X)/S, - -+, (Xa — X)/S). If the variables X; are normally
distributed or distributed as linearly transformed Gamma variables, X and
Uare independent. In this paper we show that also the converse must hold.

1. Introduction. Let X, -.., X, ben independent identically distributed ran-
dom variables. It is well known that the independence between X = ¥ X,/n
and Y = (X, — X, ..., X, — X), n = 2, is a characteristic property for the nor-
mal law. This is just a special case of the Darmois-Skitovich theorem (see e.g.
Lukacsand Laha [6], page 75). If X, are strictly positive nondegenerate variables,
then X and Z = (X,/X, - .-, X,/X), n = 2, are independent if and only if the
variables are gamma-distributed. A somewhat more general theorem was shown
by Lukacs [4]. Let now $*= Y (X; — X)?and U = (X, — X)/S, - - -, (X, — X)/S).
Of course, U is only well-defined if the distribution function of X, is continuous.
While (Y (Z)) is the maximal invariant under change of location (scale), U is the
maximal invariant under change of both location and scale. In 1970 Kelker and
Matthes [3] proved that, for n > 4, (X, S% and U can be independent only if
the variables follow the normal law. It is an interesting problem to find out for
what distributions just X is independent of U. One type of distribution for which
this is true is the normal one but also other distributions are possible. For, if
X; are gamma-distributed, then X is independent of Z and therefore also inde-
pendent of U since U is a function of Z. As a linear transformation X;’ = aX, + b
cannot change the independence relation, this must hold also for linearly trans-
formed gamma-distributed variables. The purpose of this paper is to show that
these mentioned cases are the only possible ones. In fact, this conclusion is
proved to be true under the (partly) weaker assumption that X has constant
regression on U. Our result answers a question asked on page 461 in the recent
monograph by Kagan, Linnik and Rao [2] and is (partly) an extension of the
Kagan-Linnik-Rao theorem and Theorem 6.2.1 given in this book on pages 155
and 197, respectively. The result is also closely related to some other results in
estimation theory obtained by the author [1].

2. The theorem.

THEOREM. Let X,, - - -, X, be independent identically distributed random variables
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MEAN AND STUDENTIZED DIFFERENCES 669

with continuous distribution function. We assume thatn > 6. If E[X|U] = constant
a.s., then X, are either normally distributed or distributed as linearly transformed
gamma variables.

Proor. Let g be any bounded measurable function of U. From the regression
assumption it follows that

(1) E[(X X; — np)g(U)] = 0.
Here ¢ = E[X;]. We first set
9(U) = (1X, = X)™(1X; — X)™(1Xs — Xe)™s,

where i = (—1)t and ¢,, ¢, and ¢, are real numbers having sum equal to zero.
Since the right side is invariant under change of location and scale of the vari-
ables, it is really a function of U. Observe also that (|.X; — X,|)* is a well-defined
(complex-valued) random variable for all 7 since |X; — X,| > 0 a.s. Putting

P(t) = E[(X, + X, — 2p)(|X, — X,|)¥]
and

¢(1) = E[(|X, — X[)"],
we can after some manipulations write equation (1) as
) P(1)P(1)P(15) + (1) P(1)P(15) + P(t)p(1)h(2s) = O,
whenever ¢, + #, + #; = 0. Notice that ¢ and ¢ are continuous functions satisfy-
ing ¢(0) = 0, ¢(0) = 1, ¢(t) = ¢(—1), and ¢(t) = ¢(—1¢). Since E[|X;|]] < oo,
we have E[|X; — X;|]] < co. Therefore, and as |X; — X,| > 0 a.s., ¢(z) =
E[(]X; — X,|)*]is a function that is analytic when —1 < Imz < 0and continuous
when —1 < Imz < 0. Hence ¢(¢) cannot vanish identically on any real interval
(see e.g. Titchmarsh [7], page 157). Let S C R be the set of all nonzeroes of ¢.
Thus, S is a dense subset of R. Using this, we are going to show that the solu-
tion of equation (2) is given by
O(r) = ictd(t), teR,

where 7 is a real constant. For re S, we set h(f) = ¢(7)/¢(t). We can then for
t, 1y, and — (2, + 1,) all belonging to S write equation (2) as

h(t) + h(ty) = —h(—t, — t,) .
Putting 7, = 0, we see that A(t)) = —h(—1,) and hence

(3) h(tl) + h(tz) = h(t, + 1) » ty by, (4 + L)eS.

Let (—¢, 7) be the largest open interval containing the origin on which ¢(r)
vanishes nowhere. Equation (3) is Cauchy’s functional equation and therefore
(observe that A(0) = 0)

h(t) = izt , —r<t<L .
The constant r is real since A(f) = h(—7). Now we set for 1 ¢ S

9(t) = h(t) — irt.
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The function g is zero on (—/, 7). We get
9(t) + 9(t) = g(t, + 1), by, (1, + ) €S

Letting ¢, be fixed and ¢, € (—, #), we conclude that g(7) is constant for all ¢ ¢
(thh— 4t +2ynS. Asg(0) = 0and S is a dense subset of R, it is easily realized
that g(r) = 0 for all t¢ S. Hence

o(r) = irtg(r), teS.

Since both sides are continuous functions and S is a dense subset of R, equality
must hold for all . This is the result wanted. Equivalently,

4) E[(X, + X, — 2p)(|1X, — X,))*] = izt - E[(|X, — X;))"] .

However, this relation cannot be directly used to produce the final result. In-
stead, we have to utilize the regression assumption once more. Let s be any
fixed real number. Then, for a dense set of points zin R, — (¢ + s) is not a zero
of ¢. For such points 7 we now set

g(U) — LitMis(|X4 _ X5|)—i(t+s) .
Here

L= [01X1 + a, X, + a3X3| + %(a1X1 + a, X, + a; X;)

and
M = |a1X1 + a, X; + a3X3| ’

where a,, a, and a, are arbitrary real numbers not all zero but satisfying a, +
a, + a; = 0. From equation (1) we obtain

E[(X, + X; + Xy — 3p)L*M™] - E[(|X, — X,|)="*+]
+ E[(X, + X, — 2p)(|X, — X,|)7+9] - E[L*M*] = 0,
so using (4) (with ¢ replaced by —(¢ 4 s) and X,, X, replaced by X,, X;), we get
after division by E[(|X, — X,|)-ie0]
3) E[(X, + X, + X, — 3p)L"*M*] = ic(t + s)E[L*M"™] .

Observing that both sides are continuous functions of 7, we easily conclude that
(5) holds for all # and 5. Let ¥ = log L and W = log M. (Notice that L and M
are strictly positive a.s.) Hence

(6) E[(X,+ X, + X, — 3p)exp{itV + isW}] = iz(t + s)E[expl{itV + isW}].
Equivalently,
E[(X, + X, + X; — 3p) exp{itV + isW}]

=z E[(% + aiW> exp{itV + isW}].

Since ¢ and s are arbitrary, it should be possible to replace exp{irV’ + isW} by
any sufficiently smooth function of (¥, W). Let f(V, W) be a function belonging
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to C,». We define the Fourier transform f by

SV, Wy = §§ f(t, s) exp{itV + isW}dtds .
Multiplying both sides of (6) by f(t, 5), integrating over (¢, s), and then letting
the operations integration and taking expected value change order, we get

7 E(X+ X, + X, — 3u)f(V, W] = < - E[(% + aiW>f(V, W):| .

Let now
h(V, W) = exp{2it(e" — ")} = explit(a, X, + a, X, + a; Xy},

where the real number ¢ is arbitrary and of course not the same one as before.
Then A(V, W) has finite expected value and so has

(% + %) (Y, W) = it(a, X, + a, X, + a,X;) exp{it(a, X, + a,X, + a, X} -

We set
fo(Vs W) = h(V, W) - x(VIN, W|N) .

Here y € Cy, has support contained in [V'| 4 |[W| < 2, andis lon |V| + |[W]| < 1.
Since (7) holds for f = f,, we easily find by letting N tend to infinity that it also
holds for f = h. Setting 1, = ta;, j = 1, 2, 3, we therefore have

E[(X, + X, + X, — 3p) exp{it, X, + it, X, + it, X,)]
=t E[(in X, + it Xy + it X;) exp{it, X, + it, X, + i, X3}],  t,+t,+1,=0.
Equivalently, if ¢, #, and ¢, are small enough,

E[(X, — ¢t — ity X) explit, X)] | E[(X, — pt — ict, X,) explit, X;)]

Elexp{it, X}}] Elexp{it, X,}]
E[(X; — p — ict, X;) explit, X)}] _ h _ 0
- Efexplir, X,] R

This is again Cauchy’s functional equation and hence we get for all ¢ small enough
®) E[(X, — p — ittX)) exp{itX,}] = ipt - E[exp{itX}}],

where p is a real constant. Let ¢(r) = E[exp{irX;}]. Then after some manipula-
tions (8) transforms into (¢’ is the derivative of ¢)

P'(O)[p() = (G — p0)/(1 — iz1) .
Integrating up, we obtain
o(t) = exp{ipt — pr*/2}, if =0,

/72 T
= ()" expt—iotfe), it 0.
— T

Since the right-hand sides are analytic functions and ¢ is a characteristic func-
tion, equality must hold for all real  (see e.g. Lukacs [5], page 132). Observe
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that when = = 0, necessarily p/r* 4 p/r = 0, for otherwise ¢ cannot be a char-
acteristic function since ¢(¢) tends to infinity when r does so. The same argument
shows that p > 0 when = = 0. We then recognize the functions on the right
side as the characteristic function for a normal distribution and the characteristic
function for a linearly transformed gamma variable, respectively. The proof is
complete.

REMARK 1. A thorough analysis of the proof of the theorem shows that the
condition E[X|U] = constant can be replaced by the somewhat weaker condi-
tion E[X|U'] = constant, where

U= (X — X)/1X; — Xol, (X; — XXy — X, (X, — X)/| X, — Xi) -

Observe that U’ has dimension 3 while U is (n — 2)-dimensional. This result
leads to the suspicion that it should be sufficient to assume n > 5 in the theorem.
Other heuristic arguments indicate that n > 4 should be the necessary and suf-
ficient condition. It is easy to construct a counterexample for n = 2. Forn = 3
this seems to be much harder.

REMARK 2. The assumption that X, are identically distributed can be removed.
However, the conclusion will then be slightly changed.

REMARK 3. If X and U are independent, then it is not automatically true that
X has constant regression on U since E[X] could fail to exist. Therefore the
theorem does not completely answer the question given in the title.

REeMARK 4. It is also possible to characterize the normal distribution by the
property that $* has constant regression on U. (Compare Theorem 4.1 in [1].)
The precise formulation and the proof of this result will be given in another

paper.
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