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THE ESTIMATION OF ARMA MODELS!
By E. J. HANNAN

The Australian National University

In estimating a vector model, 3} B(j)x(n — j) = X A(j)e(n — j), A0) =
B(0) = I, E(s(m)e(n)’) = dma K, it is suggested that attention be confined to
cases where g(z) = 3] A(j)z4, h(z) = X B(j)z/ have determinants with no
zeroes inside the unit circle and have I, as greatest common left divisor
and where [4(p): B(q)] is of rank r, where p, ¢ are the degrees of g, &, re-
spectively. It is shown that these conditions ensure that a certain estima-
tion procedure gives strongly consistent estimates and the last of the condi-
tions is probably necessary for this to be so, when the first two are satisfied.
The strongly consistent estimation procedure may serve to initiate an iter-
ative maximisation of a likelihood.

Let x(n) be a strictly stationary, ergodic, vector time series of » components
that is generated by the autoregressive-moving average (ARMA) model

@) 2.8 B(j)x(n — j) = Lg A(De(n —j)»  A©0) = BO) =1,
E{e(m)e(n)} = 0., K .

Since mean corrected quantities are used in all statistics introduced below we
assume E{e(n)} = 0. Put

h(z) = Z§B()7,  9(2) = L§ A(H#

so that the spectral density matrix is
1, . ; ; .
@ f(@) = 5= h(e*) () Kg*(e™)h(e) ™" .

In future, for brevity, exp iw will often be omitted in such formulae as on the
right of (2). In estimating the A(j), B(j) and K we may form the likelihood as
if the ¢(n) were Gaussian and maximise this, even though these Gaussian as-
sumptions are not maintained. This will be called “maximising the quasi-likeli-
hood.” Structures (1) are equivalent (i.e. give rise to the same quasi-likelihood
for all samples) if and only if they correspond to the same f(w) since f(®) deter-
mines and is determined by the covariances. A structure, (1), is identified when
a unique member of each equivalence class is chosen. The purpose of this note
is to interpret an identification condition given in [1], to point out that if this
condition is met then a certain estimation procedure, which is described below,
gives (strongly) consistent estimates of the A(j), B(j), K and thus may serve to
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976 E. J. HANNAN

initiate an iterative maximisation of the quasi-likelihood. As a consequence,
the (in general) complex problem of parameterising the equivalence classes can
be avoided. The condition is probably also necessary for the consistency of the
initial procedure but this is not easy to prove. There seems to be some mis-
understanding concerning the importance of the identification problem for in
[S, page 491] it is said that this is “one of the major outstanding problems of
multivariate temporal systems” and in [4, page 138] it said that “a complete and
practically convenient solution to the unidentifiability problem is still awaited.”
Both statements seem unjustified. However, the estimation of (1) may yet prove
difficult because the initial estimates that are provided for the A4(j), B(j) (or other
initial estimates) may be relatively inefficient and may not, in “small” samples,
provide a good starting point for iterative solution of the likelihood equations.
This problem is, however, related to the number of variables involved and the
sample size and is not an identification problem.

A canonical choice of a factorisation of (2) may be made in the following
way, following [3]. In future we shall call g(z), A(z), etc. polynomials though
they are matrices of polynomials. We explain the meaning of the conditions
below. (Write det 4 for the determinant of 4.)

(3.i) det {g(z)} has no zero inside the unit circle and det 4(z) has

no zeros in or on that circle.
(3.ii) 9(z), k(z) have I, asgreatest common left divisor (g.c.1.d.).
(3.ii) h(z) is lower triangular with £;;,(z) of no higher degree
than £;;(2)-

(Recall that we have already required g(0) = 4(0) = 1,.)

As is well known (see [3, Chapter III]) (3.i) is necessary and sufficient in order
that x(n) should be (linearly) expressible in terms of ¢(m), m < n and that the
¢(n) should be the linear prediction errors. The condition (3.ii) eliminates re-
dundancies in that it eliminates any common left factor, e(z) such that & = eh,,
g = eg,, where ¢(z) has nonconstant determinant. (For more detail see [6, page
35].) One cannot, of course, “divide out” a left factor that has constant deter-
minant (i.e. is unimodular) since such a factor divides any matrix of polynomials.
The condition (3.iii) eliminates this indeterminary. It seems that (3.i) and (3.ii)
will not conflict with, but rather will agree with, any prior physical meaning
given to the structure (1). This may not be true of (3.iii) since one would not
necessarily be led to a triangular form for # and if there were prior constraints
on the A(j), B(j) they will become unrecognisable when # is transformed to
triangular form. The parametrisation of the equivalence classes defined by (3)
also is more complex basically because of the large number of integer parame-
ters. This leads to the following theorem.

THEOREM 1. Let g, h satisfy (2), (3.i), (3.ii) and be such that p is as small as
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possible and q as small as possible for that p. The necessary and sufficient condition
that g, h be uniquely defined by these requirements is that [ A(p): B(q)] be of rank r.

This is little more than a rephrasing of the theorem in [1] (the latter theorem
refers, more generally, to an arbitrary prescribed p, gq). Of course the same
result holds if the positions of p, g are reversed. The condition is overidentifying
(see [3]) in the sense that there are equivalence classes for which it cannot be
satisfied. In practice, data will not be generated by any such model as (1). We
feel that no advantage in fitting such models will be gained by allowing for the
additional equivalence classes in fitting the model since it is a priori very im-
probable that the best fit will be obtained at a boundary point corresponding to a
less than full rank [A(p):B(q)]. Of course the same might be said of the stronger
requirement that A(p) and B(q) be nonsingular. For the same kind of reason it
seems no essential restriction to require that det {g(z)} is never zero on the unit
circle. (A model not meeting this condition will not be useful for linear predic-
tion since errors in the initiation of the prediction process will propagate indefi-
nitely.) If the conditions in the theorem and the condition of g(z) are met and
if we can find strongly consistent initial estimates of the A(j), B(j) and K a
standard iterative solution of the likelihood equations, commencing from this
initial estimate, will reach the solution of the likelihood equation, at least for
a sufficiently large sample (of a size depending on the realisation of the process).
This iteration may proceed through small changes in the elements of the A(j),
B(j) and K without concern for the identifying conditions.

The initial estimates of which we speak may be constructed as follows. Put

C(r) = = Tzt {x(m) — Bix(m + n) — Y =.C(—=n)', 12 0.

Solve
“4) TIB)C(G—k) =0, k=p+1,p+2,---,p+qB0)=1I,.
Then form

. . . A 1 IR
Hm) = T B(xn — ). Cln) = < T Hm)i(m + m)
Ww(w,) = N~ ¥ | (n)e, o, = 2xt[N', N>=N+gq,
—iN' <t < [3N].
Here [x] means the integral part of x. Of course N’ may be chosen much greater

than N to make the computations cheap (see [2, pages 263-273]). Following [2,
pages 383-388] put

A 1 A .
fy(wt) = 5 27, C(n)e—tmet
and solve the equations
1 2 " " A P A
) D {i D) @)@)F (w) e A} = 0,
A0y =1,k=1,2,...,p.
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Finally form

© K= o D@ )0 @) D A

An alternative to (5) and (6) is to factor f, as (2z)'§Rg* with § satisfying (3.i)
and (3.ii). Such a factorisation is possible if and only if f”(co) =0, we[—m, 7]
See [2, page 66]. Under the conditions of the theorems f,(w) > 0 will always
hold for sufficiently large N. All of the statements about (4)—(6) in the theorem
below are true of the estimates obtained from (4) and such a factorisation.

THEOREM 2. Let x(n) be ergodic with g, h satisfying (3.i), (3.ii), and with
det{g(z)} # 0, |z| = 1. Let the B(j), A(j), K be obtained from (4), (5), (6). 4
sufficient condition that these be strongly consistent is that [ A(p): B(q)] be of rank r.

Proor. If it can be shown that the equations

(™) IDGT(G -k =0, k=p+1p+2,.--,p+9 D0O) =1,
L(n) = {2 e™flo) do,
have a unique solution (namely D(j) = B(j)) then the proof may be completed
as follows. First the strong consistency of the B(j) follows from the almost sure
convergence of the C(j — k) to the I'(j — k), which in turn follows from
ergodicity. It then follows that C(nm) converges almost surely to I')(n) =
E[3 A(j)e(m — j) X &'(m + n — j)A(j)}. Thus f,(») converges almost surely,
and uniformly in w, to (27)~'gKg*. As will now be shown the coefficient matrix
of A(j) in (5) then converges to
®) 2z ", (9Kg*)teti-*e dg .
‘Indeed since det {f(w)} +# 0, w € [—r, =], then f”;,'(co)—1 converges almost surely,
and uniformly in o, to f,(®)~'. Thus the Cesaro sum, ®, (), to M terms, of the
Fourier series of f,(w)~ satisfies, for M large enough, ||f,(®)* — @, (0)|| < e,
for any ¢ > 0 and all sufficiently large N, where ||¢|| is any norm in a finite
dimensional vector space. Putting ®,(w) for the Cesaro sum of the Fourier
series for f (w)~* we have

]% 2t @)M(wt)v’&(wt)ﬁ;(wt)*@M(wz)*ei(i—k>wt

+Cm—j+k—n—N C’n'(l—ﬁ>(l—£),
(m—j+ )IC(m) Vi Vi

where C(n) is null for |n| > N. The convergence of the B(j) ensures that the

second and third terms in the factor in braces converge to the null matrix and

the strong consistency of the C(n) then gives

lim,_,, % e @M(wt)]@((ot)ﬁ}(wt)*&)M(wt)*ei(j—k)wt

= {7, Oy (0)gKg* D, (0)*e"i~P* dw , a.s.
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The error introduced by replacing f, by ®,,, in forming the expressions under
the limit sign on the left, has norm dominated by

%ﬁzmwwm@m=mam,

where a is a constant. A similar result holds on the right and the assertion con-
cerning (8) now follows. This shows that the 4(j) converges almost surely to
the A(j) since these are the unique solutions of

D0 {17, (9Kg*) e i do}()) = 0, AQ) =1, k=1,2,---,p.

That K converges almost surely to X now results. Thus the theorem follows
from the following lemma.

LEMMA. If x(n) satisfies (1), (3.i) and (3.ii) then the necessary and sufficient con-
dition that (7) have the unique solution D(j) = B(j) is the condition that [ A(p): B(q)]
be of rank r.

Sufficiency. If the result does not hold then the matrix
TG =& = Piserne
is singular, where we have exhibited the block in row j column & in the (rg X rq)

matrix. Reversing the order of rows and columns and transposing we obtain the
matrix with I'(j — k — p)’ as the (j, k)th block which is the same as the matrix

[Tk + p — Dlikmtyeonrq -
Thus there are matrices H(j) so that
®) S{HG)(k +p—j) =0, k=1,...,q.

However, also

'k +p—j)=—=ZiTk +p—j— uBuy, k>j,
and thus
(10) {H()T(k +p—j) =0, k>0.
Put

i H(j)z=? = h(z) .
Then £ is of degree ¢ — 1. From (10) we have

(11) § hf(w)e*tr=vo dy =0, k>0.
Thus
(12) § Af(w)h*ei*+Pe dy = 0, k>0.

It follows from (11) that h(z)(z)*g(z)Kg'(z-*)k’(z~*)~'z*~¢ is analytic within the
unit circle. Put g’(z7")z* = g,(z) where a is the degree of g(z). Put #'(z7!)z* =
h,(z) where b is the degree of 4(z). Then either a = p or b = ¢ (or both) and
now hh~'gKg, h,~'z° is analytic where ¢ = p — ¢ — a + b. Itisshown in [1] that
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if h-ig = A~ and the pairs (g, k), (§, &) each satisfy (3.i), (3.ii) then & = uh,
g = ug where u is unimodular. Choose v, w, both unimodular, so that 2-'g =
v»=1Q-'Pw where P, Q are diagonal with terms in the same place in the diagonal
having no common factor ([6, page 41]). We may also ensure that g; divides
g;., Where g; is the jth diagonal element of Q. It follows, putting k= Qv,
§ = Pw, that g = uPv, h = uQw. Thus g,(2)h(2)"* = V'P(z7")z*{Q(z7 )2’} W'~ =
v"{Q(z7 Yz} {P(z")z*}w'~. We may also find x, unimodular, so that 2~'gKv" =
xt where ¢ is lower triangular ([6, page 32]). Thus

hh=gKg, h,"'2° = hxt{Q(z7")z°}P(z7Y)z*w' .

Now it must be true that Axt{Q(z7%)z*}~" is a polynomial and equals hx{Q(z~")z*}~"t
and also izx{Q(z-l)z”}—1 must be a polynomial. Indeed the zeros of the diagonal
of Q(z7Y)z* lie inside the unit circle while those of the diagonal of ¢ lie outside
of it. Thus g, divides the last column of Ax. However, the second last column
of hxtis a; ,_yt, 4,y + ;44,1 i = 1, -+, r, where a;, t,; are the typical ele-
ments of Ax and ¢, respectively. Since g,_, divides ¢, which divides g, , and ¢,_,
has no linear factor dividing ¢,_, ,_, then ¢,_, divides @, ,_,, i =1, ..., r. Con-
tinuing in this way we establish what we want. Now we observe that the co-
efficientm atrix of the highest power of z in Q(z7%)z® is I,. Since % is of degree
g — 1 and x is unimodular then 4 < g — 1, since otherwise the determinants of
0(zYz* will be of degree gr while that of 4 can be at most (3 — 1)r. Thus
a = p and, moreover, A(p) is nonsingular (since B(g) is null because b < ¢ — 1).
Now we may also take Q(z)~! through the factors on its right and cancel it with
B (z7Y) reducing hh~—'gKg*h*~'h* to the form kgKg*k* where k is a polynomial
also. However, from (12) we see that this is a trigonometric polynomial of
degree at most (p — 1) and this is impossible unless k and hence 4 is null, since
otherwise kg must be at least of degree p, because A4, is nonsingular. Thus the
sufficiency is proved.

Necessity. Let a be a vector such that a’[A(p):B(q)] = 0. Consider
{ a’hh~*gKg*h*~te~* do = § a’gKg*h*~e-** dw =0, k>p,

since a’g is of degree p — 1, only. Thus % 4 la’k, where 1 is the vector of units,
gives a second solution to (7) and the necessity also is established in the lemma.

It seems very likely that the condition of the theorem is also necessary. How-
ever, that is not easy to prove, since (4) may be expected to have a unique
solution even when (7) does not and it is not apparent that the deviation of
C(j — k) from I'(j — k) might not be such as to ensure that the unique solution
of (4) converges to the particular solution, B(j), of (7).

It may be mentioned, that in distinction to the case p = 0, it is no longer true
that for all N, .

h(z) = 54 B(j)z

has determinant with all zeros outside of the unit circle (as the simplest examples
show). However, the 4(j) do have this property. One could carry out a further
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step that obtains obtains from the B(j), A(j) a new estimate of % having the
property, but we will not go into that here.
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