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CHARACTERIZATION OF DISTRIBUTIONS
BY SETS OF MOMENTS OF
ORDER STATISTICS

By BArRRY C. ARNOLD AND GLEN MEEDEN
Iowa State University

It is known that the set M = {pr,n:r=1,2, .-, m;n=1,2,3, <o} of
expectations of order statistics of samples from a distribution F completely
determines F (see, for example, Hoeffding (1953)). In addition Chan (1967),
Konheim (1971) and Pollak (1973) have shown that certain subsets of M
determine F. In this note conditions are derived which are sufficient for a
proper subset of M to determine F.

1. Introduction. Let F be a specified probability distribution on the real line.
For each positive integer m and each positive integer r < m, let X,.,, denote the
rth order statistic of a sample of size m from the distribution F. If F hasa
finite kth moment then p%, = E(X},) exists for every r < m. A convenient
reference for this fact and for other results quoted below is Chapter 3 of David
(1970). Define

Mﬂk:{/‘!’::m:rzl’z, ~--,m;m:1,2, ...,n}
and
Mk:U:::ank'

It may be verified, using the results of Hoeffding (1953), that for any odd k,
M?* determines F. To see that the characterization fails for even k, it is sufficient
to consider two distributions F,(x) = d,(x) and Fy(x) = §(0_,(x) + 0,(x)), where
04(x) is a distribution with a jump of 1 at the point a. It is readily verified that
uk.,, = 1 for all r, m if k is even, for both F,and F,.

Chan (1967) showed that, when k = 1, the sequence {x%.,}>_, determines F.
This was accomplished by showing that {¢..,} determines the Fourier transform
of F~*defined by F-'(u) = inf{x: F(x) = u}). Subsequently an alternative proof
that {g}.,}x_, determines F was provided by Konheim (1971). Pollak (1973)
obtained a more general result. He showed that, when k = 1, any sequence of
the type {¢; .,:n=1,2,3, ...} (where r, < n for every n) determines M* and
thus determines F. Pollak, incidentally, supplies an alternative proof that M’
determines F to that based on Hoeffding’s paper. In this note we will generalize
Pollak’s result. That is, we will determine conditions that if satisfied by a
proper subset of M* imply that the subset determines M* and thus, if k is odd,
determines F.

2. Triangular arrays. Consider A the infinite triangular array of points
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shown in (1).

(1) X b X b'e

For each n, we denote by A, the finite array consisting of the first n rows of A.
A typical point in A will be denoted by (i, m) representing the ith point in the
mth row. Let I' be a configuration of points in A. We describe a method of
adding points to I' based on what we call the “triangle rule.” Consider a tri-
angular set of three contiguous points in A of the form

2) X
b'e X

where the base must contain two of the points. The triangle rule specifies that
if any two points of a triangular array of the form (2) belong to a configuration
then the third point may be added to the configuration. Thus, given any con-
figuration I' there exists a smallest configuration which contains I' and which
is closed under the triangle rule. Denote this set by T(I'). Hence T(T') is the
intersection of all the configurations which contain I' and are closed under the
triangle rule. If @ denotes the empty set, then T(@) = @. If I' = @, then
T(T') is a union of equilateral triangles (provided that we consider a single point
to be an equilateral triangle). It is convenient to define the size of an equilateral
triangular array to be the number of points in any side.

A configuration I' is said to be connected if T(I') consists of a single triangle.

For each aeT, a subset of A, define I', = I' — {a}. T will be said to be
independent if, foreacha e T', a ¢ T(I',). Note that any subset of an independent
configuration is independent.

With these definitions we may prove the following lemma.

LemMA 1. Let I' be an independent connected set containing n points; then T(I')
is an equilateral triangle of size n.

Proor. The lemma follows easily by induction utilizing the following two
observations.

First, if I is an independent configuration of size n > 2 then there exist non-
empty disjoint subsets of I', say I'; and T',, such that T(I',) n T(T';) = @ and
T(T(T,) v T(T'y)) = T(T'). To see that this is so, consider I' as a collection of n
disjoint triangles of size 1. Since I is connected, two of these triangles must be
contiguous and can be used to generate a new triangle of size 2 by the triangle
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rule. There remain n — 1 disjoint triangles (since the original array was inde-
pendent). The process of reduction can be continued until we are left with two
disjoint triangles, say T, and T, whose union generates T(I'). For each i, let T';
be the subset of I' which generated T,.

Secondly, let T,, and T, be triangles of size m and n respectively. If T,, and T,
are disjoint and if T, U T, is connected then the size of T(T,, U T,) is m 4 n.

The statement of the lemma is trivially true for n = 1 and, if it is assumed
true for all m < n, the two observations imply it must be true for n.

It is easy to give examples of independent connected sets in A. A simple
example which generates A, is an array consisting of exactly one point from
each of the first n rows of A. A second example, generating A,, is the nth row
of A.

In the next lemma we give a necessary and sufficient condition on the set I'
so that T(I') = A.

LeMMA 2. For a configuration T of A, T(T') = A if and only if T n A, has an
independent connected subset of size n for infinitely many n’s.

Proor. If I' n A, has an independent connected subset of size n then, by
Lemma 1, (' n A,) = A,. Thus A, c T(T') for infinitely many »’s and con-
sequently A = T(T').

To prove the converse, we first observe that for any configuration I' T(T') =
Ue, T n A,). Clearly T(I') o Uz, T(I' n A,). On the other hand, T(I') C
U. T n A,), since J, T(I' n A,) is a set containing I' which is closed under
the triangle rule.

Suppose T(I') = A. Then A = |J, T(I' n A,), and to complete the proof it
suffices to show that for any positive integer k there exists an n’ = k such
that T(I' n A,)) = A,,. Clearly there exists an n(k) such that n(k) > k and
TT n A,,) DA, Since T(I' n A,,,) is closed under the triangle rule all or
none of the elements in the (k + 1)st row of A belong to this set. If the
(k + 1)st row is present the next row is either completely present or completely
absent, and so on. Let n’ be the row which immediately precedes the first
empty row of T(I' n A, ). If no such empty row exists let n’ = n(k). Now
T(I' n A,) = A, and the proof is complete.

3. Characterizations by moments. We now return to the original problem
of finding subsets of M* (i.e. sets of kth moments of order statistics) which
determine the underlying distribution F. Observe that the elements of M* may
be indexed by A, and the elements of M,* indexed by A,.

The kth moments of order statistics of samples from an arbitrary distribution
are known to satisfy

(3) (m - r):uf:'m + la’;+1:m = mlafzm—l .
For our purposes, the important fact expressed in (3) is that within certain
triples of expected values of order statistics, knowledge of any two determines
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the third. There are many other known recursive relations among the g*.,’s
but, in essence, they follow by repeated application of (3).

If A is a subset of M* indexed by I', i.e. A = {¢k.,,: (r, m) e '}, then from
equation (3) we may deduce that knowledge of the elements of A implies
knowledge of p%.,. for any (r’, m’) which can be obtained from I' by repeated
application of the triangle rule. Thus A = {g,:(r, m)e '} determines
{#k.m: (r, m) e T(I')}. Consequently a subset A of M* indexed by I' will de-
termine M* and hence, for odd k, determine the distribution function F, pro-
vided that T(I') = A. Combining these observations with Lemma 2, we may
state the following theorem.

THEOREM. Let A be a subset of M* indexed by I'. A determines M* (and thus,
for odd k, determines F) if for infinitely many n’s, I' n A, has an independent
connected subset of size n.

Thus, a configuration which includes one entry in each row of M* will
determine M* (as mentioned earlier, Pollak (1973) obtained this result for
k = 1). Another configuration adequate to determine M* is one which includes
infinitely many rows of M*. This configuration includes more points than does
a “one entry per row” configuration, but it does point out the fact that many
rows can be unrepresented in a determining configuration.

Let A be a subset on M* indexed by I'. It is possible that A determines a
unique F even though T(I') = A. Forexample, let A = {¢* ,:s<r<m—s
and m = 2s 4+ 1,25 + 2, ...} where s is a positive integer. A minor modifi-
cation of Hoeffding’s argument will verify that such a configuration, for k odd,
determines F. When F is the Cauchy distribution, A, exists and determines F
while M* is not even well defined.

It may be observed that equation (3) remains valid under the assumption that
vk, is the kth moment of the rth largest of the first m coordinates of an ex-
changeable sequence X;, X,, - ... The array M* will still be determined by a
subset A if the conditions of the theorem are met. Unfortunately the array
M?* (even for k odd) does not necessarily characterize the common distribution
function of the coordinates of an exchangeable sequence. To see this, consider
M for a trivial exchangeable sequence X; = X, = X; = ... where X] is normal
(0, 6%). For any choice of ¢* all the entries in M* will be zero.

In closing we consider a related problem. Suppose we are given a sequence
of real numbers {a,, ..}, Where for each i r(i) and n(i) are positive integers
such that r(i) < n(i). We are interested in determining whether or not there
exists a distribution F such that

E(X} o in) = @riiyincny for i=1,2,-....

The sequence {a,, ..} defines a subset, say I', of A in (1), in a natural way. If
T(T') = A, then {a, ., i = 1,2, -- -} generatesaset S ={a, ,: | S r<nn=
1,2, ...}. The problem then becomes that of determining when a distribution
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function exists such that

EXt)=a,,, Yr<n.

N,

Kadane (1971) gives a condition on S which is necessary and sufficient that
there exist a distribution F, satisfying F(0_) = 0, with kth moments of its order
statistics given by S. Mallows (1973) solves the problem when the support of
F is the real numbers. Both Kadane and Mallows treat the case k = 1 but their
results readily extend to the case of arbitrary k.
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