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TESTS FOR CHANGE OF PARAMETER AT UNKNOWN
TIMES AND DISTRIBUTIONS OF SOME RELATED
FUNCTIONALS ON BROWNIAN MOTION!

By Ian B. MACNEILL
University of Western Ontario

Statistics are derived for testing a sequence of observations from an
exponential-type distribution for no change in parameter against possible
two-sided alternatives involving parameter changes at unknown points.
The test statistic can be chosen to have high power against certain of a
variety of alternatives. Conditions on functionals on CI[0, 1] are given
under which one can assert that the large sample distribution of the test
statistic under the null-hypothesis or an alternative from a range of inter-
esting hypotheses is that of a functional on Brownian Motion. We compute
and tabulate distributions for functionals defined by nonnegative weight
functions of the form ¢(s) = as*, k > —2. The functionals for —1 = k >
—2 are not continuous in the uniform topology on CI0, 1].

1. Introduction and summary. This paper presents a derivation, using the
method of Chernoff and Zacks (1964), of statistics useful in testing a sequence
of observations for no change in parameter against possible two-sided alternatives
involving parameter changes at unknown points. The observations are assumed
to have distributions of the exponential type. The family of derived statistics is
large enough that one can select from it a test statistic that has high power against
certain of a variety of alternatives. Large sample distributions for the test statistic
under the null hypothesis and under a broad range of alternatives are obtained
using the theory of weak convergence. The distributions are related to those of
certain functionals on Brownian Motion, but some of the functionals of prime
interest are not continuous in the uniform topology on C[0, 1]. Conditions on
functionals are given under which one can assert that the large sample distri-
bution of the test statistic is that of a functional on Brownian Motion. We
compute and tabulate the distribution for functionals defined by nonnegative
weight functions of the form ¢(s) = as*, k > —2.

2. Two-sided tests for change of parameter at unknown change points for
distributions of the exponential type. We begin by posing the testing problem
in a form related to that of Page (1957) and similar to that of Kander and Zachs
(1966). We let {X;}7_, be a sequence of independent random variables taken
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from a one-parameter exponential density

(1) J(Xi0:) = h(X) exp{fy(0)U(X;) + $o(0,)}
with ¢,(+) and ¢,(+) having second order derivatives such that
2) $/'@0) #0,

0 <A/} {,"(0)9s'(0) — &' (0)d'(0)} < oo .
We wish to test the hypothesis of no change in the parameter, i.e.,
H,: 0, = 0, i=1,2,...,n

against certain alternatives involving changes in the parameter at unknown times.
To specify alternatives we follow Gardner (1969) in letting w, = 1 or 0 according
to whether there is or is not a change in the parameter between X, and X,..
Thus, a particular change sequence is specified by the vector w' = (w,, - - -, w,_,).
If 9, represents the change in the parameter after the ith observation (4, isallowed
to be positive or negative) we find that

S(X [ W, 05,0, -+ -, 0,y)

= h(X,) exp{¢u(0y + L5 wid)U(X,) + $a(0 + X5 w.0:)}

= h(X,) exp{[$1(00) + ¢/ (0)) L= w.0.JU(X,) + ¢a(Bo) + ¢2/(00) i wid.)
the approximation being close if 3 “~!w, 4, is small. To derive statistics for testing
H, we use a Bayesian method introduced by Chernoff and Zacks (1964) that puts
a priori distributions on the change points and on the nuisance parameters.
Accordingly we assume that §,, i = 1, ..., n — 1 are independent N(0, %) and
obtain the joint density of X, -.., X, d,, -- -, d,_, given w. Thus
f(Xl’ tt Xn’ 51, ] 6n—llw’ 00)

=~ {I1i-1 H(X,)} exp{ndu(00) + ¢1(00) Liiics UXHTTE-2 exp[y'(60) iz wid.]}

X (L5 expL(SH w009 BV (Tt o L renp| = oo )

N TR
Integrating with respecttod,, k = 1,2, ..., n — 1 to obtain the marginal density
we see that
f(Xp Xza Tty Xmlw, 60)

= {1k=1 A(X) exp[1(00)U(Xe) + ¢o(00)]}
X exp[r*(2 T2 Wil Di=uan (95/(00) + /(0 U(X;)})] -
Upon letting y* become arbitrarily small the approximation becomes close, and

dropping y* we see that a likelihood ratio statistic for testing H, against the change
sequence w is

An(Xy, X, -+, X,) = Y2t wi[ Skt <ﬂ(00g)bjzezb)i :‘-"o)#o_ + U(ino___@')]z’

where 1, = E, [U(X,)] and 7® = Var, [U(X;)]. With the assumptions (2) made
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on the functions ¢,(+) and ¢,(+) one is able to pass derivatives through the
integral in § f(x | 6) dx (see Lehmann (1959), page 52) which enables one to derive
the following:
() P (00) + 91/ (00)E, [U(X;)] =0,
Var, [U(X;)] = (¢:'(00))7°[$1"(00)¢5' (60) — $5"(00)¢'(00)] -
Consequently, we may write
— s n "(0)U(X;) + ¢/ (O)HP'(00))
Aw(X"",Xn —Z=‘w|: j= {9[}1(0 ; 7 *

1 = B Ko S 00,0 — 4009000
If we assign to the collection of possible change sequences, {w}, a prior distri-
bution, P(w), we obtain the test statistic
4) T, (P) = 3w POWAL(X,, - -+, X))

= B[ Dean O £ OO0
{427(00)¢y'(00) — ¢:"(00)¢1'(6,)}

where {P,}3-1 is a nonnegative weight sequence whose components are given by

(5) Py = Yl w P(WW, , k=1,2,--,n—1,

3. Large sample distribution theory for 7,(P). We first establish some nota-
tion and recall some well-known results for sums of independent and identically
distributed random variables. Let {X;}7, be such a sequence, each component
having zero mean and positive variance ¢* < co and each defined on the same
probability space (Q, o7, P). Let {S,}i-, with S, = >}%_, X;, S, = 0 be the cor-
responding sequence of partial sums. If we pair S, with the point k/n then
[{(on?)72S, )i o]z-, can be used to define a sequence of stochastic processes
{Y.(t, ), 1€[0, 1], w € Q};_, possessing continuous sample paths by the relation

Y, (1, ) = (on) " Spun(@) + (nt — [ne])(ont) 7 Xy (@) 5
where [x] indicates the largest integer in x.

Let C denote the space of continuous functions on the unit interval with the
uniform topology and let .5 denote the Borel subsets of C. Then Y, induces
a measure, P,, on (C, % ) and Theorem 10.1 Billingsley (1968) assures us that
P, converges weakly to Wiener measure W, which is the probability measure
on (C, &) corresponding to that of the standard Brownian Motion process
having continuous sample paths. This process, which is a measurable map from
some probability space to (C, & ) and which we denote by {B(?), t € [0, 1]}, is
Gaussian with zero mean and covariance kernel E[B(s)B(t)] = min (s, ). The
sequence {Y,}r_, is said to converge weakly to Brownian Motion. The paths of
these processes can be conditioned to be zero at the end points by considering
the sequence [{(ant)*(S, — kn~'S,)}i_o]z-1. Thelimit process is now the Brownian
Bridge process, a Gaussian process denoted by {By(?), ¢ € [0, 1]} with paths zero
at t = 0 and r = 1, zero mean and covariance kernel {min (s, f) — st}. Similar
weak convergence results hold for the sequence of “reversed” partial sums. That
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is, suppose X%, = X,_j11, J = 1,2, ...,nand S§, = X%, X}, S§ = 0. Then
[{(on?) 1S} e o]y and [{(on?) = (S, — kn7'S5)}izoln=n deﬁne sequences of sto-
chastic processes that converge weakly to Brownian Motion and Brownian
Bridge processes respectively. We have use for these results in studying the
large sample distribution of T,(P), the statistic derived in Section 2 for detecting
changes in parameters at unknown change points. In this connection Page (1957)
noted that it is convenient to view the sequence of partial sums from the vantage
point of the last element.

We first prove a result concerning [{S,}721]>_, and the Brownian Motion process.
P g1LPksk 1 P

THEOREM 1. Let ¢(+) be a nonnegative measurable function defined on the unit
interval such that (y t¢(t)dt < co. If

P,(jn) = §@i0m (1) de j=12,.-..,n—1,
Z, = Q2P (jn)((onh)71S,) and  Z = §ig()B(h)dt,
then
(6) lim

ProoF. Since the functional F,(.) defined by F,(B) = {i ¢(#)B(t) dt is not
necessarily continuous in the uniform topology on C we cannot verify (6) by
appealing directly to the weak convergence of the sequence of partial sums to
Brownian Motion and to the Donsker result. However, we are able to apply a
result due to Wichura (1971), page 1769, to establish (6).

We first let Z,* = {} ¢()Y,%(?) dt, and define a sequence of measurable func-
tions {4,}z_, on the functionals by

4, Z = 255 Pu(jmB(j[n)
A, Z,* = i3 P([mYa(j[n) -
Form >nandjin <t < (j+ 1)/n
E|Y,X1) — Y,2(jim)| < [E{Yu(t) — Ya(jImPE(Yu() + Yau(i/mFT

{22

P[Z, < a] = P[Z < a].

n—mo

and

Consequently
E|Z,* — A,Z,*]
< E|§§" ¢(n)Y,2(1) dt] + E| T2 §50 " g{YaX(n) — Ya'(jim} di|
< g+ (1 2) e (L4 2 gwar
Since, for ¢ > 0,
Pl|Zy — 4,2, Z €] S B Z, — A, 2,7
and since §} 1¢)(7) dt < oo implies that lim,_, n~ §}, #¢(t) dt = 0 we have that
) lim,_ lim sup,, ., P[|Z, — 4,Z,*| =] =0.
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By a similar argument we can show that

(8) lim,_, P[|Z — A,Z| = ¢] =0

n—0

since
E|Z — A,Z| < §* t9(0) dt + 3nt §, 6hg(r) dt .

Finally, due to the weak convergence of Y, to Brownian Motion and the con-
sequent convergence of the finite dimensional distributions, it follows that as
m— oo, A, Z,* converges in distribution to 4,Z. Combining this with (7) and
(8) enables us to invoke Wichura’s result to prove that Z,* converges in distri-
bution to Z. We verify (6) by noting that

E|Z, — ZX| = §y"ip(nydr + Zin~ 50" (4 + e}t dr,

which implies that Z, — Z * converges in distribution to zero.
The terms in the inner sum of (4) are equal to
{ n P‘(/Xf):_ﬂa}”“

j=k+1
T k=1

and form what we referred to at the beginning of this section as a sequence of
“reversed” partial sums. With some simple modifications Theorem 1 can be

applied to these “reversed” partial sums. In fact, if ¢(+) satisfies the conditions
of Theorem 1 and if {P,}3Z}] is defined by

) Py = i g de
then n~'T,(P) converges in distribution to {} ¢(r)B*(¢) dt.

What remains to complete the asymptotic distribution theory for T,(P) is to
compute the probability distributions for {} ¢(¢)B*(¢) dt for a wide range of weight
functions ¢(.). In Section 4 we partially solve this problem by obtaining the
distributions for the family of weight functions defined by ¢ (1) = at*, k > —2.
Note that for —2 < k < —1 the corresponding functionals are not continuous
in the uniform topology. However, this is no hardship since ¢(+) satisfies the
condition of Theorem 1. The weight sequence {P,};Z] may emphasize changes
in certain regions and the functions ¢(f) = at* can be used to model certain of
these sequences. A uniform weight sequence, which corresponds to the case of
at most one change (AMOC) at time m having a uniform prior, calls for the
weight function with k = 0. A weight sequence that puts large weight on early
changes could be approximated with k large, whereas a sequence that puts large
weight on late changes could be approximated with k small (subject to k > —2).
Using k = —1 one weights the change times proportional to the reciprocal of
the variance of the partial sums.

If the initial level ¢, is unknown then g, will be unknown. Under the con-
ditions assumed , may be consistently estimated by U, = n=! 3;*_, U(X;). Re-
placing p, with U, results in a substantial change in the distribution in that the
limit process is the Brownian Bridge rather than Brownian Motion. Thus to
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obtain large sample distributions for the modified test statistic 7,°%(P) defined by
wm—vﬁ

To

Tﬂm:zgm[sz

one must first examine the conditions under which n~'T,°(P) converges in distri-
bution to §} ¢(¢)B*(¢) dt.

The folllowing result, analogous to Theorem 1, pertains to [{(ont)~'(S, —
(k/n)S,)}i=i]z-: and to the Brownian Bridge process having continuous sample
paths.

THEOREM 2. Let () be a nonnegative weight function defined on the unit interval
such that {3 t(1 — 1)¢p(t)dt < oo. If P (jIn) = §GitDmg(t)dt, j=1,2,---,n— 1,

Z,0 = F5a Pil(en)(S; — (j/mS))  and 20 = G (1) By(1) dt

then
lim, ., P[Z,° < a] = P[Z° < a].
The proof is similar to that of Theorem 1. To apply this theorem to the

“reversed” partial sums of n~'T,°(P) one need only define {P,};Z} by
(10) P = Y ¢(n dr

To complete the asymptotic distribution theory for n~'T,°(P) one requires the
probability distributions for {j¢(#)B’(¢) dt for a variety of weight functions.
The collection of such distributions presently available is not very large. How-
ever, for ¢(¢) = 1 the distribution is tabulated by Anderson and Darling (1952),
and for ¢(r) = (#(1 — 1))~ several important percentage points are given by
Anderson and Darling (1954). The latter function, which puts large weight on
changes near the end points, defines a functional that is not continuous in the uni-
form topology on C, as is claimed by Andersonand Darling (1952) page 197. How-
ever, the proof that n='T,°(P) converges in distribution to §j{#(1 — 7)}~'B/() dt
follows from Theorem 2.

We now examine the large sample distribution of the statistic 7,(P) as defined
by (4) under alternatives to H,. For fixed alternatives the statistic always rejects
H, if the sample size is large enough. However, if the alternative approaches the
null hypothesis at a rate that is neither too fast nor too slow, more interesting
large sample results are available. Since the sequence of independent random
variables {X,};., with densities f(X, | 6,) given by (1) have means and variances
given by (3) that are both functions of # we will denote them by u(6) = E,[U(X)]
and t*(@) = Var, [U(X)]. Then the following theorem may be proved.

THEOREM 3.

(i) Assume that p(e) and t*(+) satisfy assumptions (2) and that the first two
derivatives of p(+) and t*(+) exist and are continuous in a neighborhood of 6,.
(ii) Let h(+) be a function bounded and Riemann-integrable on [0, 1] and let

H() = §5 {(h(1 — 5) — o} ds.
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(iil) Let {g,(1), 1 € [0, 1]}_, be a sequence of functions such that

_ (H({) — p)7 1
o) = 0. = 0"+ 0 () 2>
uniformly in t.

(iv) Let ¢(+) be as in Theorem 1 and let {P,};_} be defined by (9). Then, under
the hypothesis that 0, = g(k[n), k = 1,2, .-, n, n='T,(P) converges in distribution
to \3 Y(O(H(F) + B(1))*dt where {B(t), t € [0, 1]} is standard Brownian Motion.

Proor. The test statistic may be expressed as

n TP = 55 T D (@) — #0)

L S (V) — oGy | -

By expanding (-) about 6, and using the special nature of {g,(1)};_, it can be
shown that, for k = [nf], [n* 33%_, .. n{p(9.(j/n)) — 0}]5=} converges uniformly
to H(r) as n — oo. Since {[U(X;) — (9.(j/n))]/70}}-: are zero mean variables that
are independent but not identically distributed the weak convergence result ap-
pealed to earlier does not apply. However, we have that

ga(jjm)] — =i = UM = 17" (00) b
(1) Sg(jim) — =2 = CU ZLTE) Lo ().

which implies that {z%(g,(j/n))}}-, converges to the constant function *(f) = z,’
at a rate equal to (1/n?). This enables us to apply the lemma to Theorem 10.4
of Billingsley (1968), page 69, to demonstrate the tightness of the probability
measures generated in C by the sequences of processes defined by the “reversed”
partial sums [n} 3%, ., {(U(X;) — (@, (jlm)}lih Since (11) implies that
{U(X;) — 1(9.(j/n))}:-, have variances that are almost equal for large n we can
verify the conditions of the Lindeberg theorem to show that n=% 33n_, {[U(X;) —
2(9.(j/n)]/za}s t € (0, 1) converges in distribution to a normal variable with zero
mean and variance (1 — 7). The finite dimensional distributions of these pro-
cesses can be shown to be asymptotically those of standard Brownian Motion
by applying a technique due to Cramér and Wold that reduces the multidimen-
sional problem to the one-dimensional problem just discussed. Consequently
[n 37 {U(X;) — p(9.(j/n))}]azs forms a sequence of “reversed” partial sums
that converges weakly to the Brownian Motion process with parameter o = 7,".
Since A(.) is bounded, H(r) = O(r), which along with (iv) implies that
{3 (H)H(f) dt < oo. The method of proof for Theorem 1 can now be used to
show that

lim, .. P[n"'T,(P) < a] = P[§} $(H)(H(t) + B(t)*dt < a], a >0,

where B(.) is standard Brownian motion.
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Section 4 contains a discussion of the distribution theory of {} ¢(¢)(H(¢) +
B(t))*dt for H(.) satisfying the conditions of Theorem 3 and for ¢(f) = at*,
k> —2.

We now consider an interesting special case. Assuming that observations are
normally distributed with variance ¢* and initial mean g, the test statistic for
testing no change in mean reduces to

T,=o0"311 Pk{Z;'n=k+1 (X; — o)y

which is what one would obtain using the method of Gardner (1969). Gardner
goes further and considers the above problem with the initial level not specified
and derives the statistic

Q, = 07 T POW) ZESi il B (X — D) = 072 TR P2 5oia (X; — DT
with {P,} given by (5)and (10). As noted above, the limit process is the Brownian
Bridge. Consequently, if ¢(.) satisfies the condition of Theorem 2 the asymptotic
distribution of n='Q, is that of {} ¢(¢)B}(f) dt. Viewed in this framework it is
natural to expect Gardner’s result which states that for at most one change
(AMOC) at time m having a uniform prior the asymptotic distribution of the
quadratic form in normal variables is the same as that of the Cramér—von Mises
goodness-of-fit test statistic. It can also be noted that the same asymptotic results
hold for variables from any distribution (exponential family or otherwise) having
finite variance.

Sen (1971) has considered the statistic Q, with normal observations in the
AMOC situation (uniform prior) in a multivariate framework and has also
derived small sample distributions for the univariate case, which indicates that
the sample size does not need to be very large for the asymptotic theory to
provide a good approximation, a fact that is also noted by Gardner.

The difference between the statistic T',(P) given by (4) and the statistic derived
by Kander and Zacks (1966) stems mainly from the fact that they choose to
restrict parameter changes to be of one sign. Under these circumstances, in the
AMOC case, they obtain, for testing H, against a possible change at time k
having a prior distribution {P,}71, the statistic

T/(P) = X3t Py Sieys Y =100
, %o
In the following theorem the statistic is viewed as a weighted average of “re-
versed” partial sums. We may then use the theory of weak convergence of
probability measures to demonstrate conditions under which interesting large
sample distributions for this statistic exist.

THEOREM 4. Let () be a nonnegative measurable function defined on the unit
interval such that \gt*{(t)dt < oo and assume that (i), (ii) and (iii) of Theorem 3
hold. Then with {P}i=1 given by (9), W(s) = \!¢(f) dt and under the hypothesis
that 0, = g(k[n), n~iT,'(P) converges in distribution to the Gaussian variable
§6 Q(O)(H(?) + B(t)) dt having mean \j ¢(t)H(1) dt and variance §} W*(s)ds < oo.
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We omit the details of the proof since they are similar to those of Theorems
1 and 3.

As with T'(P), if U, replaces y,, Brownian Motion must be replaced by the
Brownian Bridge to obtain the appropriate asymptotic distributions.

Page (1955) originally formulated the problem and proposed a range-type
statistic for testing a one-sided alternative. Later (1957) he proposed the use of
a one-sided Smirnov statistic.

Among a host of other test statistics that might be considered in this context
are the range as discussed by Feller (1951), and a statistic discussed by Watson
(1961) and Stephens (1963), (1964). A tabulation of the range, and a discussion
of the Stephens-Watson statistic when the initial level is known, are given by
MacNeill (1971). For a discussion of the distribution theory when the initial
level is assumed unknown one can refer to Feller and Watson. Nadler and
Robbins (1971) consider a two-sided version of Page’s original statistic and show
that it is equivalent to the range.

4. Distributions of certain functionals on Brownian Motion. We now concern
ourselves with the distributions of the stochastic integrals of Section 3. Our
approach is to apply to Brownian Motion the methods that Anderson and
Darling (1952) applied to Brownian Bridge processes. We consider the process
{(¢(1)):B(1), t € [0, 1]} and obtain its Karhiinen-Loéve expansion. This expansion
requires that we compute a set of functions {¢,(+)};., defined on the unit interval
and a set of zero mean random variables {b,}>_, such that

. E((p(0)2B(1) — 2v-1b,9.(1)) =0, re[0,1],
with
$09.(Npu()dt =1 m=n,
=0 m=+£n,
and

Eb,b,) =4, m=n,
=0 m =+ n.
Because Brownian Motion is Gaussian, b, ~ N(0, 4,). The characteristic func-

tions for the stochastic integrals of Theorems 1 and 3 are given in the following
result.

THEOREM 5. Assume (i) ¢(+) and H() satisfy the assumptions of Theorem 3,
and (ii) the kernel k(s, t) = min (s, £)(¢(1))}(¢(5))? is continuous on the closed unit
square or continuous except at (0, 0) with 0k(s, 1)/0s continuous for 0 < s, t < 1,
s # t and bounded for e < s < 1 fore > 0. Then, if {4, ¢.(+)}v-, are the eigen-
values and eigenfunctions of the Karhiinen—Loéve expansion for the process
{(@¢()iB(1), t [0, 11}, and v, = §§ (P(0)iH()¢ (1) dt, k = 1,2, .-, the character-
istic function of \§ ¢(H)(H(f) + B(1))* dt is

@ (1) = {117 (1 — 202) 7y explit 235, v(1 — 2it2,) 7] -

Proor. If the representation and the orthogonality conditions of the expansion
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are to hold simultaneously then ¢,(f), 4,, n = 1, 2, ... must satisfy the Fredholm
equation

(12) §5 min (s, 1)(¢(1))($(5))*p(s) ds = Ag(1) .

Condition (ii) has been chosen analogous to the conditions of Anderson and
Darling (1952) so that we can obtain, by solving (12), the spectral representation
of the self-adjoint operator induced on L*[0, 1] by k(s, r) and hence obtain the re-
quired sequences {4,, ¢,(+)}m-,. By Parseval’s Theorem } 5_, v, = i ¢(1)H*(r) dt
and (i) assures us that the latter is finite. Hence, by replacing B(r) and H(r) with
their expansions we see that { ¢(f)(H(f) + B(t))*dt is distributed as 3 5_, (b, +
v,)*. Since (b, + v,)*/4, is a noncentral y,* variable, Y 5, (b, + v,)* is a weighted
sum of such variables having the characteristic function @, (7).
The nth cumulant, K, of the stochastic integral is

13) K, =2"'n— 1! Zv, (4" + n3," ) .
We now complete the analysis for the family of weight functions ¢(s) = as*,

k > —2, and for H(t) = 0, which is the null hypothesis. Letting ¢(s) = (¢(s))th(s)
we see that (12) is equivalent to

HI(5) + - (Ih(s) =0,

subject to #(0) = 0 and A’(1) = 0. It can be shown that
ho(s) = AstI((k + 2)7% 2(aja,)ts o2 (k + 2)7Y) ,

where J(v; x) is a Bessel function of the first kind, 4 is a normalizing constant
and

A, = 4af[(k + 2{j(—=(k + D/(k + 2); m)}’]

with j(v; n) being the nth zero of J(v; x). Thus, we have the following:

COROLLARY 6. The characteristic function for T, = \} at*B*(t)dt, k > —2, is

;) = (I(k + 2)((2ais)}f(k 4 2))+0/kr
X J(—(k + 1)/(k + 2); 2(k + 2)7*(2ais)t)) ¢ .

Letting D(2is) = (P,,(s))’ and 2 = 2is one can derive the following expression
for the probability distribution function:
14 Qa) =1 — L sie (—1y g €
(14) ¢( ) = g =t Sl/zm,l 2(__”0(2)*)é
where ¢(s) = as*, k > —2.

A distribution such as (14) was first (essentially) derived by Smirnov (1936)
and, as has been noted by Darling (1957), it is a far from ideal computing
formula due to the singularities at the end points of the intervals over which

the integrations are performed. However, all the zeros of the Bessel functions
are real, simple and well-spaced. Consequently, by some simple substitutions,
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each integral can be put in the form

x
(15) I= i, (Tq_(—iz)—a dx
where g(x) is well behaved over the interval [—1, 1] and then (15) can be effec-
tively evaluated by Gaussian quadrature of the Chebychev form. This is one of
the techniques used by Grad and Solomon (1955) for the evaluation of the prob-
ability distributions for positive definite quadratic forms. We have evaluated (6)
with ¢(s) = as* for k = —2, -1, —1,0,1,3,2,3,4 with a =k + 1 and for
k= —1,—-5 —%, — 2 witha = k + 2. For k > —1, this choice of normali-
zation makes ¢(+) a probability density (and hence useable as a proper prior
measure) and for —2 < k < —1, since ¢(+) is not integrable, a is chosen arbi-

trarily to yield E[T,] = 1. The results of the above computations appear in
Table 1.

TABLE 1
Selected percentage points for Qg (a) = P[S}, astB(s)ds < a

k =

Qg,(x)
—1.75 —1.50 —1.25 —1.00 —0.75 —0.50 —0.25 0.0 1.00 1.50 2.00 3.00 4.00

0.01  0.2634 0.1781 0.1378 0.1135 0.0194 0.0284 0.0326 0.0345 0.0337 0.0321 0.0303 0.0271 0.0244
0.025 0.3079 0.2151 0.1696 0.1417 0.0245 0.0361 0.0418 0.0444 0.0443 0.0425 0.0404 0.0366 0.0332
0.05  0.3546 0.2557 0.2055 0.1740 0.0304 0.0453 0.0528 0.0565 0.0576 0.0556 0.0533 0.0488 0.0448
0.10  0.4209 0.3160 0.2605 0.2248 0.0399 0.0601 0.0708 0.0765 0.0804 0.0786 0.0762 0.0711 0.0664
0.50  0.8295 0.7495 0.6982 0.6617 0.1268 0.2042 0.2551 0.2905 0.3621 0.3794 0.3915 0.4069 0.4164
0.90  1.7883 1.9951 2.1200 2.2066 0.4542 0.7734 1.0113 1.1958 1.6509 1.7883 1.8938 2.0453 2.1490
0.95  2.2288 2.6060 2.8337 2.9889 0.6204 1.0628 1.3956 1.6557 2.3041 2.5017 2.6539 2.8735 3.0244
0.975 2.6864 3.2453 3.5795 3.8052 0.7937 1.3643 1.7959 2.1347 2.9842 3.2443 3.4453 3.7357 3.9357
0.99  3.3121 4.1194 4.5975 4.9183 1.0300 1.7752 2.3415 2.7875 3.9108 4.2563 4.5236 4.9105 5.1773

Mean 1 1 1 1 3 3 3 3 % g i $ 3

If k = 0, we obtain a special case that has been partially tabulated by MacNeill
(1971) and verified by Rothman and Woodroofe (1972). The computational
technique used in those instances is more convenient, especially for small values
of the argument, and was used as a check on the accuracy of the results. Agree-
ment to the number of places used in the table was obtained.

With the normalizing constant as chosen above it can be seen that T, con-
verges in distribution to a yx,* variable as k — oo, to the constant 1 as k | —2
and to the constant O as k | — 1. As long as one keeps in mind the discontinuity
at k = —1 caused by the different normalizations one can use Table 1 and the
above limiting cases to obtain, by interpolation, approximations to the percentage
points for any k > —2. For example, linear interpolation yields 0.3768 and
cubic interpolation yields 0.3803 as the median for k = 1.5 whereas the exact
result as given in the table is 0.3794.

The kernel with weight function ¢(s) = s~ has a particular appeal since it is
the reciprocal of the variance of Brownian Motion just as ¢(s) = [s(1 — 5)]™'is
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asymptotically the reciprocal of the variance of the process for the Anderson-
Darling statistic, some approximate small sample results for which are given by
Lewis (1961).

If the characteristic function of Theorem 5 cannot be expressed in closed
formi, inversion using (14) may be difficult. However, one may obtain approx-
imations to the distribution function using the first few cumulants given by (13)
and a Gram-Charlier-type expansion using Laguerre instead of Hermite poly-
nomials. For x > 0

' 1 —Q,u(x) = e T, Pu(x),
where .

Py() = Tiheo (= 1)) oo ——
m — k!
and c, is a constant obtained by replacing the kth power of the variable in the
nth Laguerre polynomial with the kth moment of Q, ,,(+). To facilitate compu-
tation of the cumulants when the weight function is ¢(f) = at*, k > —2, wenote
the following formulas:

L= L=k + D/(k 4 2); m}]™ = 27%(k + 2) n=1,
= 274k + 2)¥k + 3)7? n=2,
= 275k + 2)%k + 3)7'(2k + 5)7! n=3.

Exact values of the cumulants for n > 3 can be obtained by computing the

moments for T,, but good approximations result by using only the first term in

the above sum. To obtain an indication of the accuracy of this approximation
technique we used the last four quantiles of Table 1 for k = —1, 0 as arguments

in the Laguerre expansion truncated at n = 6. The results are compared with
the exact probabilities in Table 2.

TABLE 2
Laguerre-type approximations to Qg ,(+) using quantiles of Table 1
Exact Probabilities k=—1 k=0
0.90 0.9135 0.9092
0.95 0.9517 0.9535
0.975 0.9711 0.9738
0.99 0.9878 0.9876

For an example under an alternative hypothesis we let ¢(¢) = 1 and H(r) = t.
Then
2, = {2k 4+ Dx}2, 9.(f) = 24 cos {(2k + D)x/2(r — 1)},
v, = 282, Ty (1 — 2it2,)~% = (cos (2it))~* and
K, = 22"73(2* — 1)(1 4 n2%)(n — 1)! |B,,|/(2n)!

where B; is the jth Bernoulli number. Using the Laguerre expansion truncated
at n = 6 we obtain as approximations to the 0.90, 0.95, 0.975 and 0.99 quantiles
the values 2.68, 3.55, 4.37 and 5.32 respectively.
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