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HYPERADMISSIBILITY IN SURVEY SAMPLING

BY JAN LANKE AND M. K. RAMAKRISHNAN
University of Lund, Sweden and University of Sheffield

Two different definitions of hyperadmissibility are considered. The
relation between hyperadmissibility and admissibility is discussed. Special
attention is given to the hyperadmissibility of the Horvitz-Thompson
estimator.

1. Introduction. It is well known that most sampling designs do not admit
uniformly minimal variance estimators in reasonable classes of unbiased esti-
mators of a finite population total. As a result several other optimality criteria
have been proposed in the literature. In this paper we deal with one of these,
viz. the criterion of hyperadmissibility due to Hanurav. Two slightly different
definitions of hyperadmissibility have been proposed. In Section 3 we discuss
these two definitions, their interrelation and their relations to the definition of
admissibility. Section 4 is devoted to a detailed study of hyperadmissibility in
one of the two senses and Section 5 to that of the other.

2. Notations and definitions. Let U denote the finite population consisting
of the units 1,2, ..., N. A subset s of U is called a sample and a nonnegative
function p on the set S of all possible samples is called a (sampling) design if
2. p(s) = 1. For a given design p, define =, = 3,,, p(s). A design p is said to
be a unicluster design if

s5e€8,5eS, 5 #85,=5N08=0Q0

where S denotes the set of samples s for which p(s) > 0. For a design p, we
denote by S, the set of samples s in S such that i € s and by S,° the complement
of S, with respect to S.

With each unit ; is associated a variate value y, and y = (yy, ys» - -+, yy) 18
considered as a point in the N-dimensional Euclidean space R, which thus acts
as parameter space. Any real-valued function on R, is called a parametric
function and the particular function T given by T = 3V y, is called the popu-
lation total. The conventional problem in survey sampling is to estimate 7' by
observing the values of those y, for which i e s where s is a sample drawn ac-
cording to a design p. An estimator e is a real-valued function on S X R, such
that e(s, y) depends upon y only through those y, for which ies, that is,
e(s, y) = e(s, y') for any two y and y’ such that y, = y/ for all ies. An esti-
mator e is said to be a polynomial, to vanish at the origin, - . -if, for each s¢ S,
the function y — e(s, y) is a polynomial, vanishes at the origin, - . .. The expec-
tation and the variance of an estimator e in a design p are denoted by E(e, y)
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and V(e, y), respectively. For any design p for whichz, > 0fori =1,2, ..., N,
the Horvitz-Thompson estimator of T is defined by é(s, y) = 3,., yi/7;.

Given a class C of unbiased estimators of a certain parametric function, an
estimator ¢, € C is said to be admissible in C if for no other estimator e ¢ C we
have V(e,y) < V(e, y) for all ye R, with strict inequality for at least one
YER,.

The principal hypersurface (phs, for short) R(i), i,, - - -, i,) is defined as the set
of points y € Ry such that y; = 0 for j + iy, i,, - - -, i, where {i}, i, ---, i} isan
arbitrary non-empty subset of U. Clearly the whole space R, can be regarded
as a phs by taking k = N and there are in all 2¥ — 1 phs’s in R,. The interior
R(iy, iy, - -+, @) Of R(iy, iy, - -+, i) is the set of all y € R(iy, iy, -- -, i,) which do
not lie in any phs of lower dimension.

3. Various definitions of hyperadmissibility. The first mention of hyper-
admissibility occurs in Hanurav (1965) where the following definition is given.

DEFINITION 3.1. An estimator e in a class C of unbiased estimators of a cer-
tain parametric function is said to be hyperadmissible in C if for any principal
hypersurface R(i,, i, - - -, i,) in R, the estimator e is admissible in C when the
parameter y is restricted to R(iy, iy, - - -, i).

In Hanurav (1968) the definition has been changed into

DEFINITION 3.2. An estimator e in a class C of unbiased estimators of a cer-
tain parametric function is said to be hyperadmissible in C if for any principal
hypersurface R(iy, i,, - - -, i,) in Ry, the estimator e is admissible in C when the
parameter y is restricted to the interior R°(i,, iy, - - -, i}) of R(iy, &5, - - -, i}).

In fact, the two definitions above do not exactly reproduce what Hanurav has
written but rather what Hanurav probably intended to write; a discussion on this
point is given in Ramakrishnan (1970, page 78) and in Basu (1971, page 228).

It is not clear why Hanurav changed his original definition, especially since
he considers only polynomial estimators in which case the two definitions are
equivalent; cf. statement (iii) in Theorem 3.3 below.

As for the rationale behind hyperadmissibility, Section 4 of Hanurav (1968)
gives a very convincing argument in support of this concept. However, the
reader can easily check that Hanurav’s argument in fact justifies hyperadmissi-
bility in the sense of Definition 3.1 rather than in the sense of Definition 3.2.

At first sight hyperadmissibility in the sense of Definition 3.2 may appear to
be a stronger property than hyperadmissibility in the sense of Definition 3.1.
As will be shown below, this impression is, however, false; one should remember
the peculiar role which the point 0 plays in Definition 3.2: 0 does not belong
to any R°(i,, i, - - -, i,) and the definition thus imposes no condition at all upon
the variance at the point 0.

The following theorem summarizes some relations between the two concepts
of hyperadmissibility.
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THEOREM 3.3. (i) Hyperadmissibility in the sense of Definition 3.2 does not
imply hyperadmissibility in the sense of Definition 3.1.

(ii) If all estimators in C vanish at the origin, hyperadmissibility in the sense of
Definition 3.2 implies hyperadmissibility in the sense of Definition 3.1.

(iii) If the variance V(e, y) of every estimator e in C is continuous, the two con-
cepts are equivalent. In particular, if all estimators in C are continuous, the two
concepts are equivalent.

Proor. For the proof of (i) we ask the reader to look at Example 5.2 in Joshi
(1971). As stated by Joshi, the estimator given in this example is hyperadmissible
(in the sense of our Definition 3.2) in the class 4* of all unbiased estimators of
the population total—although the present authors do not entirely agree that
this fact is easily verified. That the estimator in question is not hyperadmissible
in the sense of Definition 3.1 follows from Theorem 4.4 (to come): the design is
obviously not a unicluster design and thus the Horvitz-Thompson estimator is
the only hyperadmissible (Definition 3.1) estimator in 4*. To prove statement
(ii), suppose e is hyperadmissible in some class C in the sense of Definition 3.2
and suppose that for a certain ¢’ € C we have V(e/,y) < V(e,y) forall yina
certain phs R. Then we have V(e’, y) < V(e, y) in every open phs R* Z R and
hence V(e’, y) = V(e, y) for every y which belongs to some open phs in R, i.e.,
for 0 = y e R. But since all estimators in C have zero variance at y = 0, we
have V(e’, y) = V(e, y) for y = 0 as well and the hyperadmissibility of e in the
sense of Definition 3.1 follows. Finally, the statement (iii) is an immediate
consequence of the fact that any weak inequality between two functions in an
open phs holds in the corresponding full phs as well if the functions in question
are continuous. []

The prefix in “hyperadmissibility” suggests that hyperadmissibility is a stronger
property than admissibility. In case we use Definition 3.1 it is obvious, putting
k = N in the definition, that this suggestion is true. Using Definition 3.2 and
defining “sample” as “sequence,” Hanurav (1968) states that hyperadmissibility
implies admissibility. This is, however, incorrect, and the following example
illustrates that in the setup used by Hanurav (1968) and by Joshi (1971), hyper-
admissibility does not imply admissibility.

ExaMPLE 3.4. In this example (but nowhere else) we follow Hanurav and
Joshi in defining a sample as a sequence (i, i,, - - -, i,) of units from U. Consider
U = {1, 2} and the design p which gives probability } to each of the four samples
5= (1), 5,=(2), s, =(1,2), s, = (2, 1) and let e be the estimator '

e(s,y) = é(s, y) for s=s,s,
=é(s,y) + fly) for s=-ws,
=é(s,y) — f(y) for s=3s,
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where ¢ is the Horvitz-Thompson estimator and where
=1 for =0.

This estimator is easily seen to be unbiased for the population total. Further

we have
Ee —é,y) =0 for y+0

>0 for y=20
whence e is hyperadmissible (Definition 3.2) in the class C = {e, ¢} but not ad-
missible in C. To justify part of Remark 3.8 (to come), observe that by virtue

of Theorem 5.1, the same conclusions hold if we replace the class {e, €} by the
class A* of all unbiased estimators of the population total.

In view of the above example, it would be of interest to seek conditions under
which hyperadmissibility in the sense of Definition 3.2 implies admissibility.
The following two theorems furnish such conditions.

THEOREM 3.5. If the design p gives zero probability to the sample consisting of
the whole population and if the estimator e is hyperadmissible (Definition 3.2) in a
class C of unbiased estimators of the population total, then e is admissible in C.

THEOREM 3.6. If the estimator e is hyperadmissible (Definition 3.2) in a class
C of unbiased estimators of the population total, and if C is convex (i.e., contains
(e, + e,)/2 whenever it contains e, and e,), then e is admissible in C.

LeEMMA 3.7. Let F(y) = XY fy) where f(y) is independent of y, for i =
1,2, ---,N. If F(y) = 0 for all y + 0, then F(0) = 0.

PrOOF. Let & = (¢, ¢,, - - -, €y) Where each ¢, is 0 or 1 and put |e] = X' ¢,.
Then it is easily seen that any function f = f(y) which is independent of at least
one y, satisfies

(3.1 Z.(=D"f(e) =0
where the sum is over all the 2¥ possible values of e. Since each term in 31 fi(y)
satisfies (3.1), so does the sum F(y):

T (—1)"Fe) = 0.
In this sum we know that the 2¥ — 1 terms corresponding to & + 0 are zero and
thus the remaining term F(0) must be zero as well. [

Proor oF THEOREM 3.5. Given any e, € C with
(3.2) Ve, y) = V(e y) for yeR,
we shall show that
3.3) Vie, y) = Ve, y) for yeR,.

Now let R denote any phs and R’ its interior. Then the restriction of (3.2) to
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R® and the hyperadmissibility of e give V(e,, y) = V(e,y) for ye R". Thus
V(e,, y) = Ve, y) for every y which belongs to the interior of some phs, i.e.,
for y + 0. Both e and e, being unbiased, we thus have

(3.4) 2, P(3S)(e(s, y) — €(s,¥)) = 0 for y 0.

Since p(U) = 0, every term in this sum is independent of at least one y, and so
Lemma 3.7 shows that the equality in (3.4) in fact holds for y = 0 also. []

Proor oF THEOREM 3.6. The proof runs exactly parallel to the proof of
Theorem 3.5 until we reach

(3.5) Vie, y) = Ve, y) for y+0.

Let p(y) denote the correlation coefficient between e and e, and introduce e, =
(e + e,)/2. Since C is convex, e, C. Using (3.5) we get

Vien y) = 3(1 + p(¥) V(e y) for y 0

and since e is hyperadmissible we have p(y) = 1 for y = 0 which means that
there are two functions A(y) (= 0) and B(y) such that

(3.6) e(s, y) = A(y)e(s, y) + B(y) for y#0,5¢S.
Taking variances on both sides in (3.6) gives 4*(y) = 1 for y + 0 and hence
A(y) = 1 for y # 0. Taking expectations on both sides in (3.6) gives B(y) = 0
fory + 0:
(3.7) es, y) = e(s, y) for y#0,5¢S.
Since e(s, y) and e,(s, y) depend upon y only through those y, for which i e s,
(3.7) implies
(3.8) el(s, 0) = e(s, 0) for s+ U,seS.
Finally, since e and e, have the same expectation, (3.8) implies
(3.9) e,(U, 0) = e(U, 0)
in case Ue §. Now (3.7) and (3.8) together with (3.9), if relevant, give

e(s, y) = e(s, y) for ye Ry, seS
from which (3.3) obviously follows. []

REMARK 3.8. An examination of the proof of Theorem 3.5 reveals that we
have never used the fact that “sample” = “set” and thus the theorem remains
true also if we interpret “sample” as “sequence”. In contrast to this, Theorem
3.6 is true only with the set-definition: the proof breaks down between equa-
tions (3.8) and (3.9) if we use the sequence-definition and Example 3.4 with
C = A* shows that no other proof can be found in this case.

The reader will no doubt observe that one case is left out: if p(U) > 0, if Cis
not convex and if “sample” = “set”, does then hyperadmissibility in the sense
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of Definition 3.2 imply admissibility? The present authors have been entirely
unsucessful in answering this question.

4. Hyperadmissibility in the sense of Definition 3.1. In this section hyper-
admissibility is to be understood in the sense of Definition 3.1.

It is well known that the Horvitz-Thompson estimator };,., y,/x,, if unbiased,
is admissible in the class 4* of all unbiased estimators of the population total.
In view of the results of the preceding section, the following theorem is a
generalization of this fact.

THEOREM 4.1. Let p be a design such that =; > O for all i. Then the Horvitz—
Thompson estimator € is hyperadmissible in the class A*.

Proor. Given any ee A* such that V(e,y) < V(e,y) in a certain phs
R(iy, iy - -+, i), we shall show that V(e, y) = V(é, y) in that phs. For the case
k = N, the result is well known from Godambe and Joshi (1965). The essential
idea in their proof is to use induction on n to show for every n that e(s, y) =
&(s, y) in that part of R, where at most n coordinates have nonzero values. It
is, however, easily seen that exactly the same idea can be used to show the cor-
responding result also in the case k < N; here the induction should be performed
with respect to the number of nonzero elements among the coordinates with
numbers iy, iy, -+, . []

Now we will investigate whether the Horvitz-Thompson estimator is the only

hyperadmissible estimator. Let 4,* denote the class of estimators in 4* which
vanish at the origin.

THEOREM 4.2. If an estimator e is hyperadmissible in the class A)*, then e = é.

Proor. Let R,* denote the part of R, where at most k coordinates are non-
zero and consider the following statement:

(4.1.k) if for every phs of dimension at most k, the estimator
e is admissible in A* when the parameter is restricted
to that phs, then e(s,y) = é(s,y) forall seS and all
ye RN(k)'

Proceeding by induction we shall show that (4.1.k) istruefork = 1,2, ..., N;
then the case k = N obviously gives the theorem. First consider the case k = 1.
It is easily seen that

E(ee,y) = E(é% y) for ye R,®
whence
(4.2) Vie,y) — V(é,y) = E((e — &), y) for ye R, .
Considering the one-dimensional phs R(i), we have

Ve, y) < Ve, y) for ye R(i)

and hen;:e, e being admissible when y is restricted to R(i),
Vie,y) = V(e,y) for ye R(i)
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which in view of (4.2) gives
e(s, y) = é(s, y) for seS, yeR().

This being true for every i, (4.1.1) follows. Now suppose we know that (4.1.k-1)
is true and suppose e is admissible when y is restricted to any phs of dimension
at most k. Since e(s, y) depends upon y only through those coordinates y, for
which i e s, we know that

e(s, y) = &(s, y)
holds not only for all y € R,*~» and all se S but also for all y ¢ R,,* and those
se S in which at least one of the units with nonzero y-value is missing. Now
let y be any vector with k nonzero components and let §’ denote the set of
samples sin § which contain all the & units with nonzero y-values. Both e and
€ being unbiased we have

2ises P(9)e(S, ¥) = 2l,c5 P(S)E(s, y)
and since e(s, y) = &(s, y) for s ¢ S’, we have
2iecs P(9)E(S, ¥) = X,es P(9)E(s, ¥) .
But ¢&(s, y) has the same value for all se S’ whence
Zises P(S)e(S, ¥)E(5, ¥) = 2l,es P(S)(E(s, ¥))*
E(ee, y) = E(é%, y) .

and

As before, this gives (4.2) for y € R,*’ and the rest of the argument is identical
with that in the case k = 1. []

The following lemma is the essential step in the investigation of the unique-
ness of & as hyperadmissible estimator in A4*.

LemMA 4.3, If the design p is not a unicluster design with exactly two clusters
and if the estimator e is hyperadmissible in the class A*, then e € A*.

ProoF. Let R(i) be any one-dimensional phs. Arguing as in Joshi (1971,
equations 14-18) we see that the admissibility of e in 4* when y is restricted
to R(i) implies the existence of a function g, on R, and a constant k,° such that
for y € R(i) we have

e(s,y) = 9(y)  for seS,
=kf for seS;c.

Here we (unlike Joshi) can put y = 0 and, introducing the notations k(s) and k;
for e(s, 0) and g,(0) respectively, we have
(4.3) k(s) = k;, for selS,

‘ =ks for seSc.
To show that k(s) = O for all s in §, we distinguish three cases: p is a non-
unicluster design, p is a unicluster design with at least three clusters and p is a
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unicluster design with just one cluster, i.e., a census. In the first case there
exist two units, say 1 and 2, and two samples in S, say s, and s,, such that

591, 5352, 5,91, s, 3 2.
This implies
k(s) = k,, k(s)) = k;, k(s) = k,, k(sy) = ky°

and hence in particular

(4.4 ky, = k.
But the unbiasedness of e for y = 0 gives >}, p(s)k(s) = 0 whence
(4.5) kymy + k(1 — ) = 0.

Now (4.4) and (4.5) obviously give k, = k,° = 0 and thus (4.3) shows that
k(s) = 0 for all se S.

In case p is a unicluster design with at least three clusters, it is obvious that,
given any two samples s, and s, in S, there is a unit, say i, which occurs in
neither s, nor s, and thus

k(s) =k, k(sy) = k.
This shows that k is constant over S and since E(k) = 0, this constant value
can be nothing but zero.

Finally, if p is a census, 4* contains just one estimator, so does 4,*, and the
proof is complete. []

REMARK 4.4. That the condition “not unicluster with exactly two clusters”
is necessary in Lemma 4.3 will be seen in the proof of Theorem 4.5.

Now we are in a position to give a complete description of all hyperadmissible
estimators in 4*.

THEOREM 4.5. If the design p has =, > 0 for all i, then either

€ is the only estimator which is hyperadmissible in  A*
or
every e A* is hyperadmissible in A* .

When p is a non-unicluster design or a unicluster design with at least three clusters,
the first case occurs; when p is a unicluster design with exactly two clusters, the second
case occurs; when p is a unicluster design with just one cluster, i.e., a census, both
() cases occur.

Proor. If p is a non-unicluster design or a unicluster design with at least
three clusters, the result follows from Lemma 4.3, Theorem 4.2 and Theorem
4.1 if we observe that an estimator e € A4,* which is hyperadmissible in 4* also
is hyperadmissible in A4,*. If p is a unicluster design with exactly two clusters,
it is easily seen that A* coincides with the class of estimators of the form
é(s, y) + k(s) where Y, p(s)k(s) = 0 and that every such estimator is hyper-
admissible. Finally, when p is a census, 4* = {¢} and the result follows. []
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REMARK 4.6. The part of Theorem 4.5 which deals with non-unicluster de-
signs was given in Ramakrishnan (1970) with another (and much longer) proof.

5. Hyperadmissibility in the sense of Definition 3.2. In this section
hyperadmissibility, unless otherwise stated, is to be understood in the sense of
Definition 3.2.

The following condition upon a design p is used by Joshi (1971).

ConpITION 5.1. There is a sequence iy, i,, - - -, i, of units such that

S = ’;=1 Si:
S:.n Uizt Ss) #+ @ for j=2,3,.-.,k.
Joshi (1971) states the following theorem.
THEOREM 5.2. Let p be a design such that m; > 0 for all i and such that Condition
5.1 is fulfilled. Then the Horvitz—Thompson estimator é is the only hyperadmissible
estimator in the class A* of all unbiased estimators of the population total.

This theorem obviously asserts two things:
(5.1) ¢ is hyperadmissible in A4*,
(5.2) no other estimator is hyperadmissible in ~ 4* .

An examination of Joshi’s proof reveals that he only proves (5.2), completely
forgetting (5.1). (It should be observed that neither (5.1) nor (5.2) follows from
the corresponding part of Hanurav’s (1968) theorem where, in addition to some
other changes, A* is replaced by the class M* of all polynomial unbiased esti-
mators.) The following theorem obviously fills up the gap left by Joshi.

THEOREM 5.3. Let p be a design such that =; > O for all i. Then the Horvitz—
Thompson estimator é is hyperadmissible in the class A* of all unbiased estimators
of the population total.

Proor. Given any ee A* such that V(e,y) < V(é,y) in the interior
R(iy, iy, ---,1,) of a certain phs, we shall show that V(e,y) = V(e y) in
R(iy, iy, -- -, i,). For notational simplicity we assume that the phs in question
is R(1, 2, - .-, k). Putting

h(s,y) = e(s, y) — é(s,y)
it is sufficient to show that
(5.3) h(s,y) =0 for seS,yeR(1,2, .-, k).

To achieve this, we introduce a discrete probability measure « on R, such that
if y is a random variable with distribution given by «, then

(5.4) Vs Va» -+ 5 yy are independent,
(55) Pa(yl=0)=0 for i:l,z,-..,k
=1 for i=k+1,k+2,.---,N.
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Expectation, variance and covariance with respect to @ will be denoted by E,, V,
and C,, respectively. Now we will use some results from Section 6 of Godambe
and Joshi (1965). Their equations (37) and (43) give

(5.6) E, V() = E, V(&) + E,V.(h) .
Their equation (46) gives
(5.7 E Vye) = E,Va(e) + E(Eu(e) — E(T))" — V(T)

and for e = ¢ this simplifies into
(58) E, V@) = E, V(&) + V,(&, x) — V(T)

where x = (x;, Xy - -+, Xy) = (Eqyp» Eqysy -+ E.yy). Combining these three
relations and skipping one nonnegative term we get

(59) ' Ep Va(h) = Vp(e-’ X) + Ea Vp(e) - Ea Vp(e_) :

Since by assumption V,(e, y) < V,(¢,y) in R(1,2, ---, k) and since a has its
support in R°(1, 2, - .-, k) we get

E.V,(e) = E.V,(e)
which, when combined with (5.9), gives
(5.10) E V (k) < V(e x).

Now let a, a,, - - -, a,, b, b, ---, b, be arbitrary numbers with a, < 0 < b, for
all i, let a have its support on the 2* points (¢, ¢;, -++,¢, 0,0, .-+, 0) where
each ¢, equals either a, or b, and choose the probabilities P,(y; = a;) and
P.(y; = b;) such that E,y, = 0 for all i, i.e., such that x = 0. For this choice

of a, (5.10) gives
E V,(h) =0,
that is,

(5.11) Vh,s)=0 for seS.

Until further notice, let s be a fixed sample in § and call the function y — A(s, y)
just “the function #”. From (5.11) it obviously follows that the function £ is
constant on the support of a. For a fixed i (< k), let a; and b, vary over
(—o0, 0) and (0, co), respectively, while all the other a’s and b’s are constant.
Then it is seen that 4 is constant on each line in R(1, 2, - - -, k) parallel to the
ith axis. This being so for all i, it follows that 4 is constant in the whole of
R(1,2, -, k):
h(s, y) = h(s) for yeR(1,2, -.-, k).
Now the inequality V (e, y) < V,(¢, y) gives
Vy(h,y) +2C,(h,&,y) =0 for ye R(1,2, ..., k).

Letting the nonzero coordinates y,, y;, - - -, J, tend to zero, C (4, ¢, y) tends to
zero while V,(k, y) is constant (since A(s, y) does not depend upon y). Thus

V(h,y) =0



HYPERADMISSIBILITY IN SURVEY SAMPLING 215

and h is constant also as function of 5. Since E,(k, y) = 0, this constant value
can be nothing but zero. []

Using some of the results of earlier sections, we now give a short alternative
proof of the statement (5.2).

THEOREM 5.4. Let p be a design such that =; > 0 for all i and such that Condition
5.1 is satisfied. If the estimator e is hyperadmissible in the class A*, then e = ¢,
the Horvitz-Thompson estimator.

Proor. We will first prove that e e A4)*. Using the fact that e is admissible
when y is restricted to the interior of the one-dimensional phs R(i), Joshi (1971,
equations 14-18) shows that e(s, y) must be constant, say k., for se S;° and
y€ R(i). It follows that e(s, 0) = k,° for all se S,°. Since / is arbitrary, it is
clear that under Condition 5.1, e(s, 0) must have the same value, say k¢, for all
se 8. The unbiasedness of e shows that k° = 0 and hence e ¢ Ay*. Now it is
obvious that e is hyperadmissible not only in 4* but also in 4,*. From part
(ii) of Theorem 3.3 follows that e is hyperadmissible in A,* in the sense of
Definition 3.1 and finally Theorem 4.2 shows that e = ¢. [
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