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ASYMPTOTIC NORMALITY OF THE STOPPING TIMES
OF SOME SEQUENTIAL PROCEDURES

By P. K. BHATTACHARYA AND ASHIM MALLIK

University of Arizona and University of Minnesota

Two problems of sequential estimation, viz. the estimation of the
mean of a normal distribution with unknown variance and the estimation
of a binomial proportion are studied as the cost per observation tends to
0. . For the first problem the asymptotic distribution of the stopping time
of a procedure due to Robbins (1959) is shown to be normal. For the second
problem the stopping time of a modification of Wald’s (1951) procedure is
asymptotically normal when the parameter is different from 3. When the
parameter is 4, this stopping time does not enjoy asymptotic normality.
The method employed is to first prove the convergence in probability of
the stopping time which is then converted to convergence in distribution
by using a theorem of Wittenberg (1964). This method also yields a new
proof of a theorem of Siegmund (1968).

1. Introduction. Let X, X,, --- be a sequence of independent and identically
distributed random variables with finite variance and 7, = X, + ... 4+ X,. In
sequential analysis the stopping time ¢ of a procedure frequently turns out to
be the smallest positive integer n for which T, (or some nice function of T,
such as a quadratic) crosses a boundary f(n). In the asymptotic theory of
sequential analysis, instead of a fixed boundary f(n), we have a system of
boundaries f,(n) indexed by a parameter ¢ | 0 and r, is the stopping time corre-
sponding to the boundary f,(n). In the case when E(X,) > 0 and f,(n) = ¢7'n",
0 < u < 1, the asymptotic distribution of r, was derived by Siegmund (1968).
His result for special values of u relates to sequential procedures developed by
Chow and Robbins (1965) and Darling and Robbins (1967). In this paper we
consider two problems of sequential estimation, viz. the estimation of the mean
of a normal distribution with unknown variance and the estimation of a binomi-
al proportion, as the cost per observation ¢ — 0. For the first problem we derive
the asymptotic distribution of the stopping time of a procedure studied by Rob-
bins (1959) and Starr (1966), and for the second problem we derive the asymp-
totic distribution of the stopping time of a procedure which (except for some
slight modifications introduced by Smith (1971)) belongs to a general class of
sequential estimation rules due to Wald (/1951).

Our method can be outlined as follows. Because of the nature of the bounda-
ries f,(n), it is relatively easy to show that there is a function ¢(c) which tends
to co as ¢ — 0 such that ¢ /p(c) converges in probability to a constant & > 0.
Let Y, = (X, — E(Xy)}/(Var (X))t and S, = Y, + -+ + ¥, = {T, — nE(X))} ~
(Var (X,))}. Then a theorem due to Wittenberg (1964) applies to S, and S, _,
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and we see that both S_ /{p(c)a}t and S_ _,/{¢(c)a}! converge in law to a standard
normal random variable N(0, 1). Now by definition of r,

S.(Var ()t < fie, — 1) — (7. — DE(X)
S.(Var (X))} = [i(z) — w.E(Xy)
and we show that {f,(z,) — f.(r, — D}/{e(c)}} = o,(1). This implies that
{/e(z) — EX)}/fp(e)a Var (X} —_ N(O, 1)

from which the asymptotic normality of ¢, is derived. This method not only
works for the two problems mentioned above (except in an interesting special
case dealt with in Theorem 3(b)), but also yields a new proof of Siegmund’s
(1968) result.

The key step in our analysis is to convert the convergence in probability of
t, to convergence in law. We state below a special case of a theorem of Wit-
tenberg (1964) needed for this purpose.

and

THEOREM 1 (Wittenberg). Ler Y, Y,, - .- be independent and identically distri-
buted random variables with mean 0 and variance 1 on some probability space and
S, =Y, + - 4+ Y,. Ift, 1, --- isa sequence of positive integer-valued random
variables on the same probability space such that t,/n converges in probability to a
positive constant a, then S_ [(na)* converges in law to N(0, 1).

2. Estimation of a normal mean when the variance is unknown. X, X,, - .-
are independent normal random variables with mean p and variance ¢?, both
unknown. Consider the problem of sequentially estimating » when the loss in-
curred in estimating ¢ by £ after n observations is | — p|* + cn. If f is taken
to be the current sample mean X, = n~! 3.7 X, at the stopping time, the risk of
stopping at time n becomes ¢’n7' + cn. Hence if ¢ were known, one would
use a fixed sample rule using either [n,] or [n,] + 1 observations where n, is the
solution in n of the equation ¢* = cn* and [a] is the largest integer < a. When
¢ is unknown, we can try to imitate this procedure by using the current sample
variance 5, = (n — 1)7 31 (X, — X,)* in place of ¢* at each stage. This gives
rise to the following sequential procedure: “Stop sampling at the first n = 2
for which 17 (X, — X,)* < ¢(n — 1)n*, and estimate ; by X,.” Let r, denote
the stopping time of this procedure. We derive the asymptotic distribution of
t, as ¢ — 0 in the following theorem.

THEOREM 2. Suppose X,, X,, - - - are independent normal random variables with
mean p and variance o®, and X, = n"' 30 X,. If 7, is the first n for which
(X, — X,)? < e(n — 1)n?, then

(r. — ci0)/(3e o) . N(O, 1)
asc 0.

REMARK. Robbins (1959) first suggested the above procedure and investigated
some of its asymptotic properties as ¢ — oo. Later, Starr (1966) used Robbins’
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argument in the context of a somewhat more general loss function and studied
various asymptotic properties of the resulting procedure as ¢ — co. Here, we
are keeping ¢’ fixed and allowing ¢ — 0, but Theorem 2 can be easily converted
to an asymptotic result in which ¢ is fixed and ¢ — co.

Proor or THEOREM 2. We first note that the joint distribution of {37 (X, —
X,)? n=2,3,...}is the same as that of {}7'&,, n = 2,3, ...} where &,/d?,
&,/o?, - - - are independent y,* random variables (see, e.g., Robbins (1959)). We
can, therefore, consider ¢, = z, — 1 as the first n for which Y7 &, < en(n + 1)%
This reduces the problem to the form described in the introduction with f,(n) =
cn(n 4 1)*. We first show that

) ctt, —, 0 as ¢—0.

To show this, we note that 7, can equivalently be defined as the first n such that
¥y, < cg(n) where y, = n~'¢2 3,7 &, and g(n) = ¢7*(n + 1)%. Since y, —,, 1 as
n — oo, Lemma 1 of Chow and Robbins (1965) applies here. Hence cg(t,) —, ..
1, from which (1) follows. In the notation used in the introduction, we can
rewrite (1) as

(2) tjo(c) =, 5 @ as ¢—0

where ¢(¢c) = ¢* > ocoand a =0 > 0. LetS, = 37 (£, — ¢%)/(2!¢?). Then by
virtue of (2), Theorem 1 applies to S, and S, _, and we have

3) S, /(cto)t >, N(©O,1)  and S, _/(c7ta)t - N(O, 1).
But by definition of ¢,

(42) Simil(€ha)t > {e(t, — )2 — (1, — 1)}f(2c09)}

and

(4b) S, J(eHo)t < {er (1, + 1) — o*1)/2cH0Y}

and using (1) it is easy to see that

(5) RHS of (4a) — RHS of (4b) = o,(1).
Combining (3), (4a), (4b) and (5), we have

(6) fet.(t, + 1) — o}/2c0%) - N(O, 1) .

We now write

%) fer,(t, + 1) — o*1}/(2c o)
= (ctto™D{ct(t, + D)o~ 4 1}(t, + 1 — c"¥0)/(2c*0)}
= {1+ 0,(DHZ + 0,(D}(x. — c7}0)/(2c o)}
= {1+ 0,(D)(z, — c¥a)/(3eto)!

by using (1). The theorem now follows from (6) and (7).

3. Estimation of a binomial proportion. X, X,, - .. are independent random
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variables taking values 0 and 1 with probabilities 1 — ¢ and ¢ respectively and
I, =X + --- + X,. Consider the problem of sequentially estimating # when
the loss incurred in estimating 6 by § after n observations is [§ — Gp + cn.
Following a line of argument due to Wald (1951), we see that if we always
estimate # by the current sample mean n~'T,, the risk of stopping at time n
becomes n~'¢(1 — 0) + cn. Thus it is advantageous to take one more obser-
vation at time n only if {n™' — (n 4 1)7}0(1 — 6) > ¢, i.e., O(1 — 6) > cn(n + 1).
Replacing ¢ by its current estimate n~'T, in the last inequality, we obtain a
procedure which stops at the first n for which 7,(n — T,) < cn’(n + 1) and esti-
mates ¢ by n='T,,. However, this procedure makes no sense because 7,(1 — T) =
0 with probability 1. Even if we modify this procedure by forcing the sampl-
ing to continue at least to the kth stage, we still find T (k — T},) = 0 with prob-
ability ¢* 4 (I — 6)* even when ¢ becomes very small which makes the pro-
cedure unsuitable for small ¢. To overcome this difficulty, Smith (1971) modified
this procedure by using the estimate (n 4 1)~(T, + 1) for ¢ to determine when
0(1 — ) drops below cn(n + 1). This gives rise to the following sequential
procedure: ““Stop sampling at the first n for which (7, + 4)(n — T, + 1) <
en(n + 1)°, and estimate ¢ by n~'T,.” Smith (1971) showed that this procedure
is asymptotically minimax in the sense of Wald (1951) as ¢ — 0. We now
derive the asymptotic distribution of the stopping time ¢, of this procedure in
the following theorem.

THEOREM 3. Suppose X,, X,, - - - are independent random variables taking values
0 and 1 with probabilities 1 — 6 and 0 respectiely, 0 < 0 < 1, and T, = X, + - -+ +
X If t isthe first n for which (T, + %)(n — T, + 1) < en(n + 1), then as ¢ | 0,

(a) [ce — ¢7HO(L — O)R]/[e4]0 — H{o(1 — 6)}]
—_ NO,1) if 61,
(b) Ply? <t — 1] < lim inf,,, P[2{(4c)~* — 2.} < 1]

< lim sup, , P[2((4c)* — 7.} < 1]
S Pl =10+ 1] it 0=4%.
Proor. We first show that
(8) cir, >, {0(1 — )} as ¢—0.

To show this, we note that ¢, can be equivalently defined as the smallest n such
that y, <cg(n) where y, = [{(n + )T, + DO — (n+ )T, + HY(1 — 6)]
and g(n) = n(n + 1){6(1 — 6)}~*. Since y, —, . 1 as n — oo, Lemma 1 of Chow
and Robbins (1965) applies here. Hence 7, —, . co and cg(r,) —.,. 1, from
which (8) follows. In the notation used in the introduction, we now rewrite
(8) as

) /() >us @
where ¢(c) = ¢t and « = {6(1 — O)}}. Let S, = (T, — n6)/{6(1 — 0)}}. Then
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by virtue of (9), Theorem 1 applies to S, and S, _, and we have
(10) S He0(1 — 0)F — . N(O, 1) and
S, /{e70(1 — N} —_ N©O, 1).
Again, by definition of z,,
(11a) [z.0 + 0}1 — 0)5S,c + e (1 — 0) — 031 — 0)55% + 1}
< et (e, + 1y
and
(11b) {(ce = 1)0 + 041 — 0)ES. ., + }
X (7o = (1 = 0) — 01 — O3S, + 3}
> c(r, — D)2
At this point we assume that 0 < ¢ < } and define g = {(1 — 6)/6}* —
{6/(1 — 6)}}. Then 8 > 0. (For { < # < 1, interchange ¢, | — ¢ and T,, n —
T, and follow the same proof.) We now rearrange the terms in (I11a) and (11b)
to obtain,

(12a) S He(e)alt + U, < 7 (et} — @)[[{¢(c)a}ia’B]
(12b) Sille(e)alt 4+ V, > t (et — &)/[{p(c)a}ia’8],
where

(13a)  {p(c)a}ifU, = (2a°)7" + (4a’c)™

— {e()a}*(3c? + 37, 4 1) — 7,783,
(13b)  {p(c)a}pV, = 2a?) — 1 + {da(c, — D} = (r, — 7IS2 .
Now 7,/¢(c) = a + o,(1) and by (10), S, /{¢(c)}? and S, _,/{¢(c)}* are both O (1).
Hence the RHS of (13a) and (13b) are both 0,(1). Since ¢(c) — o as ¢ —0,
this implies

(14) U =o,l), V.=o,1).
From (10), (12a), (12b) and (14) we now conclude that
(15) (et} — a)[[{p(c)a}ia’f] — . N(O, 1) .

We now use (9) to see that
(e — a)[[{p(c)atia’f]

(16) = (zo/p(){(z./0(0) + a}{z. — e(c)a}/[{g(c)a}a’]

= {a + o, (D}2a + o,(H}{z. — p(c)al/l{p(c)a}ta’s]

= {1 + o,(D}fr. — p()a}/{p(c)ap’/4}* .
The first part of the theorem now follows from (15) and (16).

Now consider the case when ¢ = 1. In this case, (11a) and (11b) are re-

written as
(17a) T, 18T A+ 4e(r, + 1 = (1 + 7,77 (1 — dez?)
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and
(17b) T, NS —der? < vl — dett).
From (9), (10), (17a) and (17b) we conclude that
(18) W, — 1<l —4e?) = W, + 1
where W, — . {N(0, 1)}* = 3,°. Again, using (9) we see that
(19) (1 — 4er?) = 2{(4e)~t — 7 J(ctr, + 2¢7.?)
= 2{(4c)7 — < H{1 + o, (1)} .
The second part of the theorem now follows from (18) and (19).

REMARK. The case # = }is so different because of the following reason. Since
4(n'T,)(1 — n™'T,) < 1, 7, is bounded above by r* which is the first n for which
d4en* = n 4 1. It is easy to see that ¢ .* < 2 4 [(4c)~}]. Hence, when 0 = },
2 + [c=HO(1 — 6)}}] — =, is a nonnegative random variable for all c. However,
for other values of ¢, c=#{#(1 — #)}* is much less than ¢ * and the mass of r, is
distributed on both sides of ¢ #6(1 — )}t.

4. A theorem of Siegmund. Let X, X,, --. be independent identically distri-
buted random variables with mean g > 0 and finite variance ¢, and T, =
X, + .-+ + X,. Let ¢, denote the first # for which 7', > ¢7'n* where 0 < u < 1.
Such stopping rules arise in the context of some sequential rules studied by Chow
and Robbins (1965) and Darling and Robbins (1967). Here we use our method
to give an alternative derivation of the asymptotic distribution of z, as ¢ — 0
first obtained by Siegmund (1968).

THEOREM 4 (Siegmund). Suppose X,, X,, --- are independent and identically
distributed random variables with E(X|) = ¢ >0, Var (X)) = d* < o0 and T, =
X, + - + X,. Ift, is the first n for which T, = ¢7'n*, 0 < u < 1, thenasc | 0,

(1 — w12, Yz, — 2) - N, 1)

where 2, = (cp)V/*~V,

We shall first show that 7 /2, converges in probability to 1. Since the random
variables here are unbounded in both directions, Lemma 1 of Chow and Rob-
bins (1965) does not apply here as it did in the other two cases. This and another
fact needed in the proof of Theorem 4 are established in the following two
lemmas.

LEMMA 1.
T, —p 1 as ¢|0.

Proor. Fix 0 > 0. Then
Ple, > A1 4 8)] < LT (X, — 1) < A1 + 8))* — A(1 + d)]
which is easily seen to be O(c/*~*) by the Tchebychev inequality. On the other
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hand
Plr, < 2(1 —9)]

Il

P (X, —p)
> c7n* — np for some n < A(1 — d)]
= P[maxlgngxcu—ﬁ) (Cﬂlnu - nﬂ)—l Z;L (Xz - /l) 2 1]
since ¢~n* — npp > 0 for 1 < n < 2,(1 — 9). Now for ¢ small enough so that
A, = {0 4+ w7 — 1}7', the numbers (c7'n* — np)™, 1 = n < 2,(1 — ¢)are non-
increasing. We can thus apply the Hajek-Rényi inequality (1955) to get
(20) Pz, < 2,(1 — 0)] < o°c 1277 (n* — nep)™
= g%t T L — (nfA )
é O.ZCZ{I . (1 _ 5)1——11}—2 Zfbc:(ll—é) n—2u .
We now consider three cases.
Case (i). u> 4. Here Y %1=9 p=2 < 3= n~** < co. Hence c® 3777 n7™ =
Oo(c?).
Case (ii). u =14
¢ Y 10=0 p= = O(c* log ¢).
Case (ili). # < %. Here 321 n=2 <1 + (1 — 2u)7'[{A(1 — o)™ — 1].
Hence ¢ 3120~ n7* = O(cV7").
Thus in all cases the RHS of (20) goes to 0 as ¢ — 0 and that concludes the
proof.

LEMMA 2. Suppose Z, = 1 + o,(1), and a is a constant. Then
Zs— 1= (Z,— Hfa+ o,(1)}.
Proor. By stochastic Taylor expansion.

Proor oF THEOREM 4. Let S, = (T, — nu)/o. Since t,/2, — 1 in probability
and 2, — oo as ¢ — 0, Theorem 1 applies on S_ and S, _, and we have

(21) S. |2} —_. N, 1) and S. /At —_ N, 1).
Again, by definition of 7,

(222) S J34 = (e — v n)f(o2)

and /

(22b) S. /A < (e7Nz, — 1) — (z. = Dp)/(a2}) -

Now since 7,”! = 0,(1), we use Lemma 2 to get
RHS of (22a) — RHS of (22b) = [¢™Yz,* — (r, — 1)} — p]/(04})
(23) =c'c Ml — (1 — t,7H)"}/(e2}) + o(1)
= e e, Mu + o (DN/(0A) + o(1)
= u[ed {1 + o,(NIT{1 + 0, (}/(e4) + o(1)
= uo"'¢7 2, H1 + o, (1)} + o(1) = O,(c?*™¥).
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By (22a), (22b) and (23), we have
(24) (pry — 7' )[(04}) — . N(O, 1) .
Finally, using Lemma 1 and Lemma 2 again, we have

(23) (7o — e7) = pr{l — (A[7)' 7} = prfl — (Afr)H{1 — u + o, (1)}
= (1 — w)(z, — )1 + o,(1)} ,
and the theorem follows from (24) and (25).

REMARK. In the framework described at the beginning of this section, let ¢,
be the first n for which 7, < cn*, u > 1. What can we say about the asymptotic
distribution of 7, as ¢ | 0? In order to make the probability of early crossing
negligible as ¢ — 0 in this case, we must have P(X; > 0) = 1. Under this con-
dition we tried to look for some simple relationship between r, and ¢, hoping
that Theorem 4 will give the answer to the above question as an immediate cor-
ollary. The obvious way to connect the two problems is to reflect the bounda-
ry cn*, u > 1, as well as the sample path {(n, T,), n = 1,2, ...} across the
equiangular line. In this way the problem is transformed to one in which a
renewal process crosses the boundary c-vus*, If X, are exponential random
variables, the renewal process is a Poisson process and in that case the asymptotic
distribution of 7, can be obtained from Theorem 4 with a little effort. This
argument also extends to the case where the X; are gamma random variables
with any degrees of freedom. However, we could see no way to make this
argument work in general because the renewal process {(T,, n), n = 1,2, ...}
does not have stationary and independent increments in general. However, we
can apply the method used in this paper directly to this problem to get the
result,

{p(u = Do=274) (1, — 2) — . N(O, 1)
asc | 0, where 4, = (p/c)V™*~V. Except for some small differences in the bounda-
ry, Theorem 2 can now be regarded as a special case of this result.
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