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ASYMPTOTIC EXPANSIONS RELATED TO MINIMUM
CONTRAST ESTIMATORS

By J. PFANZAGL
University of Cologne

This paper contains an Edgeworth-type expansion for the distribution
of a minimum contrast estimator, and expansions suitable for the compu-
tation of critical regions of prescribed error (type one)as well as confidence
intervals of prescribed confidence coefficient.

Furthermore, it is shown that, for one-sided alternatives, the test based
on the maximum likelihood estimator as well as the test based on the de-
rivative of the log-likelihood function is uniformly most powerful up to a
term of order O(n-1). *

Finally, an estimator is proposed which is median unbiased up to an
error of order O(n—!) and which is—within the class of all estimators with
this property—maximally concentrated about the true parameter up to a
term of order O(n-1?).

The results of this paper refer to real parameters and to families of
probability measures which are ‘‘continuous’” in some appropriate sense
(which excludes the common discrete distributions).

1. Introduction. It is well known that maximum likelihood estimators are
asymptotically normally distributed. It is known as well that the accuracy of
this normal approximation is insufficient for small sample sizes. A theorem like
that in Pfanzagl (1971) stating that the error of the normal approximation is of
order O(n~%), is merely a more precise description of a desolate situation.

One possible expedient is the use of normalizing transformations. Approaches
to a general theory of normalizing transformations can be found in the papers
by Bol’shev (1959) and Borges (1971). In the case of hypotheses testing the use
of normalizing transformations seems to be adequate, though it is not particu-
larly flexible if an accuracy of higher order than O(n~?) is wanted. In the theory
of estimation it is of dubious value: Even if there is a normalizing transfor-
mation not depending on the unknown parameter, it leads to an estimator of
some transform of the parameter, not of the parameter itself.

For these reasons we wish to explore another possibility, namely to give
Edgeworth-type expansions for the distributions related to tests and estimators.
This approach leads—under suitable regularity conditions—to approximations
which are sufficiently accurate for all practical purposes.

The general theorem according to which minimum contrast estimators are
asymptotically normally distributed up to an error of order O(n~?) requires, of
course, a number of regularity conditions (such as twofold differentiability of
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the densities with respect to the parameters, integrability of powers of these
derivatives etc.). It holds, however, for “discrete” as well as “continuous”
distributions. The existence of an Edgeworth expansion is, roughly speaking,
bound to “continuous” distributions. More precisely, the distribution of f*(x, 6)
is to fulfill a condition similar to Cramér’s Condition C. (Here f*’ denotes the
first derivative of the contrast function.)

After the notations have been introduced in Section 2, the basic theorem
containing the Edgeworth expansion for the minimum contrast estimator is given
in Section 3. In Section 4 this result is applied to obtain a critical region of
prescribed error (type one), and it is shown that this critical region, if based on
the maximum likelihood estimator, is uniformly most powerful against one-sided
alternatives up to a term of order O(n~*). Finally, another critical region based
on the log-likelihood function with the same optimum property is discussed.
Corresponding results on confidence intervals are obtained in Section 5. In
Section 6 an estimator is introduced which is median unbiased up to an error
of O(n~') and which is—within the class of all estimators with this property—
maximally concentrated about the true parameter up to a term of order O(n™?).
(The fact that an estimator with such a strong optimum property exists will
doubtless enforce a reconsideration of the literature on BAN-estimators which
are “best” at most up to a term O(n~t), but hardly O(n™").)

Section 8 contains the precise statement of the regularity conditions and of
the particular form of Condition C which is needed here.

In Section 7 it is shown that these assumptions are fulfilled for the most
common location and scale parameter families (such as exponential, Cauchy
and logistic), and the accuracy of the results is illustrated by a numerical ex-
ample referring to the exponential distribution. The final Sections 9 and 10
contain lemmas and proofs of the theorems.

The following remarks should be kept in mind throughout the paper.

REMARK 1. The existence of asymptotic expansions depends on regularity
conditions R,, s > 3, (involving properties of the derivatives f“(., #) of order
v =1, -..,5). Basically, to each s > 3 there corresponds a different expansion
of length s — 1. It follows easily, however, from the properties of asymptotic
expansions that any expansion of length s simply “continues” the expansion of
length (s — 1) (i.e. the first (s — 1) terms of the expansion of length s coincide
with the expansion of length s — 1).

REMARK 2. Whenever in the following a relation is proved to hold up to an
error term of order o(n~“~*/%) under regularity conditions R,, then the same
relation holds true up to an error term of order O(n~“~"7?) if regularity con-
ditions R,,, are fulfilled. This can be seen as follows: Under regularity con-
ditions R,,, we can add one more term to the asymptotic expansion, thus
obtaining a relation which holds true up to an error term of order o(n~¢~1%),
Since the additional term is of order O(n~‘“~"7), the assertion follows. Since
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the validity of this argument can be easily verified in each particular case, we
shall confine ourselves to this general remark.

REMARK 3. The case s = 3 is of special character in so far as the pertaining
Edgeworth expansion of length 2 for the sum of independent identically dis-
tributed random variables is valid for arbitrary non-lattice distributions, and
not only for distributions fulfilling Cramér’s Condition C. This could be used
to obtain asymptotic expansions like (3.1) and optimum assertions like (4.7),
(5.4), and (6.5) for arbitrary non-lattice distributions. (Since we need uniformity
with respect to ¢ and ¢ something slightly stronger than “non-lattice” has to
be required. Probably, “non-lattice and sup;.,, Sup .y <., E,(1°(+, 0, 7)*) < oo
for appropriate U,, a,” will do.) Since non-lattice distributions other than
“continuous” ones are of limited practical interest, we shall confine ourselves
to the case of “continuous” distributions in order not to overload the paper.

REMARK 4. The reader who wishes to apply the asymptotic expansions ob-
tained in this paper (such as (3.1) or (4.2)) will be disappointed by the fact that
the error term is only stated as o (n~“~??) without precise bound. The technical
reason for this deficiency is that our results are based on the Edgeworth ex-
pansion for the sum of independent identically distributed random variables,
and that a precise error bound is not available even in this most simple case.

For the practician this is not a serious drawback. As common with asymp-
totic expansion we have to expect that any general error bound which might
become available sooner or later will grossly overestimate the actual error.

Of greater practical relevance is the following problem: If the regularity
conditions R, are fulfilled, we have the choice between the expansions of
length 1,2, ...,5 — 1. In the case of (3.1) for instance, to approximate
PN¥{x € XN: n¥(0,(x) — 0)/8(6) < t} by O(t) + () X5, n"™2A,(t, 0) for r = 0,
1, -«o, 8 — 2. :

If n is sufficiently large, the approximation for r = s — 2 will be the most
accurate one. What we would like to know, however, is something different,
namely: Given ¢ and the sample size n, which r e {0, 1, ..., s — 2} renders the
best approximation? This is not necessarily r = s — 2.

REMARK 5. The generalization of our results to vector parameters is not at
all straightforward. Recently, it was shown (see Pfanzagl (1973)) that for m.c.
estimators of vector parameters the approximation by the normal distribution
holds with an error of order O(n~*) uniformly over the class of all convex sets.
The practically relevant problem, however, is to give an Edgeworth expansion
for the marginal distribution of the estimator for one component of the vector
parameter, thus meeting the need of the most common situation, namely to
make assertions about one (structural) parameter in the presence of nuisance
parameters. In a recent paper, Chibisov (1972a) investigates the accuracy of
the normal approximation for Neyman’s optimal test and gives the first term
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of an asymptotic expansion (page 156, Theorem 2.1). His results are, however,
not a vector-parameter analogue of our Proposition 1, since he does not investi-
gate whether the optimality of Neyman’s test against one-sided alternatives is
of an order higher than o(1).

2. Notations. Let (X, %) be a measurable space and P,|.o, 0 € ©, a family
of p-measures (probability measures), where ® C R is an open interval (possibly
0 = IR). Let ©(0°) denote the closure (interior) of ® in R: = [— oo, + o] and
A the Borel field over 0.

For notational convenience we shall write E,(g) instead of { g(x)P,(dx). For
any measure P|.% and any measurable function g: X — R let Pxg| <& denote
the induced measure, defined by P g(B) = P(9'B), Be <5

A family of .w-measurable functions f(+, 8): X >R, 00, is a family of
contrast functions for {P,: 6 € O} if E,(f(-, 7)) exists for all 6 € ©, r € © and if

(2.1) E(f(+,0) < E(f(s,7)) forall 6e©,7e0,0 % .

Let (XN, .%N) be the countable Cartesian product of identical components
(X,.%) and PN|.o/N the independent product of a countable number of identi-

cal components P|. "
An estimator for the sample size n is an.%N-measurable map 4,: X¥ — R

which depends on x,, - - -, x, only.
A minimum contrast (m.c.) estimator for the sample size n is an estimator 4,

for which 6,(X~) c © and
(2.2) i f(xi, 0,(x)) = inf, .5 27, f(x;, 0) -

We remark that the concept of m.c. estimators has been introduced by

Huber (1967).
For any function f(+, 6) : X — R let f*(., 6) denote the ith derivative with
respect to 4, i.e.,

f“”(x,ﬁ)zaa;if(x,ﬁ), xeX,i=1,2, ...
Furthermore,
am
2.3) oun(®) = E, (57 (11 01)).

Part of the results refers to the particular case that P,|.%, 6 € ©, is dominated
by some o-finite measure, say p|.v". In this case p(., #) will be used to denote
the density of P,|. v relative to x|.v/, and 1(+, #) = log p(+, f). Any contrast
function fulfilling

(2.4) fx,0) = —1(x,8) forall xeX,0e®,

will be called likelihood contrast function, and the pertaining m.c. estimator will be
called maximum likelihood (m.l1.) estimator. For maximum likelihood estimators
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it is useful to express our results by the functions
Liju(0) = E,((17(+5 0))(1"(+, 0))/(19(+, 0))")
rather than by p, .. Instead of L, or L, we shall also write L,; or L,

respectively.
Notice that there are many different ways to express our results by the
functions L,;,, because these functions are not independent. Under suitable

regularity conditions we have in particular
L,+L,=0,
(2.5) Lyy + 3L, + Ly =0,

Loy + 4Ly + 3Ly + 6L, + L, =0
furthermore,
L) =2L, + L;, Ly =Ly + Ly + Ly, etc.

Finally, we shall use
(1) = (2m)"t exp[— 47
Q1) = {t, o(r) dr
N, = O Ya).
3. The basic theorem.
THEOREM 1. Let 0,, ne N, be a sequence of m.c. estimators. Assume that for
s = 3 the regularity conditions R, are fulfilled and that Condition C is fulfilled for
h(s,0,7) = fV(s,7), T€0O.
Then uniformly on compact subsets of © and uniformly for t € R:
ot Oa(X) — 0
(3.1) PN {xeXN. nt 0a() =0 ,}
' B(O)
= O() + (1) Du2n~™2A4,(t, 0) + o(n~~D2) where
B = oL
and A,(t, 0) are polynomials in t with coefficients depending on 6. The coefficients

remain bounded on compact subsets of 0.
We have in particular:

Aty o) = ay + a, Ay(t, o) = ayt + ay P + ay,t
with
a, = _‘£1§A030102_o3
ay = $050n' + 30uohon’ — 2ouonter!
A = § + 10uPuPwPR — $00PH O — Fa0hPE’ + $0u 0’
a, = % + §0uprwon’ — 101204 0%° + %pglpijlpﬁz
+ 10500120005 — 10205 — 303004 0301
+ §0u0u'00" + FoL0ln — F7000w’
@y = —750%00° + 120000000 — 120500106 00’

- %pfﬂozo()l—l‘ + i’plzpzxpl_la - %Pglpz_olpl_lz .
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If in the particular case of m.l. estimators the relations (2.5) hold true then these
formulas reduce to
B =Lt

a, = L, 1L,

ay = L, 3(§Ly + 3Ly)
- %L2~3L3(T5§L3 + Lll) + %L2_2(L21 + %[ﬂ)
— Ly Ly(§Ly + §Ly) + 3L, (3L + Ly + £Ly)
@y = — 4L, (5L + FLy Ly + L) -

Ay =

Q
2
Il
oo}~ Cop—

A result similar to Theorem 1 has earlier been obtained by Mitrofanova (1967)
for maximum likelihood estimators of vector parameters. Her paper contains,
however, no explicit formulas for A4, (¢, §), and the proofs are rather sketchy—
though perhaps not irremediably so. It remains, for instance, unclear, why R.
R. Rao’s Theorem 2 is applicable since (i)" the set 4, defined on page 370, is
hardly the inverse image of a convex set under the random variable z as defined
on page 369 (notice that the functions H; entering the definition of A4 are not
even linear in z), (ii) some “continuity condition” is needed to ascertain that z
fulfills Cramér’s Condition C. But even the regularity conditions stated explicitly
are rather restrictive; Mitrofanova’s Condition 5, for instance, excludes the ex-
ponential family. Finally, the expansion is valid only for ¢ in some interval
depending somehow on . Recently Chibisov (1972b) announced an improved
version of Mitrofanova’s result for real parameters. We remark that the con-
tinuity condition assumed in Chibisov’s theorem includes the derivatives 1'”(., 6)
fori=1, ..., 5— 2in contrast to our Condition C, which is required for 1(., )
only.

In connection with Theorem 1 we should also mention the papers by Haldane
and Smith (1956) as well as Shenton and Bowman (1963), where several cumu-
lants of the distribution of the m.l. estimator are computed for discrete distri-
butions. It is suggested that the knowledge of these cumulants could be used
to reduce the bias of the m.l. estimator (Haldane and Smith (1956), page 101)
or to fit a Pearson distribution (Kendall and Stuart (1961), Sections 18.19 and
18.20). Conditions under which this is admissible are missing. Presupposing
that corresponding formulas hold for the cumulants of “continuous” distributions
and neglecting the question of convergence one can compute the pertaining
Edgeworth expansion. This yields the same coefficients a,; as stated above for
the m.]. estimator.

Since the coefficients of A4,(t, §) in (3.1) are functions of the unknown pa-
rameter ¢, formula (3.1) cannot be applied at once to improve the approxi-
mation for the distribution of the m.c. estimator. The observation that A4,(z, 0)
isevenin ¢, however, leads immediately to the result that for intervals symmetric
about the unknown parameter the normal approximation is particularly good.

1 This was brought to my attention by Professor Bickel.
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COROLLARY 1. Let 0,, ne N, be a sequence of m.c. estimators. Assume that
regularity conditions R are fulfilled and that Condition C, is fulfilled for h(+, 0, t) =
[, 1), T€0.

Then uniformly on compact subsets of © and uniformly for t e R

‘ 6,(x) — 0|
(3.2) PN{xeXN:naLz»__<t}
“ pO)
= (*t(2r)texp[—r?2]dr + o(n7¥).
4. Tests. Theorem 1 can be applied to obtain for the hypothesis 6, a critical
region with error of type one equal to a 4 o(n~**7). Since

t— D) + ¢(t) 152 n™A4,(, 0,)

is a continuous function which approaches 0 for t — —co and 1 for ¢ — oo, for
every a € (0, 1) there exists 7, , (a) such that

@) Bty (@) + Pt gy(@) Tt A1y (), B) = 1 — ax.
Together with (3.1) this implies
Pi{x e X¥: 0,(x) = 0, + n}B(0o)t, 0 (@)} = @ + o(n=e=212)

For practical purposes it will be convenient to avoid the solution of equation
(4.1) and to give the lower bound of the critical region explicitly.

THEOREM 2. Let 8,, ne N, be a sequence of m.c. estimators. Assume that for
some s = 3 the regularity conditions R, are fulfilled, and that Condition C, is fulfilled
for h(s,0,7) = f¥(s, 1), T€O.

Then there exists a function

(4.2) G (0) = 0 — n7INB(O) + Lty "B, (=N, 0)
(where B, (t, 0) is a polynomial in t with coefficients depending on 0) such that
(4.3) {(xeX™:0,(x) = Gru(0)}

defines a critical region for the hypothesis 0 with error of type one equal to a +
o(n=¢~»7), uniformly on compact subsets of ©.

We have in particular
By(t, <) = by + by t*, By(t, +) = byt + byt
with

by = §0300%'0%"

by = (—0500%" — $01uPx0oL" + 3020104

by =(—% — %Pnpgolpl_lzpao - 11740211030!’2_02101_11 + %Pnpi}l(’l—ll
+ P50 0% — $0u0on)0hon

by = (—4 — 5050 + 30h0005* + $050n'0n" + 301200011030
+ Tlfpnpz_osz_xlpso - %91240211053 - %Plspzopl_la
+ 30005 — 3000w + F500 0RO -
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If in the particular case of m.l. estimators the relations (2.5) hold true, then
these formulas reduce to
by = —-3L,*L,
by, = —L2'2(%L3 + %Lu)
b20 = - 1L2_% + %L2_;L3(%%L3 + 2Ln) - %Lz—g(l‘zl + i‘lﬂ)
b21 = _%L2_% + %LZ_;(%L; + %LSLII + L%l - %LZ_g(%LIOI + L2l + %Ll) *

In the following we shall state an optimum property for the critical region
specified in (4.3).

THEOREM 3. (i) Assume that the likelihood contrast function fulfills regularity
conditions (iv), (va), and (2.5). Assume that condition (xi) is fulfilled and that 1V
fulfills condition L,, 1 fulfills condition L,. Assume, furthermore, that Condition

 C, is fulfilled for
B(e, 0, 7) = (0 — O)7(1(+, ) — 1+, 7)) 0+,
= 1Y(., 7) =1 0,7cO.
Assume, finally, that for every ne N, 0 € ©, we are given an 7 "-measurable criti-

cal function ¢, ,: XN — [0, 1] such that for some a ¢ (0,1) and some compact
K C © we have uniformly for 6 ¢ K:

(4.4) E(pn0) = a + o(n7H).
Then uniformly for 0 ¢ K, te R

(4.5) Ef,\=12(¢n,0) {é} Hoot, 0) o) if {Z} 0
with
(4.6) H, (1, 0) = O(N, + tL,(0)")

+ o(N, + tLy(0))n~H5eLy(0)
X [13Ly(0) + Ly(0)) — NoLy(9)*Ly(0)] -

(i) Assume that the regularity conditions specified in Theorem 2 are fulfilled for
the likelihood contrast function, together with condition (xi), (2.5), and condition
L, for 1 and condition L, for 1. Assume, finally, that condition C, is fulfilled
for h(+,0,7) = 1V(s,7), T€ ©. Then equality holds in (4.5) if ¢, , is the indicator
function of the critical region defined by (4.3) for some s = 3, provided it is based
on a m.l. estimator. The equality holds uniformly for 0 € K, |t| < cgnt.

(iii) Assume that the regularity conditions specified in (i) and (ii) are fulfilled.
Then the following relation holds uniformly for 6 € K, |t| < cgn*, provided 0, is a
m.l. estimator.

(4'7) Eé\{f-n_lﬂt(soﬂ,n) {

IVIA

b P (xe X% 0,0 = GE.O) + o(n7)

for t{z}O.
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(4.5) provides an approximate upper bound for the power function of any
critical function with error of type one equal to a 4 o(rn~%). In other words,
t — H, (¢, 0) is an approximation to the envelope power function. By the same
arguments one can obtain in (4.5) an approximation up to o(n=“~%) if (4.4)
holds with o(n~%) replaced by o(n=~?/2), and if further terms are added to H,, ,
in (4.6), provided that appropriate regularity conditions are fulfilled. We shall
abstain from doing so, because we need (4.5) mainly for the proof of the opti-
mum property (4.7).

Though it is not uncommon to base the comparison of tests on a sequence of
alternatives of the type 6 + n~it, it seems not useless to give an operational
justification for this approach. The use of alternatives ¢ + n~*r is appropriate
if the experimenter is able to specify which deviations from the hypothesis 6
(say values = > ¢ + A) are practically relevant and should therefore be rejected
with high probability (say .99). In this case he will adjust the sample size n to
the particular problem in question by choosing n so that E,N(¢, ,) = .01 and
EP, i(¢n0) = .99. If ¢, , is derived from some estimator 7, which is normally
distributed with asymptotic mean # and asymptotic variance ¢(#)?, this will be
the case if n~t is related to A by A = 4, 6 6(6)n~t. In other words: The sample
sizes used by an experimenter will vary according to the problem. If they are
adjusted to the corresponding problem, it will always be the behavior of the
test for alternatives 6 + tn~* with r somewhere between 3¢(f) and 605(¢) which
is of interest.

Using regularity conditions R, only, the same pattern of proof shows that
(4.7) holds with o(n~%) replaced by O(n~%) without any conditions like “non-
lattice” or “C”. This improves a result of Wald (1941a) page 10, Theorem 1,
where (4.7) with o(1) was established. (See also C. R. Rao, (1962), page 54,
Theorem 2.) Hence our Theorem 3 sharpens a well-known optimum property
of the m.l. estimator for the particular case of “continuous” distributions.

According to Remark 2 in Section 1, (4.7) holds true even with o(n~?) re-
placed by O(n') under additional regularity conditions. A somewhat tedious
computation shows that (4.7) holds not true any more with o(n~*) replaced by
o(nY), even if the regularity conditions are appropriately strengthened.

Using the concept of deficiency introduced by Hodges and Lehmann (1970)
these results (as well as the results of Proposition 1, Theorem 5 and Theorem 6
below) can be given a more concise formulation: Let ¢, neN, i =1, 2, be
two sequences of critical functions with EN(¢,”) = a€(0, 1) for ne N, i =
1, 2. If ¢ is given, let m(n) be the smallest integer m such that E}, -, (¢,®) =
EF -y (). If m(n)/n — 1 (i.e. if the asymptotic efficiency of ¢,* relative
to ¢, is 1), the deficiency of ¢, relative to ¢, is defined as m(n) — n. In
typical cases we have

Efuton™) = at, 0) + n4b,(2, 0) + n7le (1, 0) + o(n™),  i=1,2.

We have m(n)/n — 1 iff a(t, 0) = a,(¢, 6). Under this assumption we have
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m(n) — n = O(n?) in general and m(n) — n = O(1) iff by(t, 0) = by(t,0). The
asymptotic deficiency is zero iff ¢,(t, 0) = c,(t, 0).

Hence we may summarize our results as follows: The asymptotic deficiency
of the test based on the m.l. estimator as compared to the most powerful test
is O(1) (depending on f), but not zero, in general. The surprising fact is that
it is not O(nt). It would be interesting to know whether there are one-sided
tests which are approximately most powerful in the sense that they have asymp-
totic deficiency zero (as compared to the most powerful test) for all # > 0.
Regrettably, neither the test based on the m.l. estimator nor the test described
in Proposition 1 has this property. This is the point to remember that there is
one important type of families of p-measures for which, for any sample size n,
(% - X)) = 2 (1(x;, 0 + nm¥r) — 1(x;, 0)) is a monotone function of the
m.l. estimator, so that the test based on the m.l. estimator is uniformly most
powerful for families of this type: These are the exponential families (see
Huzurbazar (1947)). Perhaps the exponential families are the only ones admit-
ting tests with asymptotic deficiency equal to zero for all # > 0.

Since the m.l. estimator is difficult to compute in some cases, it seems worth-
while to mention that the critical region based on };7_, 1¥(x,, #) has the same
optimum property as the critical region based on the m.l. estimator.

ProrosITION 1. Assume that the likelihood contrast function fulfills regularity
conditions (iv), (va). Assume, furthermore, that conditions (xi), and (2.5) are
fulfilled and that 1 fulfills condition L,, 1 fulfills condition L,. Assume, finally,
that Condition C, is fulfilled for h(.,0,7) = 1"(.,0), 6 € ®. Then the critical
region

(XeXN: md T, 19(x, 6) = —N,L,(60)} + nL(6) L0}V, — 1))

has the power function H, ,(t, 0) given by (4.6) (and hence in particular an error of
type one equal to a + o(n~*)), uniformly on compact subsets of 0 and |t| < cgnt.

That a critical region based on 37, 1%(x,, 6) is optimal up to o(1) is to be
expected on account of Theorem 3 (ii) and the the fact that (n*[(0,(x) — 6)/8(8)] —
n=t8(6) 31r 19(x,, 0),. converges to zero in probability. It was proved by
Wald (1941b), page 403, Theorem 1. A more informal statement of Wald’s
result occurs in C. R. Rao and Poti (1964, page 439). Proposition 1 asserts
optimality up to o (n~*)(and even O(n~*) under appropriate regularity conditions).

5. Confidence intervals. Theorem 2 leads in the usual way to a confidence
set. From the critical region {x € X~: 0,(x) = G, ()} with error of type one
equal to a + o(n~“~»/?) we obtain the confidence set C,(x) = {#€0: 0,(x) <
G (0)} with the confidence coefficient PN{xeAX¥:0eC,(x)}=1—a +
o(n==”), Since the set C,(x) is not necessarily an interval, it seems preferable
to apply the confidence interval specified by (5.1) which shares the optimum
property of C,(x) resulting from Theorem 3.
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THEOREM 4. Let 0, be a sequence of m.c. estimators. Assume that the conditions
specified in Theorem 2 are fulfilled, that b,; (as defined in Theorem 2) is (s — 2 — i)-
times differentiable and that the derivative of order s — 2 — i fulfills a Lipschitz-
condition. Assume, furthermore, that B is (s — 2)-times differentiable and that the
derivative of order s — 2 fulfills a Lipschitz-condition. Then for every ne N, a
(0, 1) there exists a function

FUu(0) = 0 + n7iNB0) + Zy2in ™ B, (—N,, 0)
(where B, *(t, 0) is a polynomial in t with coefficients depending on 6) such that
(-1 (Fu(0u(x)), o)
is a confidence interval with confidence coefficient equal to 1 — a + o(n~“~/?), uni-

formly on compact subsets of ©.
We have in particular

B*(t, +) = b} + bji1*, B(t, «) = bjt + bjt?
with )
b = —by

b = —by + KB

by = —by + (Bby)’

bfi = —by + (Bby — 3P°B)
(where ' denotes the derivative with respect to 0).

If in the particular case of m.l. estimators the relations (2.5) hold true, then these
formulas reduce to ]

by = LtL, 2L,
bfi = —§L, 7 (Ls + 3Ly)
by = {5L, ALy(2L, + 3Ly,) — AL, P L 4 3L,
by = — AL, Y SL? + 30L, Ly + 36L%) + oL, 74 (L, + 6L, + 4Ly) + LL,7%.
THEOREM 5. (i) Assume that the regularity conditions specified in Theorem 3 (i)
are fulfilled. Assume that for every ne N, x € XN, we are given a confidence set
C,(x) such that {x e XN: 6 € C,(x)} € &7 N for every 6 € © and for some «a € (0, 1)
and some compact K. C © we have uniformly for 6 € K:
(5.2) PNxeXN:0cCux))=1— a4 o(n?).
Then uniformly for 0 ¢ K, te R
(5.3) PNxeXN: 0 — ntte C,(x)}

B - sy 7 of2)o

(where H, , is defined by (4.6)).

(ii) If the regularity conditions specified in Theorem 3 (ii) and Theorem 4 are
fulfilled for the likelihood contrast function, then equality holds in (5.3) if C, is the
confidence interval defined by (5.1) for some s = 3, provided this confidence interval
is based on a m.1. estimator.
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(iii) If the regularity conditions specified in (i) and (ii) are fulfilled, then the
following relation holds uniformly for 6 € K, |t| < cgn?, provided 0, is a m.l. esti-
mator:

(5.4) PNxeXN:0 — ntre C,(x)}

{2} PN(x e XN: Fo(0,(X) < 0 — nit) + o(n)  if t{z} 0.

We remark that an optimum property corresponding to (5.4) with o(n~%)
replaced by o(n') does not hold true any more.

Since the accuracy of the normal approximation has always been felt insuf-
ficient, several proposals have been made to obtain confidence sets, the con-
fidence coefficient of which is in better agreement with the prescribed value.
For m.1. estimators, Welch (1965, page 3, formula (22)) gives the expression for
F®,. He arrives at this result by determining the cumulants of n¥@, — 0)/8(0)
from a formal expansion and applying then the Cornish-Fisher formula for
percentage points. Working with formal expansions only, Welch overlooks
that the use of F\?), leads to an accuracy of order O(n~?) for “continuous” dis-
tributions only. It is surprising that Welch resigns himself to formal expansions
even though he proposed already in 1939 an idea which leads easily to a proof
(see the remark before Lemma 6). Bartlett (1953) suggested transforming
2t 19(x,;, ) by some polynomial transformation in such a way that the
skewness of the distribution of the transformed variable would become 0. The
transformation obtained in this way is nothing else than the Cornish-Fisher
transformation, the use of which was suggested by Kendall-Stuart (1961, Section
20.15). Bol’shev (1959, Example 2) provided a justification for this transfor-
mation and pointed out that it would be more practical to approximate the
(1 — a)-quantile of the distribution of };7_, 1®(x,, f) rather than to transform this
variable. But even then one has to solve {x e XN: 37, 1¥(x,, 0) = 4, ,(0)} for
6, which does not necessarily lead to an interval. Hence the confidence interval
provided by Theorem 4 has distinctive advantages. Neither Bartlett nor Kendall-
Stuart nor Bol’shev mention that this procedure is justified only for “continu-
ous” distributions. The suggestion of Wilks (1963, pages 366—368) to obtain
a confidence procedure from Y7, F(x;, 6) (where F is the distribution function)
has the advantage of an exact confidence coefficient. It will, however, be ap-
proximately optimal only under exceptional circumstances.

6. Estimators. In Theorem 4 we obtained a confidence interval (F¢,(6,(x)),
oo) with confidence coefficient 1 — a + o(n~“~»/%). A corresponding argument
leads to the confidence interval (—oco, F (6,(x)) with confidence coefficient
1 — a + o(n*=»7). For a = } we have F¥,(0,(x)) = F\,(0,(x)) = 0,°(x), say.
We have

(6.1) 0,(x) = 0,(x) + DL nmmby | (0.(x))

(where the functions b} ; are defined as in Theorem 4).
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6,®, considered as an estimator for #, will be median unbiased up to an error
term of order o(n~“~?/%). From Theorem 5 (iii) we expect that 4, will be more
concentrated about # (up to an error term of order o(n~!)) than any other
estimator which is median unbiased up to an error term of order o(n~t), pro-
vided 4, is based on the m.l. estimator 6,.

DEFINITION. A sequence of estimators T,, ne N, is approximately median
unbiased of order o(n=") if

(6.2) P{x e XN: T,(x) 2 0} = § — o(n™)
and
(6.3) PNxeXN:T,(x) <60} =%—o(n").

THEOREM 6. (i) Assume that regularity condition (Xii) and the regularity conditions
specified in Theorem 3 (i) are fulfilled. If T,, ne N, is any sequence of estimators
which is approximately median unbiased of order o(n~*), uniformly on some compact
subset K C ©, then uniformly for 0 € K and uniformly for t', "’ > 0:

(6.4) PNxeXN:0 — n i < T,(x) < 0 4 nir")
< O("LyB)}) — D(—Ly(6)})
+ mH (" Ly(0)1)1"* — o(1'Ly(8)1)1"]
X Ly(0)HFLs(0) + $Lu(0)] + 0 (n7H).

We remark that a sequence (T,),.x fulfilling (6.4) is necessarily approximately
median unbiased of order o(n™t).

(ii) If the regularity conditions specified in Theorem 4 are fulfilled for the likeli-
hood contrast function, then equality holds in (6.4) if T, = 0, provided the adjusted
estimator 0, is based on the m.1. estimator. The equality holds uniformly for 6 € K
and 0 < t', 1" < cpnt.

(iii) If the regularity conditions specified in (i) and (ii) are fulfilled, then the fol-
lowing relation holds uniformly for 6 ¢ K, 0 < t', " < cxht, provided the adjusted
estimator 0, is based on the m.l. estimator.

(6.5) PNXEXN:0 — ni < Ty(x) < 0 + nir"})
< PNXeXN:0 — i < 0,9(x) < 6 + n "} 4 o(nY).

Under appropriate regularity conditions, (6.5) even holds with o (n~*) replaced
by O(n™?), uniformly in 6, ¢/, #” on compact subsets provided T, is approximately
median unbiased of order O(n~*). The corresponding relation with o (n~*) replac-
ed by o(n™') does not hold true any more in general. For a formulation of this
statement in terms of deficiency see the remark following Theorem 3. Theorem
6 (iii) shows that the adjusted m.1. estimator is “‘second-order efficient” in the
class of all estimators which are approximately median unbiased of order o (n~%).
The availability of such an estimator should lead us to reconsider the whole
theory of BAN-estimators (which yields first-order efficient estimators only in
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general). We are, by the way, of the opinion that any definition of second order
efficiency should be based on covering probabilities, and that (6.5) provides a
natural basis for doing so. An unmotivated concept of second order efficiency
like that of C. R. Rao (1963) should be abandoned.

We remark that for families of p-measures fulfilling regularity conditions R,
only (and no additional conditions like “nonlattice” or “C”) relation (6.5) with
o(n~%) replaced by O(n~!) has been obtained earlier by Pfanzagl (1972) with
O(n~*) depending on #, #’, and by Michel (1972) uniformly in #, #” > 0.

Starting from Theorem 6 (iii) one can show in the usual way (see, for instance,
Pfanzagl (1970), page 35, Corollary 1.15) that among all approximately median
unbiased estimators the adjusted m.l. estimator approximately minimizes the
average loss for any bounded loss function L(6, r) which is non-decreasing as ¢
moves away from @ in either direction.

Recall that an exponential family has monotone likelihood ratios for arbitrary
sample sizes and therefore (see Lehmann (1959), page 83, for continuous and
Pfanzagl (1970), page 33, Theorem 1.12, for arbitrary distributions) admits a
strictly median unbiased (randomized) estimator which is maximally concentrat-
ed in the class of all median unbiased estimators. Because of the use of randomized
estimators, this result also holds true for discrete distributions.

Theorem 6 strongly suggests the use of

(6.6) 0,%(x) = 0.(x) + f;—l Ly(0(x))7"Lo(0.(x))

instead of the m.l. estimator #,. (Notice that 6, = 6,% = 6,*.)

As an estimator, 6,* (or any other ¢, for s = 3) is superior to ¢, because
of its smaller median bias. As a base for the construction of critical regions
or confidence procedures it is equivalent to 8, (see the following Remark). It
shares in particular the optimum properties of 4, as formulated in Theorems 3
(iii) and 5 (iii).

REMARK. Assume that the regularity conditions R, are fulfilled for some
s > 3. Assume that for v = 1, ..., [(s — 1)/2] the function b}, _, , is (s — 2v)-
times differentiable, and that the derivative of order (s — 2v) fulfills a Lipschitz-
condition. Then the following holds true:

(i) For any sequence of critical regions (4.2) based on @, there exists a
sequence of critical regions based on 8, which has the same power function
up to terms of order o(n=¢~»7),

(i) Uniformly on compact subsets of ® and uniformly for re R: *

PN {xeXN; p 0200 — 0 ,}
B8(9)
= ©() + () T " 0u(1, 0) + 0 (7).
We have in particular

Oy(t, ») = gnt, Ou(t, ) = oot + guf® + Gos I°
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with
9u = ay
1.2 '
G0 = 3a3, — 2a5,a,; + a3 — (a,0P)
a1 = Gy
oz = Qg

(where the a,; are defined as in Theorem 1).

7. Some examples. To illustrate the general results we shall apply them to
the particular case of location-parameters and scale-parameters. The more
relevant problem of estimating location- and scale-parameters simultaneously
requires corresponding results for vector parameters which are not yet available.

(a) Location parameters. Let p: R — (0, co) be a continuous function with
§p(x)dx = 1. For § e R let P, denote the p-measure with Lebesgue density
x — p(x — 0).

In this case the quantities L,,,(6) are independent of ¢ so that Theorem 1 can
be immediately applied to obtain critical regions.

The approximately median unbiased estimator is

-1
0.%(xy, o5 %) = 0,(xp, -+ -5 x,) + f_6__ LL,.

If p is symmetric about 0, we have L, = 0 so that the m.1. estimator is median
unbiased up to an error of order o(n~!) [O(n~¥)].

The following conditions can be easily verified in the most common cases.
They imply the regularity conditions R, for the likelihood contrast function

flx,0) = —1(x — 6) for 0eR
= + o for 0 = +.

(7.1) p is unimodal,
(7.2) S 1) 'p(x + ) dx < oo for some >0 andsome <0,
(7.3) I is bounded for r=1,...,s+ 1.

The proof is more or less straightforward and will therefore be omitted.

Conditions (7.1)—(7.3) are, of course, fulfilled for the location-parameter
family of normal distributions, but our results are irrelevant in this case since
the m.1. estimator is exactly normally distributed. Other examples of common
location-parameter families are the Cauchy distribution and the logistic distri-
bution. In both cases the verification of (7.1) and (7.3) for any s > 3 is straight-
forward. The verification of (7.2) is slightly more complicated but without
substantial difficulties.

The validity of Condition C, follows from the Criterion in Section 4 or by
direct application of the Riemann-Lebesgue theorem. Hence all our results
(including the optimum assertion for the m.l. estimator) apply to the location
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parameter family of Cauchy distributions as well as to the location parameter
family of logistic distributions.

(b) Scale parameters. Let p: X — (0, co) with X = R or X = (0, c0) be a
continuous function with §, p(x) dx = 1. For 6 € (0, o) let P, denote the p-
measute with Lebesgue density x — 6-'p(6~'x). Though the L, depend on ¢
in this case, the a;; are independent of # so that, again, Theorem 1 could be
applied immediately to obtain critical regions.

The approximately median unbiased estimator is

055 o0 ) = Oy, -+, ) (14 0 L)L)

The verification of regularity conditions R, can be simplified by application
of the following relation:

Let p be unimodal. (Then p is either bounded or X = (0, o) and p has its
mode at 0.) Let g: R — [0, o] be measurable. If § g(x)p(tx) dx < oo for some
te (0, 1), then for every # > 0 there exist §” < § < 6" such that

SUP. ¢ (g0 § 9(OX) p(rx)7 dx < o0 .

This relation is useful for the proofs of conditions (iii) and (vii).

An elementary computation shows that in the case of the scale parameter
family of the exponential, normal, Cauchy and logistic distribution, the re-
gularity conditions R, are fulfilled for all s > 3. The verification of Condition
C, is slightly more complex.

To illustrate the accuracy of the results we shall study the exponential distri-
bution

p(x) = exp[—x] for x>0
in more detail, since in this case the exact distribution of the m.l. estimator is

easily accessible.
First of all we remark that C, is fulfilled for A(., @, 7) = 1¥(., 7), 7 €O,
since P, x 1V(+, 7) has relative to the Lebesgue measure the density

qo(ry 1) = 07t exp [— 07 (r + 77Y)] if r>—771,
=0 if r é —7!
which is continuous in 7 at ¢ = @ for all r == 6.
Condition C, is also fulfilled for
h(+,0,7) = (@ — )" '(1(+, 0) — 1(+, 7)) 0+,
= 10(., 7) 0=c 0,70
but this is irrelevant in this case since the family has monotone likelihood ratios
so that the critical region (7.4) is uniformly most powerful (see Lehmann, page
68, Theorem 2) and the median unbiased estimator derived from the m.l. esti-

mator is uniformly most concentrated (see Lehmann, page 83 or Pfanzagl (1970),
page 33, Theorem 1.12), so that Theorems 3 and 6 are irrelevant.
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From Theorem 2 we obtain the critical region

(7.4 [ om)e R Xz G0

where
G,(0) = 6(1 — m*N,)

is the usual normal approximation, and
Go0) =0 (1 = mN, + "2 (N2 = ).
n! n-?
Gi,“a(e) = 0 <1 - n—aNa + T (]Va2 - 1) + —Na(7 - Na2)> *
' 3 36
The following table gives the actual error of type one which is achieved by

this approximation formula: The entry in the columns is P,*{(x,, - - -, x,) e R™:
(1/n) 32 x, = GP(0)} for a = .05 and varying sample sizes n.

TABLE 1

Actual error of type one for a = .05
Sample size n s=2 s=13 s=4
5 .0668 .0472 .0498
10 .0636 .0485 .0499
25 .0596 .0493 .0500
50 .0572 .0496 .0500
100 .0553 .0498 .0500

The result of this comparison can be summarized in one sentence: Even with
one additional term to the normal approximation (s = 3) the accuracy for the
sample size n = 5 is greater than the accuracy of the normal approximation for
the sample size n = 100.

The results concerning confidence intervals are less satisfactory. From Theo-
rem 4 we obtain the confidence interval

(7.5) (F;’,L <i i=1 xi> ; w)
n

where
Fu(0) = 0(1 + n7'N,)
F©,0) = 0(1 + n=iN, + n73(1 4 2N,2)
ant)a(e) = 0(1 + n_%Na + n_l%(l + 2Na2) + n_§§1§(17Na + 13Na3)) .

In order to facilitate the comparison with Table 1, the following Table 2
contains not the confidence coefficient, but its complementary value, i.e. the
probability of not covering the parameter value. The entry in the columns is
P{(xy -+ > X,) € R*: 0 > F(1/n) X2, x,)} for @ = .05 and varying sample
size n.
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TABLE 2

Probability of not covering the true parameter value for a = .05
Sample size n s=2 s=3 s=4
5 .0000 L1532 .0218
10 .0030 .0910 .0397
25 .0139 .0632 .0475
50 .0225 .0560 .0492
100 .0297 .0528 .0497

This table shows that for small sample sizes the accuracy is insufficient for

s < 4. Since G;2',(0) = 0G,;*,(1) in our particular example, one could, of course,
also use the confidence intervals

(Ga(+ T x) oo).

the confidence coefficient of which is in better agreement with the prescribed
value 1 — a than that of the confidence intervals (7.5). We have abstained
from doing so since our aim is to check the accuracy of Theorem 4 and not to
obtain good confidence intervals for the exponential distribution.

By (6.6), the adjusted m.l. estimator is

0n*(xl’ ""xn):<1 +i>"1*2?xz'
3n/ n

The following Table 3 shows in the column @, the probability P,*{(x,, - - -, x,) €
R*: (1/n) 237 x, = 0}, in the column @, * the probability P,"{(x,, ---, x,) e R"*:
(1 + (13n)(1/m) T} x; = 6}.

TABLE 3
Median bias
Sample size n On On*
5 .441 .497
10 .458 .499
25 .473 .500
50 .481 .500
100 .487 .500

8. Assumptions. This section collects regularity conditions which are needed
for the proofs, as well as conditions related to Cramér’s Condition C.

(i) 6 — P, is continuous in © with respect to the supremum-metric on {P,:
0 € O} (defined by the distance function

d(P, Q) = sup,. .. |P(4) — Q(4)]) -
(ii) For each xe X, 6 — f(x, ) is continuous on ©
(iii) For every 6 € © there exists a neighborhood U, such that

Suprel/’o Er(lf(" 0)|'_1) < .
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(iv) For each xe X, 0 — f(x, 0) is twice differentiable in © for all # ¢ © and

E(f"(-,0)) =0.
(v) For every 6 € © there exists a neighborhood U, such that

(a) infrer Er(f(l)(" T)Z) > O ’
(b) inf..p, E(fP(+, 7)) > 0.
(vi) For every 0 ¢ 0, 7 ¢ O there exist neighborhoods V,, W_ such that for
all neighborhoods V' c ¥, of 6, Sup,ey, E,(|linf;., f(+, 0)Y) < oo .
(vii) f™(., 6), 6 € O fulfills Condition L,_,.
(viii) For every 6 € © there exists a neighborhood U, such that

lim,_, SUP: ey, SUPs e, E(|f(, 5)I31 wex: 17 a5a) = 0.

(ix) For each xe X, 6 — f(x, 0) is (s 4+ 1)-times differentiable in ©, and
6 — fe*V(x, §) is continuous.

(x) For every 6 ® there exists a neighborhood U, such that for all
k,eNu{0},v=1,...,5s+ 1 with k, < s and Setivk, < s 4+ 1

Supre Ug SupdeUp ET(H:-LII f(y)(°’ 5)"”)) < .

(xi) For every 6 € © there exists a neighborhood U, and a function m(., 6)
such that for all xe X, 4, r e U,

P 9) 1' < |3 — o|m(x, 0)
p(x; )
and
SUP.cy, Ec(m(s, 7)) < oo

(We remark that condition (xi) implies condition (viii) with s = 4 for the
likelihood contrast function.)

(xii) L, is twice differentiable in ©, L, and L, are differentiable in ©, and
for every 6 € © there exists a neighborhood U, such that

(@) sup.ey, |Ly"(7)] < o
(b) SUpP:ey, |Ly'(7)] < oo
(c) SUP. ey, |Li(7)] < oo .
For notational convenience, conditions (i)—(x) will be labeled as Condition
R,.
ConpITION L,. A family of functions g(., ), § € ©, fulfills Condition L, if
for every 6 € © there exists a neighborhood U, and a function m(., 6) such that
(@) forall xe X, d,reU, |g(x, ) — g(x, d)| < |t — d|m(x, 0)
(b) sup..y, E(m(s, 0)) < oo
(©) Sup.cy, E(9(+, 7)) > oo
In addition to the regularity conditions specified above we have to assume
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that the family f(., 0), 0 € O, fulfills a certain continuity condition. For the
optimality assertions (Theorem 3) we need a related continuity condition for
1(+, 8), 8 € ©. The formulation of this continuity condition will be based on
the following definition.

ConbitioN C,. A family of .9-measurable functions (., ,7): X —» R 6,
r € O fulfills Condition C, if for every 0 € © there exists an open neighborhood
U, of ¢ such that
*) lim sup,, e SUP; e 1y, |§ €XP [iuh(x, 3, 7)]P,(dx)| < 1.

The following criterion makes the nature of Condition C, more transparent.
It is also useful for verifying this condition.

CRITERION. Assume that P,|. .97, 6 € ©, admits densities which are continuous
functions of #. If the family of induced measures P, x 4(+, 0, 7)| <%, 3,0, 7€ 0O,
admits densities relative to the Lebesgue measure, say g,(+, d, ), such that for
every 6 € © and every re R (with the exception of r belonging to a Lebesgue
null set possibly depending on @) the map (9, r) — g,(r, 6, 7) is continuous at
9, 7) = (0, 0), then A(., 8, 7), 8, v € O, fulfills Condition C,.

Proor. Using Scheffé’s lemma (see e.g. Lehmann, page 351, Lemma 4) we
obtain the existence of a neighborhood U, of ¢ such that for all 4, r € U,

§ 195(r, 9, 7) — qo(r 9, 7)| dr = 28Upye , | Py % h(+, 8, ©)(B) — Py x h(+, 9, 7)(B)]
= 28Upse, |Ps(A) — Pi(AI = %,

and for all 4, re U,
§ 1q0(rs 8, 7) — qy(r, 0, 0)|dr < %

Hence 0, = € U, implies
(8.1) §195(r, 0, 7) — qy(r, 0, 0) dr < §.

By the Riemann-Lebesgue theorem (see e.g. Feller 2, page 486, Lemma 3)
for every @ € © there exists k, > 0 such that for |u| = &,

1§ exp [iurlg,(r, 0, 6) dr| < } .
Hence |u| = k, and 0, r € U, imply by (8.1):
|§ exp [iuh(x, 8, t)]P,(dx)|
= |§ exp [iurlq,(r, 0, 7) dr|
< |§ exp [iur]q,(r, 0, t) dr — § exp [iur]q,(r, 0, 6) dr|
+ |§ exp [iur]lg,(r, 0, 0) dr| < 2.
9. Lemmas.
LeEMMA 1. Let g(-,0), 0O, be a family of . ~-measurable functions fulfilling
(i) Eyg9(-,0) =0 and (i) E)g(+,0)) =1 forallfe®.
Assume, furthermore, that for some compact K. C © and some s = 3:

(iii) supyex Ey(l9(+, 0)]*) < oo.
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Then uniformly for 6 € K:

PN{x e XN: |n=t 301, g(x;, 0)] > (2(s — 2) log n)t} = o(n=~27%)

Proor. Follows from Esséen, page 73, Theorem 2 and Feller 1, page 166,
Lemma 2 or from Michel (1972) with (2(s — 2) log n)* replaced by ((s — 2) log n)}
(see the remark following Theorem 4 in Michel).

LEMMA 2. Assume that g(-, 0), 0 € O, fulfills the conditions (i), (iii) specified in
Lemma 1 for some s = 2. Then for every u > 0:

PN{x e XN |n=% Fh, g(x;, 0) > u} < cpue .

Proor. Let g,(x,0) = n~t 337, g(x;, 0). We have

PN{x € XN |gu(x, )] > u} < wE,N(g.(+, O)')

and E,N(|g,(+, 0)]") < C(5)Ey(|9(+, 0)]’), by inequality (3.3) in Chung (1951), page
341.

LEMMA 3. Assume that regularity conditions (i)—(viii) are fulfilled for some
s = 3. Then uniformly on compact subsets of ©:

PN{x € XN |”w<;%§):0_' nt = (4(s — 2) log n)})

= o(n-t-vn)

For s = 3 this lemma reduces to Lemma 6 in Michel and Pfanzagl (1971),
page 82. The proof will be omitted since it is almost the same, the only excep-
tion being the use of Lemma 1 instead of the Berry-Esséen theorem.

Lemmas 4 and 5 of Michel and Pfanzagl, which are needed for the proof of
Lemma 6, can be obtained with cn~* replaced by cn=¢~/ if Lemma 2 (for s — 1)
is used instead of Chebychev’s inequality.

LEMMA 4. Lets = 3. Assume that g(+, 0, ), 0, v € ©, isa family of .v-measur-
able functions fulfilling Condition C, and the conditions

(i) Efg(+,0,7)) =0, Efg(+,0,7)*) =1 forall§, 70,
(il) Sup,ex SUP._yi<e Eo(|9(+5 0, 7)) < oo for some compact K C O, e, > 0.
Then there exists a,, > 0 such that uniformly for 6 € K, |t — 0| < ay, andu e R
PN{xe XN:n™t Jiv, 9(x,, 0, 7) < u}
= D) + p(u) Tyt n"Qu(u, 0, 7) + 0(n=e=D7)
where Q,(u, 0, ) is a polynomial in u with coefficients depending on the moments
a, = E) (9(+,0,7)), k=3, ..., m+ 2.
We have in particular
Qi +5 ¢) = Gy + quit*
QyUs o5 *) = Gl + Gu® + g1
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with

G0 = §Qs

G = —§%

Gy = 743, — Sa? — 9)

Gy = 75(—3a, + 10a? + 9)

G = —5" .

This lemma is nothing else than a uniform version of the well-known

Edgeworth-expansion (see e.g. Gnedenko-Kolmogorov page 220, Theorem).?
Since our Condition C, is a uniform version of Cramér’s Condition C, the

proof goes through without substantial changes. We need only remark that C,
implies that for every compact K C © there exists a,. > 0 such that

lim SUp,, e SUP; e x SUP|—si<ayx|§ €XP [itth (X, 3, T)]Py(dx)| < 1.

This can easily be seen as follows: for every 6 € © let g, € (0, e,) be such that
(0 — 2a,, 0 + 2a,)  U,. Since {(0 — a,, 0 + a,): 6 € K} is an open cover of K,
there exists a finite subcover determined by the values 6,, ---, #,. Then the
assertion holds true with a, = min{a,, ---, a, } (since d e (¢, — a,, 0, + a,)
together with v — d] < ax < ay, implies 0, r € U,)).

LEMMA 5. Assume that g(+, 0), 0 € 0, fulﬁllf)Condition L, forr = 2. Then for
every compact K C © there exist constants by > 0, dy > 0, and for every 0 € K,
neN aset A, , € 5™ such that

(@) Ey(SUpic_giza,)9(+> O)") = bx»

(b) supye PN(XN — A, 46) = O(n7""),

(c) xed, x v€band|t — 0| < dy imply

|7t e, 9(x, 7) — n7t N0, 9(x, 0)] S |t — 0o .
The proof is standard and will therefore be omitted.
Lemma 6 makes precise the following idea: Since

0= ?=1fm(xi’ 0n(x)) = ?:1]‘“)("1" t) + (0n(x) — 1) Z?=1f”’(xu 0n(x’ 7))
and 7, f*®(x,, 0,(x, 7)) > 0 with high probability, we have with high pro-
bability:

L SY(x, ) >0 iff 0,(x)<r.

This idea occurs already in Welch (1939, page 188), albeit the conclusion
PN{xeXN: 3r, fOx, ) > 0} = PN{x e XN:0,(x) < r} which he draws from
this idea (see Welch 1965, page 6, formula (42)) is not correct.

LemMA 6. Let 0,, ne N, be a sequence of m.c. estimators. Assume that for
some s = 3 regularity conditions (1)—(viii) are fulfilled.

2 The reader who wants to check with Gnedenko-Kolmogorov whether the assertion of
Lemma 4 is correct should not be confused by the fact that our expression for Q2 is not the same
as that given by Gnedenko-Kolmogorov, page 195, formula (24). The expression for Q; given
there has the wrong sign (in all editions, by the way).
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Then for every compact K C © there exists a constant ay > 0 such that uniformly

on{(@,7)e®:0eck, |t — 0| <ay}
PRN({xeXN: 31, f(x, t) > 0}A[x e XV: 0,(x) < 7)) = o(ne"27) .

Proor. (i) At first we shall prove the existence of a constant a, > 0 such
that uniformly on K
©.1) Py (XN — B, g x) = o(n™¢707),
where

B,,x={xeX¥: X1, fPx,7) >0 forall re® with |z — 0| < 2a,}.

(Since B, , x is not necessarily measurable, we have to use the outer measure
P,N* pertaining to P,N.)

Let by, dy, and 4, , , be given by Lemma 5, applied for g = . Let a, =
inf {E,(f®(+. 0)): 0 € K}, ay = min {3d,, ta,, b7}

We have forall e K, ne N, xe€ A4, , x, and all c € © with |z — 0| < 2a,:
(9.2) nt L P (X, T) = nT N, (g, 0) — [T — 0lby

= n7 2 (X 0) — dag

Let

9.3) Coox ={XeXN:n™t 717 fB(x, 0) > ag}.
(9.2) implies for all § € K, ne N:

(9'4) An,o,K n C'n.,ﬂ,K C Bﬂ,ﬁ,K .

Since PN(XN — C, ,x) =o(n 7)) by Lemma 2 and PN(XN — 4, , ) =
o(n~*"%) by Lemma 5, relation (9.1) follows immediately from (9.4).
(if)y By a Taylor expansion of 6 — X7, f*¥'(x,, d) about § = = we obtain for
all x ¢ XN with 6,(x) € O:
9.5) 0 = T V(% 0,(X)
= DSV 7) 4+ (0.(%) — 7) Zina (% 04(%, 7))
with #,(x, r) somewhere between r and 6,,(x).

Let
E

mox = {X€XN1|0,(x) — 0] < ax}.
By Lemma 3 we have uniformly for ¢ € K:
(9-6) PN(XN — E, 5x) = o(n™707) .

If|c — 0| <agandxeE, , , wehave |0,(x,0) — 0] < 2a,. Hence|r — 0] <
agandxeE,, . N B, , . imply 37, f®(x,, 0,(x, r)) > 0 and therefore by (9.5),
(x>0 i f,(x) <77

Hence |t — 0] < a, implies »
9.7) {xe XN 3r, fV(x;, t) > 0JA{xe XN: 0,(x) < 7}
C AN =B, px) VXY —E, pz).
(9.7), (9.1), and (9.6) together imply the assertion.
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Proofs of the following Lemmas 7 and 8 will be omitted, since the techniques
are standard in the theory of asymptotic expansion. Proofs of similar results
can, for instance, be found in Wasow (1956).

LeMMA 7. Let F, be a distribution function such that uniformly for t € R
(9-8) F () = @) + (1) L i7" Qn(f) 4 0(n777) .

(i) Existence: Then there exist polynomials in t, say Q\*, ---, Q,*, the coef-
ficients of Q,* being rational functions of the coefficients of Q, - -+, Q,, such that
uniformly for |t| < logn
9.9) Fy(t 4 Dm0, 5(0) = D(0) + 0 (n77) .

We have in particular:
0*() = — Q)
0.4() = Q) & 0 — 5 0 = 20

(i) Uniqueness: If (t,),. IS a sequence such that F,.(t,) = @(t,) 4 o(n~""*) for
ne N, then
(9.10) t, =ty + 2n_ nm0 ¥ (L) + o(n77) .

If (9.8) holds with o(n="") replaced by O(n=""*V7%), then (9.9) and (9.10) hold
with o (n~"") replaced by O(n="*V%), unifomly for t in a compact subset.

If the coefficients of Q-+, Q,, are considered as variables, these relations hold
uniformly for coefficients belonging to compact sets.

LEMMA 8. Forr>=>2,m=1, ..., rlet R,(t,0) be a polynomial in t with coef-
ficients depending on 0, say R,(t, 0) = 247 r,(0)t’. Assume that r,.; is (r — m)-
times differentiable and that the derivative of orderr — m fulfills a Lipschitz-condition.
Assume that regularity conditions (i)—(viii) are fulfilled for s = r 4 1.

Then there exist polynomials in t, say R *(t, 0), p = 1, .-, r whose coefficients
are rational functions of r¥)(0) form =1, .-, u; k = 0, Lowo,p—m,j=1,..-,
i(m), such that uniformly in 6, t on compact subsets of © and uniformly for |1 £
log n,

(9.11) PN{xeX¥:c 4 ¥rn_n ™R, (t,7) < 0,(x)}A{x e XN:
£ <O, + Tiea R 0,())) S 0(n )

We have in particular (with R,' = (0/d0)R,, etc.)

R* = —R,
R,* = R, R/ — R,
R* = —R,R/* — %RIZRI” + R/R, — R,.

The following lemma implies that the set {(x;, ---, x,): X h(x;, 0,7) =
4,0} renders an approximately most powerful critical region if 4(-, 8, r) is “close”
to 1®(., ). (For applications see Theorems 3(i), 3(ii) and Proposition 1.)
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LEMMA 9. Assume that the likelihood contrast function fulfills regularity con-
ditions (iv), (va), that condition (xi) is fulfilled and that 1V fulfills Condition L,.
Leth( ,0,7): x> R, 0, t€0, be a family of o7-measurable functions fulfilling
Condition C,. Assume that for each 0 € © there exists a neighborhood U, of 6 and
an S7-measurable function k(+, 0) such that for all xe X, te U,

|h(x, 0, ) — 1V(x, 0)] < |t — Olk(x, 0)
and
SUp. ey, E(k(+, 7)) < o0

Assume, finally, that for some sequence t, € © with n|z, — 6| — 0, some sequence
2,5 and some a € (0, 1) we have uniformly on some compact K C ©:

(9.12) PN{xeXN: 3t h(x;,0,7,) = 4,,} =a+o(n?).
Then uniformly for 6 € K, |t| < logn
(9'13) Pg’+n_%t{x € XN: ;‘=1 h(xi’ 0’ Tn) g '27»,0} = Hn,a(t’ 0) + 0(’1_&)

where H, (1, 0) is defined by (4.6).
If (nt|r, — 0|),.n remains bounded, then the assertion holds with o(n~*) replaced
O(n™) uniformly for 0 and t on compact subsets.

Proofr. (i) Let

130, ) = Ey(h(+, 0, 7))
(6.14) 050, 7) = (Ey((A(+, 0, ) — p(0, 7))
40, 7) = 0,0, T)PEs((h(+> 0, 7) — 113(0, 7)) -
By Lemma 4 and Lemma 7(i) we have uniformly for 6 ¢ K, u e R:

P € XN ntoy(0, 7)™ ey (A(x, 0, 7,) — po(05 7))
> u— 72,00, 7,)(1 — u)}
=1—0O@w +o(nt).
Together with (9.12) this implies by Lemma 7 (ii) uniformly for € € K:

Ao = npte(0, 7,) — 0,(0, T, )[MN, + §4,(0, 7,)(1 — N2)] 4 o(1) .
Hence,

(9-15) Pha-s{x e XN J0  h(x,, 0, 7,) = 4, )
= P afx e XV :ndo, 0,0, 7,) 7 X0y (A(x, 0, T,)
— Uosn—1:(05 T2)) > gpn-1(0, 7,) 7"
X [n*(‘uo(ﬂ, T,) — p0+n-h(ﬂ, 7,))
— (0, 7)) (No + n782(0, 7,)(1 — N.)] + o(n7H)}.

(i) For notational convenience let g(-, 8, 7) = A(-,0,7) — 1¥(+, 0),0,7€0,
and G(0, t) = Ey(9(+, 0, 7)).
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Now we shall obtain asymptotic expansions for p,,,—is» Tgin-tss ADA Agyn—see
Starting from

p(x, 0 + ntt) = p(x, 0) + n~tpV(x, ) + n7p®P(x, 0 + ontr), e (0, 1)
and using

pPr(x 1) _ 19(x, 7)* 4 19(x, 7)
p(x, )

we obtain with d € (0, 1)
P(X, 0 + n_*t) =14+ n"*tl‘”(x, g) + %n—lﬁ(l(lb(X’ 0 + 5,2—9[)2
P(x, 0)

10(x, 0 4 dn-try) P 0+ 0n7H)
s p(x, 0)
Hence

h(x, 0, ,) px 0 +nty) [19(x, 0) + g(x, 8, 7,) + n~t1D(x, O)
P(x, 0)

+ n~1Y(x, O)g(x, 0, t,) + (10 (x, 0)° + 19(x, 6)1(x, 0))]'
< n! —tz-z— <|1‘”(x, )10 (x, & + dn~tr)* — 1(x, 6)?
+ [19(x, O)||1®(x, 6 + on~tr) — 1?(x, 6)|
p(x, 0 + ontr) 1’
I p(x,0)

+ Il(l)(x’ 0)”1(2)(x’ /] -+ Bn_ét)l Iw —_ l‘
p(x, 0)

+ 19(x, 0, 7|10, 0 + dn-ty)r PO + on7H)
p(x, 0)

T+ 19(x, 0, T)|[1D(x, 0 4 dnt) P20 + 0n7H)
p(x; 0)
< n7iPR(x, 0) + n'Pt, — 6|S(x, 0)

where sup, ., E)(R(+, 0)) < oo and sup,. x E,(S(+, 0)) < oo.
Hence we obtain uniformly for # e K, 1| < logn
ton-2l0, 7o) = G(0, ) + n741(Ly(0) + E,(17(+, 0)g(+, 0, 7,)))
+ 3 (Ly(6) + Lu(6)) + o(n7)
By the same type of argument we obtain uniformly for 6 € K, |7| < logn
Open-1u(0> Ta) = Lo(O)1 + Lo(0) H(Eo(1V(+, 0)9(+, 0, 7))
+ AnHeLy(0))] + o (n74)
Asn=1(0, 7,) = Ly(0)1Ly(0) + 0(1) .
(iii) Using the relations obtained in (ii), (9.15) can now be evaluated as
follows:

+ [10(x, )||19(x, 6 4 dn~tr)[?
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For notational convenience let
w = (N, + tLy(0)}) + sn~L,(0)~}(1*Ly,(0) — tN,L,(0)~tLy(0)
+ 31 = N)Ly(6)7'Ly(0)) -
Using the relations derived in (ii) we obtain that uniformly for 6 € K, |7| <
log n
Goente®s T (1200 7,) — tosns05 7))
(0-16) — 09(0, 7)) (No + 178250, 7,)(1 — N.))]
= —w+o(n?).
By Lemma 4, (9.15) and (9.16) together imply
(9.17) Py .y {xe XN: 37 h(x;,0,7,) = 4,,}
= O(w) — ntpW)§p4a-1.(0, To)(1 — W) + 0 (n7?).
Since uniformly for § e K, [¢f| < logn
D(w) = O(N, + 1L, (0)}) + $n=tLy(0)72(1*L,y(6) — tN,Ly(6)2Ly(0)
+ 3(1 = NHLyO) 7 Lo(0)p(No + 1Lo(0)}) + 0 (n7?)
(W)L — W) = o(No + tLy(0))(1 — (N + tLy(0)")") 4 0 (1)
we obtain from (4.6) uniformly for 6 € K, |¢| < log n:
Dw) — noW)§Apsn-1(0s T) (1 — W) = H, (1, 6) + 0 (n7) .
Together with (9.17) this proves the assertion (9.13).

10. Proofs.

ProoF oF THEOREM 1. (i) 7| > (4(s — 2) log n)t. We shall give a proof for
the case ¢ > (4(s — 2) log n)}. The proof for r < —(4(s — 2) log n)* runs simi-

larly.
We have
M &“(X) _ 0 8—2 p—m/2 ’
10.1 PN XN: pt — O(1) — 2 24 _(t,0
01) [ {xexs:m SOl < if — 0) — () Tt A )
i #,.(x) — 0
< PN XNypt 2%/ 7 >
S . =Ly
+ O(—1) 4 () w2 n~ ™A1, 0)| -
By Lemma 3,

> (4(s — 2) log n)f} = o(n~e-mn)

Using Feller 1, page 166, Lemma 2, we obtain
(D(—t) < @(—(4(3 —2) [og n) = O(n—(s—z)/z) .
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Furthermore,
ro(t) < (4(s — 2) log m)p((4(s — 2) log n)¥) = o(n™*7) .
Hence the right side of (10.1) is o (n=~»7),
(i) |f| < (4(s — 2) log n)?. By Lemma 6 it suffices to prove
(10.2) PMN{xe XN: 3n, fV(x,, 0 4 n~ttp(0)) > 0}
= Q1) + p() L2 n7" An(1, 0) + o (n777)
Let 0,(6, v) = E((f(+, 8 + vB(6)))") and ¢(6, v) = (0,(0, v) — 00, v)")*.
By Lemma 4 we have uniformly for 6 € K, |v] < ¢
(10.3)  PNxe XN: Ti, fO(x, 0 + v6(9)) > 0}
= PN[x e XN nmt 31, 0(0, 0)7H(— fU(x, 0 + vB(6)
+ 0,6, v) < nipy(8, V)a(0, 1))
= D0, (0, 1) (0, V)™
+ p(rpy(0, V)0 (8, V)™) Tt
X Qu(rto,(0, V)5 (8, v)7, 0, 0 + vB(8)) + o(n=P7) .

Now the right side of (10.3) considered as a function of v is expanded in a
Taylor series about v = 0 with (s — 1) terms. Inserting v = n~*f and rearrang-
ing the terms according to their order in n~* leads to the assertion.

Starting from the Taylor expansion

F00 0+ pO) = ik B0 T

(fV(x, 0)) + o (v, x, )
we obtain by condition (x) that uniformly on compact subsets of ©,

skv

(10.4) o0, v) = 2 —ﬁ((’)’"ﬂkm(”) + o).

From this we obtain uniformly on compact subsets of ©,

0(0, ) = Ta v70,(0) + 0 () ,

with
0y = Péﬁg
(10.5) 0y = — 3§04 0505
o, = 35 0ul0n" — tounonten’ + tont .
Furthermore,
(10.6) n&pl(ﬁ, n—it)g(ﬁ, n—it)—l — Zgu_=20 n—m/2,m+1,.m(0)

4 nm TV, (nm )
where z, denotes a generic function with lim,_, sup,. . z,(#) = 0 and
ry=1
(10.7) r = 3pu k05 — Sononten’
ry = 4050007 + $0500'0% — 302057 — 10uouen’ + 3.
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From (10.6) we obtain for # € K and n = n, (say):
(10.8)  @(ndp (0,1t (0, n~tr)~?)

= Q) 4 ¢(1) Ly n ™R, (8, 0) + o(n=C~P7)z,(n"Hr)
with

(10.9) Ri(t, +) = nt?
Ry(t, ¢) = rt® — 4rjfe®.
By expanding ¢ in a Taylor series about ¢ with (s — 2) terms and using (10.6)
we obtain for 6 € K and n = n, (say):
(10.10) o(nto,(0, n~t)a (0, n~tr)™Y)
= (1) Znlo mmSu(t, 0) 4 n” T py(1)p(31)zo(n™H)
where p,(¢) is a polynomial in ¢ with coefficients dei)ending on # and being

bounded on compact subsets of ©. (This particular form of the remainder is
needed since (10.10) will be multiplied with polynomials in ¢, say ¢,(7), and we

shall need that sup,. g sup,. x ¢,()ps(Ne(3t) < o0.)
Furthermore,

(10.11) So(t, ) =1, Si(t, o) = —ntd.
From Lemma 4, (10.6) and (10.10) we easily obtain for € K, n = n,:
(10.12) o(ntp,(0, n~t)o(0, n~tr)™Y)
X Qn(ntp(0, n~t)o(0, n~t)71, 0 + n~t18(0))
= (1) U 1 HI Py (1, 0) 4 0 (nU )z, (nmhe)

Py(t, +) = —§pspi(l — 1)
Py(t, ) = (% + %‘0214030402_02‘01_11 - %p31p2_01p1_11)t
(10.13) + (Jonon'n + 30u0u'ont — fonowowen — 3
— $pw pRint®
Py(t, o) = (—3 — 10500% + §000x)!
+ (F — F2000w’ + F50500) 1 — 505 05’1 .
(10.3), (10.8), and (10.12) together imply
(10.14)  PM{xeX™: Fr, fO(x, 0 + n-4B(0)) > 0}
= Q1) + ¢(t) Dt n7"(Ra(t, 0) + X0y Prm-i(t, 0))
+’o(n—(3—2)/2) .
Hence (3.1) holds with 4,, = R, + >\ Py ey
The assertion of Theorem 1 now follows from (10.7), (10.9) and (10.13).

with

Proor or THEOREM 2. By Theorem 1 the following relation holds uniformly
on compact subsets of © and uniformly for ¢ e R:

PoN{xeXN: n*_e”(—;()ﬁ)_—0<t}

= (I)(t) + 90(1) P n‘m/2Am(t, 0) + o(n—(s—2)/2) .
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By Lemma 7 we obtain that uniformly on compact subsets of ® and uniformly
for |¢| < log n:
N N. 3 07»(x) - 0 s—2 —m/2 —_ —(s—2)/2
P {xexim SO0 0 <o man /Bm(t,a)} — Q1) + o(n—t 7).
Applied for t = — N, this yields the assertion of Theorem 2.
ProOOF OF THEOREM 3. (i) Let A(-, 6, r) be defined by
h(e+,0,7) = (0 — 7)7'(1(+, 0) — 1(+, 7)) T £0
= 1‘1’(.,7) 0=t
and let x,(0, 7), 0,(0, ), 4,(6, 7) be defined by (9.14).
By Lemma 4 and Lemma 7 we have uniformly for # e K, |t| < logn, |u| <
log n
PN{xeXN:0,0,0 4 n¥)"'n~t 337 (h(x,, 0,6 + ntr)
— 1y(0,60 + n7t))y > u — In~2,(0, 0 4+ nin(1 — u?)}

=1—®®w) +o(n?),
i.e.
Tk = SUPye x SUPuistogn SUP<iogn| Pt {X € XN 1 0,(0, 0 + n~tr)~'nt

X i (A(xis 0,0 4 n74) — py(0, 0 + n7h)) > u
— 340,60, 0 + ni)(1 — @)} — (1 — O(u)
fulfills lim,_, ntr, , = 0.
Let ay , = sup,.x E,N(¢,.,). By assumption,

lim, . n¥(ay, —a) = 0.

Let
. ul\',n = Nl_“K,n_fK,n .
Since
niluK,n - l—a| - ni|Nl—aK‘n—rK’n - Nl—al
< ntlag, — a + rg Ll forall n = n, (say), we have
uK,n = _Na + O(fl_i) ’

so that {uy ,: ne N} is bounded. Hence we have for all # e K, |¢| < logn
PRN{xe XN:0,(0,0 + n~t)~n~t 337 (h(x;, 0,6 + n~t1)
— 1000, 0 + n7H)) > g, — n74 2,00, 0 + nH(1 — i L))
=1 —D(ug,) — rea. = ag. = ENpp,) -

In other words, with

Apa = npg(0, 0 + n72t) 4 04(0, 0 + ne)(ntuy, , — 32,0, 0 + n~i0)(1 — u} )
we have for 0 e K, 0 < 1 < logn

PN[xeXN: 3n h(x;,0,0 + n74) = 2, ,} = EN(gy.,) -
Since for ¢ > 0 any critical region {x e X~: 37, h(x;, 0,0 + n~tf) > A} is
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most powerful for testing the hypothesis 6 against the alternative # + n~#, this
implies for # e K, 0 < ¢ < log n:
(10.15)  Pil-fx € X0 F0 h(xi, 0,0 4 n74) 2 2,0} 2 Efu-1(@0.0) -

Since 1% fulfills Condition L,, the function 4 fulfills the conditions assumed
in Lemma 9. Since

P{xeXN: 3% h(x,, 0,0 + n7tt)y = 2, ,} = a + o(nt),
Lemma 9 may be applied for r, = 6 + n~*t to obtain
Py fxe XN 300 h(x, 0,0 + n7t) = 2, ,} = H, (t,0) + o(n7}).
Together with (10.15) this proves (4.5) for 0 < ¢ < log n.
Since ¢ > log n implies inf,  x (N, + tL,(0)}) > (2 log n)! for all n > ny (say),
we have by Lemma 2 in Feller 1, page 166, for all 6 e K, ¢t > log n
DO(N, + tLy(0)}) > ®((2logn)t) =1 — n™*,

so that (4.5) holds trivially in this case.
The proof for + < 0 runs similarly.
(ii) We have ,

P{X € XN: 0,(x) = G (0)) = a + o(n™Y) .

As n¥(G,(0) — 0) is bounded, we obtain by Lemma 6:

P{x e XN N1, 19(x, Gil(6) 2 0) = a + o(n7?) .

Since 1 fulfills Condition L,, the conditions of Lemma 9 are fulfilled for the
function A(.,6,7) = 1¥(.,7) and 2,, = 0. Hence we obtain uniformly for
ek, |t < logn:

PV s {x e XN: 31n 19(x,, G,(0)) = 0} = H, (¢, 0) + o(n7¥).
Applying Lemma 6 once again we obtain uniformly for 6 € K, |7| < log n:
Py {x € XN: 0,(x) Z GiW(0)} = H, (1, 0) + o(n7) .

We now consider the case logn < 1 < cgnt. As n}(G,(0) — 0) and B(0 + n~t1)
are bounded (uniformly for 6 € K, logn < t < cgn?), we obtain for 7 > log n,
0eK,n=ng,

B0 + n~ i (nH (G (0) — 0) — 1) < —2(logn)t.

This implies

Pa-ifx € XN 0,(%) 2 G (0)}
> P, sfx € XN: miB(0 + nmt)
X (0.(x) — (0 + n7H)) = —2(log n)*}
=1 O(YI—%)
with the last inequality following from Lemma 3.

Since H, ,(t,0) = 1 4 o(n~?) for 6 € K and log n < t by Feller 1, page 166,

Lemma 2, this implies the assertion for logn < ¢ < cgnt.
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The proof for —c nt < t < —log n runs similarly.

Proor oF ProrosiTioN 1. By Lemma 4 and Lemma 7 we have uniformly for

0ek:
P{x e XN: Y1 10(x,, 0) = —niN,Ly(0)}

+ Ly(0) 'Ly 0)g(N,' — 1)} = a + o(n7}) .
Lemma 9 (applied for &(-, 6, t) = 1(., 6)) implies the assertion.
Proor oF THEOREM 4. Follows from Theorem 2 and Lemma 8.

PrOOF OF THEOREM 5. (i) Let ¢, ) = lixcxNipyc,x)- We have uniformly on

compact subsets of ©:
EN(¢ng) = a +o(n7?) .

For compact K O choose a compact K, C © such that K ¢ K,°. Since § € K,
0 < 7 < log n implies ¢ — n~*t ¢ K, for all n > n, (say), we have uniformly for
feK, 0<t<logn
E0N—’n_it(§0n,0—n"§t) =« + O(H—!) *
Hence we obtain from Theorem 3 (i) (applied for § — n~*t instead of 6)
EoN(SD’n,ﬂ—n‘it) é Hn,a(t’ 0 - n_%t) + O(H_,") *

From this (5.4) follows easily for 0 < ¢ < log n. The remaining cases may be
treated in an analogous way as in the proof of Theorem 3 (i).
(iiy By Theorem 3 (ii) we have uniformly for 0 € K, |f| < cyn?

PN{xe XN:0,(x) > G (0 —nt)} = H, (1,0 — nt) + o(n7Y).
By Lemma 8,
PN(x € XN 0,(x) > G, (0 — n))
= PN {xe XN: F® (0,(x)) > 0 — n~tt} + o(n~~272)
These two relations together imply the assertion.

ProoF OF THEOREM 6. (i) Let C,(x) ={#€®©: 0 = T,(x)}. According to the
assumption on T,, ne N, we have by (6.4)
PMxeXN:0eC,(x)} =4 —o(n).
Hence by Theorem 5 (i),
PMxeXN:0 —nteC(x)} =1 —H,,(t,0 —nt) —o(nt).
A straightforward computation shows that uniformly for fe K, 0 < ¢’ <
log n,
1 — H, (0 — n~¥t') = O(—1'L,(0)%)
+ 17 p(t'Ly(0))1" Ly(0)"H(ELy(0) + $L1(6))
+ o(n7¥).
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Hence we obtain uniformly for 6 € K, 0 < ' < logn,
PN(x e X¥: T,(x) < 0 — n-ir')
Z O(=1Ly(0)!) + n7deo(rLy(0)?)
X P Ly(O)THFLo(O) + FLu(9)) — o(n7H) .
The case ¢/ > log n may be treated in the usual way.
Since Property (6.3) is dual to (6.4) we obtain the dual result

Pr{xe XN: T,(x) =60 + ntt")
= O(—1"Ly(0)}) — n~ro(1"Ly(0)*)
X 1Ly0)H(FLo(0) + $Lu(0)) — o (n7) .

The proof of (ii) and (iii) is obvious. .
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