The Annals of Statistics
1973, Vol. 1, No. 5, 872-887

LAWS OF THE ITERATED LOGARITHM FOR
PERMUTED RANDOM VARIABLES AND
REGRESSION APPLICATIONS!
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Marquette University

In this paper Laws of the Iterated Logarithm for maximums of abso-
lute values of partial sums of permuted random variables are derived
under conditions that are the same as or similar to conditions used by
Kolmogorov, Hartman and Wintner, Petrov and Cséki in deriving Laws
of the Iterated Logarithm for sums of random variakles or semimartin-
gales. These results are then applied to obtain logarithmic convergence
rates for estimators of non-decreasing regression functions and integral
regression functions.

1. Introduction and summary. Iterated logarithm convergence rates are estab-
lished for maximums of absolute values of partial sums of permuted random
variables under conditions that are the same or similar to conditions used by
Kolmogorov [7], Hartman and Wintner [6], Petrov [11] and Cséki [3] in studying
Laws of the Iterated Logarithm for sums of random variables or semimartingales.
This type of maximum has been studied by Brunk [1, 2], who proved a Strong
Law of Large Numbers for these maximums and showed that convergence rates
for these maximums yielded convergence rates for certain estimators of non-
decreasing regression functions and integral regression functions. New conver-
gence rates will be obtained for these regression estimators.

The definition of maximums of absolute values of partial sums of permuted
random variables depends upon a certain type of sequence of permutations of
positive integers which is called order preserving. An order preserving sequence
of permutations is a sequence of permutations that satisfies the following con-
ditions. The nth permutation in the sequence is a permutation of the integers
1,2, ---,n. The first permutation is the identity permutation. And when n is
an integer greater than one, the order of the integers 1,2, ..., n — 1, as they
appear in the permutation corresponding to n is the same as their order of ap-
pearance in the permutation corresponing to n — 1.

We now define the sequence of maximums of absolute values of partial sums
of permuted random variables that arises from any sequence {X,} of random vari-
ables and any order preserving sequence of permutations, where the permutation
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of 1,2, ..., nisgiven by i, iy,, + =+ i,,. LetS, = 37, X,and S;, = Yi_, X, .
Then set R, = max,, S,, and R,’ = max,, |S,,|. The sequence {R,’} is called
the sequence of maximums of absolute values of partial sums of permuted
random variables that arises from {X,} and the sequence of order preserving
permutations. Observe that if the order preserving permutations are the identity
permutations, then §;, = §;, R, = max,_, S; and R,’ = max,, |S,|.

Throughout the remainder of this paper, {X,} will be a sequence of independent
random variables that are centered at expectations and have finite positive vari-
ances. Let s5,° and s}, denote the variances of S, and S, respectively, and set
r, = (2loglog s,%)%.

Laws of the Iterated Logarithm concerning {S,}, that is, statements of the form

(1.1) P[lim sup, S,/(s,r,) = 1] =1
have been obtained under various assumptions. It is well known that if equation
(1.1) holds for {S,} and lim, s,> = + oo, then

P[lim sup, max;,, S,/(s,r,) = 1] =1

also holds for {X,}. We will be concerned with establishing convergence rates

of the form
P[1 < lim sup, max;_, |S,,|/(s,7,) < F ] =1

where %~ denotes a known positive constant.

2. Iterated logarithm convergence rates for max;_, |S;,| under Kolmogorov’s and
Hartman and Wintner’s assumptions. Consider the following condition concerning

).
ConpitioN K. lim, 5,> = + oo and

(2.1) s,tesssup |[X,| =o(r,Y).
Kolmogorov [7] proved that if Condition K is satisfied by {X,}, then (1.1)

obtains. It will now be shown that a Law of the Iterated Logarithm holds for
R, and R,’ under Condition K.

THEOREM 1. Let {X,} be a sequence of random variables satisfying Condition K.
Then

(2.2) P[1 < limsup, R,/(s,7,) < 4(2)!] = 1
(2.3) P[1 < limsup, R,'/(s,7,) < 4(2)}]=1.
OUTLINE OF THE PROOF. We first demonstrate that (2.2) holds. Since R, = S,,
we can conclude by (1.1) that
P[1 < lim, R,/(s,7,)] = 1.
If it can be shown that
(2.4) Pllim sup, R,/(s,7,) < 42 = 1,

then (2.2) will follow. Since lim, s2,,/s,* = 1, for every number ¢ that exceeds
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one there is a sequence {n,} of positive integers, eventually increasing, such that
5., ~ ¢*. In what follows c is an arbitrary number that exceeds one. Later on
¢ will be fixed and its value will depend upon positive numbers § and 4”.
Following the method of Brunk [1], we now define terms which will be used
in the remainder of this proof. We can assume that the sequence {n,} described
above is increasing. Set n, =0 and n, = 1. For k = 1,2, 3, ... arrange the
terms X; having indices i such that n,_, < i < n, in the order given by the per-
mutation for n,, and let Y(k) denote the family of partial sums containing the
first of these terms, the sum of the first two, and the sum of the first three, etc.
Now consider partial sums S;, when j < n. For each n, choose k = k(n) so that
m_,<n<n,. LetZ, Z,..., Z,  _, denote the random variables X, ,,, X, ,,- - -,

X,,-. Written in the order given l’;y the permutation for n,. Let U(n) denote the
family of partial sums {Z,, Z, + Z,, ---, Z, + Z, + --- + Z, _,}.

For fixed jand n, and for v =1,2, ...,k — 1, let L, = L,(j, n) denote the
sum of terms X; which appear in the sum S;, and which have indices i such that
n,_, <i<n, Then L, is an element of Y(v) for v =1,2, ...,k — 1. Let
L, = L,(J, n) denote the minimal member of Y (k) containing all terms appearing
in §;, whose indices i satisfy n,_; < i < n, (minimal in the sense of containing
the fewest possible terms.) Let Z7 = Z/(j, n) be the sum of terms appearing in
L,(j, n) of index greater than n; then Z/e U(n) and S,, = 3%, L, — Z/. Let
7 (k) denote the family of all sums of the form }}%_, W,, where forv = 1,2, ...,
k, W, is an element of Y(v). Let V' = V(j,n) = X%, L,(j,n). Then V is an
element of (k) and S,, = V — Z/. Finally, let max ¥, and max W, stand for
max,., ., ¥ and max, ., W, respectively.

Equation (2.4) holds if for every positive o

P[R, > (4(2)* + d)s,r; i.0.]=0.
Set D, = s, r, . It will be established that P[R, > (4(2)! + d)s,r,i.0.] vanishes

k™"
by bounding the above probability by 2P[max V,, > (4(2)! + 6/2)D,_, i.0.] and
then showing that this number equals zero.

We now verify that
(2.5) P[R, > (4(2)t + 0)s,r, i.0.] < 2P[max V, > (4(2)! + 6/2)D,_, i.0.].

Set 4, = [R, > (4(2)* 4 0)s,r,], B, = [—min,, Z(j, ) < (6/2)s,r,] and C, =
[max ¥V, > (42) + 6/2)s,1,].
Using Kolmogorov’s Inequality, the fact that

—min,, Z/(j, l) = max,, (—Z(j, 1))

is equal to a nested partial sum of X,’s, and the relationships s, ~ c* and
lim, n, ;) = 4 oo, it can be shown that lim, P(B;) = 1. By this equation, the set
containment 4, B, C C,, and the Lemma for Events ([8], page 246), it follows that
PU, 4,) £ 2P(Us, 4,B,) < 2P(Us, C)) for | sufficiently large. Equation
(2.5) follows easily from this inequality.
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Let 0 < 0" < d/(4(2)}). Then we can select a number ¢ > 2¢such that (4(2)* 4
0/2)[c > 4 + 29'. By this inequality and the equation lim, ¢D,_,/D, = 1 it fol-
lows that

P[max V, > (4(2)} + 3/2)D,_, i.0.] = P[max ¥V, > (4 + &\D, i.0.].

If P[max ¥, > (4 + 0’)D,] is a general term of a convergent series then by the
Borel-Cantelli Lemma we can conclude that P[max V, > (4 4- ¢’)D, i.0.] van-
ishes and hence that (2.2) holds. Accordingly, asymptotic bounds will now be
derived for P[max W, > (4 + 8')D,/(k[k/2])], when 1 < i < [k/2], and P[max W, >
(4 4 9")(D; — D,_,)(k — 1)/k] when [k/2] + 1 < i < k, in order to deduce that
both members of the relation .
P[max ¥, > (4 + )D,]
(2.6) = 20 Plmax W, > (4 + 6")D,/(k[k/2])]
+ Xtk P[max W, > (4 + &')(D, — D,_j)(k — 1)/k]

are general terms of convergent series.

We first consider P[max W, > (4 + 6")D,/(k[k/2])] when 1 < i < [k/2]. Since
{X,} is a sequence of independent random variables that have finite variances and

max W is a maximum of nested partial sums of X,’s, we can apply Kolmogorov’s
Inequality to max W, concluding that

(2.7) MaX, gy Plmax W; > (4 + 0")D,/(k[k[2])] < 1/k*

for k sufficiently large.
Now an asymptotic bound will be derived for

P[max W; > (4 + ¢’)(D; — D,_,)(k — 1)/k]

when [k/2] + 1 <i < k. Let P, be this probability. Then for any positive number
7 less than ¢’, P, is bounded above by P[max W, > (4 + y)(D, — D,_,)] for k
sufficiently large.

Let p; = (53, — si,_,)!. By applying the Remark given by Loéve ([8], page 248)
to max W; we conclude that P[max W, > (4 + 5)(D; — D,_,)] is bounded above
by 2P[S"i - Sni_l > (4 + 9)(D; — D;_y) — 2p,].

Let 0 < »" < 5. Then for k sufficiently large we have

(2-8) Py = 2P[(S,; — Sa,_)Ipe > (4 + 9')(D; — D, _)Jp.] -

One result of Loéve’s Remark A, ([8], page 254), is that when {X,} is a sequence
of independent random variables that are centered at expectations and g is a posi-
tive number such that gc < 1 where ¢ = max,_, ess sup |X,|/s,, then

P[S,/s > g] < exp[(—g*/2)(1 — gc/2)] .

We can apply this result to (2.8) by setting g, equal to (4 + 7')(D, — D,_,)/p;
and ¢, equal to max, .., esssup|X,|/p,, We then conclude that P[(S,, —
Sn;_)IP: > 9;] is bounded above by exp[—(9,2/2)(1 — g,¢,/2)].
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Let 0 < 0” < 7. Since lim, g, ¢; = 0, for k sufficiently large and [k/2] < i < k,
we have (4 + 7')*(1 — g,¢,/2) = 16 + ¢”. By the last two inequalities we write:

(2.9) PS4, — Su,_)IP:i > 91]

< exp [ —(16 + 3")[s, (log lsc;g si* — 5,,_,(loglog sii_l)*P] .
ng T Smg—y

Using the Mean Value Theorem for Derivatives, we can bound the term
[s,,(log log 53 )t — s,,_ (loglog s )i]* below by

(log log v,)(s3, — s3,_)/(4v; log log v,)
for i sufficiently large. And by using the relation s, ~ c’and ¢ > 2¢ this latter

term can be bounded below by log [(2i — 2) log ¢ — 1]/8 for i sufficiently large.
Consequently, by the use of (2.9) and these lower bounds, we deduce that

P[(S,,—S,,_,)/p:<9;] is bounded above by 1/exp[(2+4-0"/8) log [(2i—2) log c—1]]

i—1
for i sufficiently large.
It follows from this last inequality that for k sufficiently large,

maxg,sgise P[(Sa, — Sni_l)/pi)> 9;] < 4/(2k log c)**"7%.
This inequality and inequality (2.8) yield the conclusion
Maxp,m i<k Pi < 8/(2k log ¢)?+*"'/8
for k sufficiently large. From this equation and (2.6) and (2.7) it follows that
P[max V, > (4 + 0')D,] < &€ [k**¢

for some positive constants & and £. Hence, the above probability is a general
term of a convergent series and (2.2) is established.

Equation (2.3) follows from (2.2) applied to max;, (—S;,)-

Hartman and Wintner [6] showed that (1.1) holds under certain assumptions
which we shall call Condition HW.

ConpiTioN HW. {X,} is a sequence of independent random variables having
cumulative distribution functions Q,(-). These random variables are centered
at expectations and have finite variances o,’. 5,%/n is bounded away from zero
and there is a cumulative distribution function .77, satisfying § x* d.7"(x) < oo,

such that ,

(2.10) SUP, $yize1 4Qn(») = O(S1yi2e1 477 (7)) -

We now use Condition HW to investigate R, and R,'.
REMARK 2. Let {X,} satisfy Condition HW. Then

@1y P[1 < lim sup, R,/(s,7,) < 4(2)}] = 1

(2.12) P[1 < limsup, R,//(s,7,) < 4(2)}] =1.

PrOOF. We establish (2.11) and (2.12) together. Hartman and Wintner [6]
show there are sequences {Z,} and {Y,} of random variables and a sequence {a,}
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of real numbers such that {Z,} satisfies Condition K,
(2.13) 117, = o[(nloglog )i,
(2.14) 21|, = o[(nloglog n)']
and X, =Z, 4+ Y, + a,.
The last equation can be used to show that
max;e, | 5. X,,,| S max;., | NI Z, | + TV + Do e,

By this inequality, (2.13) and (2.14) and the fact that s,%/n is bounded away from
zero, we find that

R, = max, ., |5i.: Z,,| + o(s,r.) -
The conclusion follows from this inequality, the application of Theorem 1 to
{Z.}, the application of Hartman and Wintner’s Law of the Iterated Logarithm
to {S,}, and the relation S, < R, < R,’.

3. Iterated logarithm convergence rates for max;,_, |S,,| under a normal conver-
gence criterion. Consider the following condition concerning {X,}.

ConbITiON P. {X,} is a sequence of independent random variables that are
centered at expectations and have finite positive variances ¢,2. Furthermore,
lim, 5,> = +oco and lim, s2,/s,* = 1. Finally, there is a positive number ¢ such
that A, = O[1/(log s,%)*+?] where A, = sup, |F,(x) — N(x)|, F,(x) = P[S, < xs,]
and N(x) = §2, (2II)~* exp(—1*/2) dt.

Petrov [11] showed that Condition P is sufficient for (1.1). Following Petrov,
we introduce the following Condition P’. We will show that under Condition P’
a Law of the Iterated Logarithm obtains for R,’. An example has been given in
[9] to show that Condition P’ is sufficient but not necessary for Condition P, as
well as Condition P with O[1/(log s,%)1+°] replaced by O[1/(log s,%)**?].

ConpiTiON P'. {X,} satisfies Condition P and in addition there is a positive
number ¢ such that
(3.1) lim sup, sup,. . [log (s¢,, — s;)*A,, < oo
where A, = sup, |F,,(x) — N(x)|, F,(x) = P[S,., — S, < (5}, — 52)tx], and
& denotes the positive integers.

THEOREM 3. If {X,} satisfies Condition P', then
(3.2) P[1 < limsup, R,/(s,r,) < 2(6)}] =-1
(3.3) P[1 < limsup, R,'/(s,r,) < 2(6)] = 1.

OUTLINE OF THE PrOOF. We first establish (3.2). Since Condition P’ is suf-

ficient for Condition P, (1.1) holds for S, and thus P[1 < limsup, R,/(s,7,)] = 1.
If it can be shown that

(3.4) P[limsup, R, /(s,r,) < 2(6)}] =1,
then the conclusion (3.2) will follow.
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A large part of this proof is identical to part of the proof of Theorem 1, and
will not be repeated here. Any symbol occurring in this proof that was previ-
ously used in the proof of Theorem 1 has the same definition of the one given
in the earlier argument.

Equation (3.4) will follow if we can show that

P[R, > (2(6)! 4 0)s,r, i.0.] < 2P[max ¥V, > (2(6)! + 0/2)D,_, i.0.].

We wish to show that the right-hand member of this inequality equals zero.
Given a positive ¢’ < §/8, we can select ¢, 2 < ¢ < 3, such that (2(6)* 4 9/2)/c >
(6)t + 20’. Then

P[max V, > (2(6)} 4 6/2)D,_, i.0.] £ P[max V, > (6! 4 ¢")D, i.0.].
We now show that P[max ¥}, > (6! 4 d’)D,] is a general term of a convergent
series. The following inequality is needed:
P[max V, > (6% + d")D,]
(3.5) = XiY Plmax W, > (6% + 0")Dy/(k[k/2])]
+ Dbt P[max W, > (6% 4 0')(D; — D,_,)(k — 1)[k].

Asymptotic bounds must be derived for each type of summand of (3.5). The
first type is bounded above by 1/k* for k sufficiently large, as before.

Next consider

P[max W, > (6 + &)(D, — D,_)(k — 1)/k] .

Let P be the above probability, and let 0 < 6” < 6’/2. As before, we conclude
that
P’ < 2P[S, — S

-1

= (6% + 9")(D; — D;y)]
whenever [k/2] + 1 < i < k for k sufficiently large. By this inequality and (3.1)
of Condition P’ we can write
P! < 2P[S,, — S.,_, = [(6* + 0")(D; — Diy)/pilpi]
= 2 §Ghso0p-0,yrn; SXP(—1[2)/(27)* dt + O[(1/log p7)™*],

Following Petrov [11] we conclude that

2 exp[— (6% + 0")"(D; — D,.)'/(2p?)] 2y
Pi/ é i i 1 + f/(log )2 +e
(6% 4 6")(D; — D;_y)/ps )
for some positive constant _# for i sufficiently large. There are positive numbers
7, 7', and %" such that (6 + 6”)* > 6% 4 » and (1 — 7’2 + 7/3) > 2 + »".
These inequalities and the relation s, ~ ¢’ enable us to deduce that P/ <
1/(2i)+7" 4 #/(2i)** for some positive constant 7, for k sufficiently large.

The conclusions follow.
We now give two results that specify conditions under which Condition P’

holds.

REMARK 4. Let {X,} be a sequence of independent random variables that are
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centered at expectations, such that 0 < inf, EX,? and sup, E|X,|* < co; then
these random variables satisfy Condition P’.

This result can be obtained by use of Holder’s inequality and the Normal
Approximation Theorem, given by Loéve ([8], page 288). The next result, Re-
mark 5, generalizes what we have just established. The assumptions used here
do not, however, have the simplicity of the assumptions used in Remark 4.

REMARK 5. Let {X,} be a sequence of independent random variables centered
at expectations. Let g be a positive function satisfying: ¢ is even and non-
decreasing on (0, co) with lim, g(x) = 4 oco; the function x/g(x) is defined for all
real numbers x and is non-decreasing on (0, o), and im, ., [log x]***/g(x) = 0.
Assume further that

0 < inf, EX,? < sup, EX,? < oo and 0 < sup, E[X,*9(X,)] < oo .
Then Condition P’ holds for {X,}.
This Remark is easily justified using a result given by Petrov [10].

4. Semimartingales. Set R,” = (R,’)*. It will first be shown that {R,}, {R,’},
and {R,”} are semimartingales. We can then apply semimartingale results of
Csaki [3] and Darling and Robbins [4] to study convergence rates for {R,}, {R,'},
and {R,"}.

THEOREM 6. Let {X,} be a sequence of independent random variables.

(i) If these random variables have nonnegative expectations, then {R,} is a semi-
martingale.

(i) If these random variables are centered at expectations, then {R,’} and {R,"}
are semimartingales. (The proof of this theorem does not require the variance of
X, to be finite.)

Proor. Wefirst establish that (i) holds. For any random variables Z,, Z,, - - -,
Z,, let o{Z,, ..., Z,} denote the sigma field generated by Z;, Z,, - - -, Z,. We
wish to show that

4.1 ER,|R,, ---,R,_))=R,_, as.,
or equivalently tha®
(4'2) SA E(Rn | Rn R} Rn—l) dp g SA R'n—l dp

for all Aeo{R,, -+, R, ,}. The verification of (4.2) can be accomplished in
three parts, corresponding to the cases where the integer n is given the first,
second thfough (n — l)st, or nth place by the permutation i, i,, « -, i,, Of
1,2, ..., n.

Assume first that n = i, ,, for some positive / < n — 1. Then

R'n = max {Sn—ua Sn—12’ Tt S'n—ll’ Sn—ll + Xn’ Tt S'n—l a1 T Xn} .
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Set H=1[R,_, > Syp_1> -+*sRyy > S, 1,1] and H' = Q — H. Then for Ae¢
o{Ry, - -, R,_;}, we write
§.ER,|R, -+, R,_)dP = §, R, dP = §,, R, dP + §,, R, dP
g SAH Rn—l dP + SAH’ (Rn—l + Xn) dP
Z SA Rn—l dP .

Thus (4.2) and (4.1) follow in this case. The remaining cases are easily verified.

The proof of Proposition (ii) will now be outlined. First we consider {R,'}.
Set F = {Su, Sigs Saas+ * +» Sy_1 s} and R,* = max;, (—S;,). Theargumentsthat
ER,| %)= ER,|¥) =R, as. and E(R,’| &) =z R),_, a.s. are similar to
the proof of (4.1). From these ineqalities and .

ERR,|R/, ---, R, ;) = E[ERR,| F )| R/, - -+, Ry,] = R, , a.s.

one deduces that {R,’} is a semimartingale.

Since R,” = (R,’)’, {R,"} is a semimartingale and the proof of Theorem 1 is
concluded.

We will now study convergence rates for R,’ by application of a Law of the
Iterated Logarithm that holds for a type of semimartingale. Cséki [3] proved
the following theorem.

THEOREM 7. Let {Z,} be a semimartingale such that the moment generating func-
tions of {Z,} exist in an interval of the form [0, a], a > 0. Furthermore assume that

(4.3) E[exp(1Z,)] = STEO",

for t in [0, a], where ¥ > 0 and W(t) is a function such that

(4.4) T(r) =1+ (4)2) + O() ; t— 04
for some constant A > 0. Then

4.5) P[lim sup, (2nloglogn)~tZ, < A] = 1.

By use of Cséki’s result we can obtain a Law of the Iterated Logarithm for
R,’ under the following condition.

ConpItioN C'. {X,} is a sequence of independent random variables that are
centered at expectations and have moment generating functions existing in an
interval of the form [—a, a] where @ > 0. Furthermore,

max {sup, E[exp(:X,)], sup, E[exp(—tX,)]} < ¥()
for ¢ in [0, a], where ¥ satisfies (4.4).

REMARK 8. Let {X,]} be a sequence of random variables that satisfies Condition
C’ for some A > 0. Then
(4.6) P[limsup, (2nloglogn)~*R,’ < A] = 1.

The proof can be accomplished by applying Csaki’s theorem to R, and R,°
separately. The argument given in [9] utilizes two results given by Doob [5],
page 317 and page 295, part (iii) .
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' We will now use the fact that {R,"} is a semimartingale and the following theo-
rem, due to Darling and Robbins [4], to derive bounds for certain probabilities
involving R,’. Darling and Robbins [4]and Robbins [12] give statistical applica-
tions of these kinds of bounds (as well as a bibliography of the literature in this
area), which can be used in connection with Brunk’s [1], [2] work on the esti-
mation of integral regression and non-decreasing regression functions.

THEOREM 9. If {Z,} is a nonnegative semimartingale with EZ, < b,, and if {a,}
is any non-decreasing sequence of positive constants, then
P(Z, = a, for some m<n<k)<b,la,+ Nk .0, — b, ) a,.

REMARK 10. Let {X,} be a sequence of independent random variables, centered
at expectations, such that sup, EX,* < ¢* for some number ¢%. Let {a,} be a
non-decreasing sequence of positive numbers. Then

P[R,” = 4/a, for some n = m] = P[R,” = a, for some n > m]
< 4md’la,, + Y741 40%a, .
A straightforward argument utilizing Theorem 9 is given in [9].
We shall now evaluate the bound given in Remark 10 for two particular se-

quences {a,}. In both of these examples {X,} is a sequence of independent random
variables that are centered at expectations.

ExampLE 1. Brunk [1] proved that if {X,} satisfied an rth order Kolmogorov
condition for some number r > 1, then P[lim, (1/n)R,’ = 0] = 1. This equation
is equivalent to statement that for every 6 > 0,

lim,, P[(1/n)R,’ = ¢ for some n>=m] =0.

If we further assume thatsup, EX,* < o, for some number ¢?, then by Remark 10,
we shall derive a rate of convergence to zero of P[(1/n)R,’ = ¢ for some n > m].
Set a, = ¢’n*. Then by Remark 9,
P[(1/n)R,” = 6 for some n = m]
< 40°)(m0) + D2 pas 408/ (rh0%) = o(1/m)
whenever 0 < ¢ < 1.
ExAMPLE 2. For any positive numbers _# and 4, set a,, = #n(log n)*+?. Then
by Remark 10,
P[[n(log n)'+?]"tR,’ = _#* for some n = m]
=< 4d*[[ A (log my*?] + 1=, 40*/[Fn(log n)+?]
= o[-7/(log m)]

whenever 0 < ¢ < 4.
The preceding Laws of the Iterated Logarithm will be used in the next two

sections to study integral regression functions and non-decreasing regression
functions.
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5. Integral regression functions. The following discussion and notation is very
similar to that given by Brunk [1].

Suppose that associated with each point ¢ of the unit interval there is a uni-
variate distribution D(f) with mean pu(f); u(+) is called the regression function.
Let {t,} be a sequence of numbers in [0, 1], not necessarily distinct, to be called
observation points. For each n, let Y,(z,) denote a random variable having the
distribution associated with ¢,, so that EY,(z,) = p(t,); and let the random vari-
ables {Y,(z,)} be independent.

Set

hy(r) = Lf[tj,m)(t) and Sa(1) = X5 Y(1)hy(21)
for each € [0, 1]. Let F(.) denote the “empirical distribution function” of the
set {t,, ---, t,}:
Fo () = Xi-1hi(Ofn
For a given probability distribution function F with support in [0, 1], set M(t) =
§10,.7 #(v) dF(v) for each ¢ in [0, 1]. M is called the integral regression function.
Also let ,
M,(1) = ES,()[n = §po,01 11(v) dF,(0) -
For any function f{(r), sup, f(¢) will be written in place of sup,,, f(f). We will
take S,(f)/n as our estimator of M(¢). Brunk [1] has established that when p is
continuous on the unit interval and {Y,(z,)} is a sequence of random variables
having bounded variances, then

Pllim, sup, [S,(1)/n — M, (5] = 0] = 1.

Brunk [1] has also shown that if in addition to the above conditions F, converges
uniformly to F, then

P[lim, sup, |S,(t)/n — M(#)] = 0] = 1.
Now under stronger assumptions than Brunk’s, we will show rates of conver-

gence to zero of sup, |S,(f)/n — M,(¢)| and sup, |S,.(f) — M(?)|.

RemArk 11. Let {z,} be a sequence of observation points in [0. 1]and let z(-)
be a continuous regression function. Assume that the sequence of random vari-
ables {Y,(t,) — p(t,)} satisfies

(5.1) sup, Var Y, (¢,) < o*,
for some positive constant ¢2, as well as Condition K, HW, P’ or C'.

Then, for some constant .# (whose value depends upon ¢? and the parameter
A of Condition C’),
P[lim sup, (n/loglog n)t - sup, |S,(H)/n — M, ()| < 7] =1.
The proof, given in [9], is similar to Brunk’s proof of Proposition 2.2 ([2],

page 179).
We now consider the problem of obtaining a rate of convergence to zero of
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sup, |S,(f)/n — M(t)|. Through the next three results, we obtain rates of con-
vergence of this statistic under assumptions that become progressively easier to
work with.

COROLLARY 12. If in addition to the assumptions of Remark 11, the empirical
distribution function F,(+) of {t,, t,, - - -, 1,} satisfies
(5.2) lim sup, (n/log log n) - sup, [M(t) — M,(t)] < .~
for some positive constant _# and probability distribution function F, then
(5.3) P[lim sup, (n/log log n)t sup, |S,(f) — M(1)] < A ] =1
for some positive constant _#,.

Corollary 12 follows from the previous result and the Triangle Inequality.
We next consider a condition that is sufficient for (5.2).

LEMMA 13. Let{t,} be a sequence of observation points and assume that the regres-
sion function p(+) is a continuous function on [0, 1].

Let p(n) be the number of values of a step function p1,(+) on [0, 1] that uniformly
approximates p(+) to within (log log n/n)t. If the empirical distribution function F,(+)
and a probability distribution function F(+) satisfy

lim sup, o(r)(n/log log )t sup, |F,(1) — F(1)] = .~
for some positive constant _#, then (5.2) holds.

The easy argument, given in [9], is omitted here.

The p(n) factor used in Lemma 13 appears hard to work with in applications.
In the next result, we see that by means of an extra condition on x the factor
o(n) can be dispensed with altogether.

The function p(.) is said to satisfy a Lipschitz condition if there is a constant
# such that

(5-4) lp() — p(v) = S u — o]

for all elements » and v of [0, 1]. This condition will hold in particular if x# has
a bounded derivative.

REMARK 14. Assume that the regression function y satisfies the Lipschitz con-
dition (5.4) and that

(5.5) lim sup, (n/loglog n)t sup, |F,(f) — F(f)| £ A,
for some positive constant _#,. Then (5.2) holds.

The argument, given in [9], follows from Lemma 13 by actually constructing
the aforementioned step function such that p(n) < 2.#(n/loglog n)*. The next
Remark is a result of Remarks 11 and 14, together with the Triangle Inequality.

REMARK 15. Let {t,} be a sequence of observation points in [0, 1], and let
¢(+) be a regression function that satisfies the Lipschitz condition (5.4). Assume
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that F, and F satisfy (5.5), and that {Y,(z,) — wu(t,)} satisfies (5.1), as well as
Condition K, HW, P’ or C’. Then (5.3) holds.

These results can be generalized to the case where the observation points T,
are random variables. The new situation, called an independent observations
regression model, is discussed by Brunk [2]. The generalization is outlined in [9].
The final part of this generalization is that the fundamental convergence rate of
Corollary 12, equation (5.3), can hold in an independent observations regression
model. This result, Corollary 17, is given here. Its justification utilizes Theo-
rem 16, proven by Csaki [3]. All symbols occurring in these results are defined
in [2] and in [9].

THEOREM 16. If T, T,, - - - are independent identically distributed random vari-
ables having a continuous distribution function F and empirical distribution function
F,, then

P[lim sup, (n/loglog n)t sup, |F,(t) — F()] =27 = 1.

CoROLLARY 17. Let (T, Y) be an independent observations regression model and
let Ty, Ty, - - - be independent identically distributed random variables having a continu-
ous cumulative distribution function F and empirical distribution function F,.

Furthermore, let A, be a subset of Q, of P, probability one such that for each of its
elements o, = {1,} the random variables {Y (t,) — p(t,)} satisfy (5.1) and Condition
K, HW, P’ or C'. Finally assume that y satisfies (5.4). Then

P[lim sup, (n/log log n)t sup, |S,(t)/n — M(t)| = A1 =1
for some positive constant 7.

6. Increasing regression functions. We will now obtain convergence rates for
estimators of increasing regression functions. To conform to the current usage
of Brunk [1], we will let ©(x) be an increasing regression function. The following
introduction to this situation is the same, except for minor changes, as that given
by Brunk [1].

Let a probability distribution D(x) with mean ©(x) be associated with each
xe[0, 1]. Let {x,} be a sequence of “observation points” in [0, 1], not neces-
sarily distinct. An estimator of ©(.) appropriate to a situation in which ©(.) is
known to be non-decreasing in [0, 1] will now be described, and the rate of
convergence at observation points will be studied.

Let {Z,(x,)} be a sequence of independent random variables such that Z(x,)
has the distribution D(x,); in particular, EZ (x,) = ©(x,). Let a(+) be a given
bounded positive function on [0, 1] bounded away from 0; a(x,) is to be inter-
preted as a weighting factor to be applied to Z,(x,). For a fixed positive integer
r,let 0 < x,; < X,5< -+ < X, be the k = k(r) distinct numbers among
X,, -+, X,, arranged in increasing order. Let m, = m,, denote the number of
numbers among {x,, - - -, x,} which are equal to x, ,, and let w, = w,; denote the
sum of weights at x, ;. Set

Zr,(xri) = Zj:xj=xri Zj(xri)/mi .
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Brunk [1] gives a formula for an estimator ©,’ for ©:

(6°1) @T’(X) = maxfc,,qéx minxmzx [Zg=q Ww; Zr,(x'ri)]/zz=q w; .
For use in the following theorems, for each r let N,(J/) denote the number of

numbers among x;, X,, - - -, X, which are elements of the set J.
Brunk [1] proved the following:

THEOREM 18. Let a(+) be a bounded positive function on [0, 1], bounded away
from 0. Let ©(+) be continuous and non-decreasing on [0, 1]. Let {x,} be a sequence
of observation points, not necessarily distinct, such that for each interval J C (0, 1),
r/N,(J) is bounded. Let the variances of the independent observed random variables
Z,(x,) be bounded. Let0 < a < b < 1, then )

P[lim, sup,<,<; |0, (x) — O(x)] =0] = 1.

By use of iterated logarithm convergence rates given earlier we now obtain a
rate of convergence for |@,’(x) — ©(x)| at each observation point, even when 6
is not necessarily continuous.

REMARK 19. Let a(+) be a bounded positive function on [0, 1], bounded away
from 0, and let ©(+) be non-decreasing on [0, 1] (but not necessarily continuous).
Let {x,} be a sequence of observation points, such that for each point x of {x,},
lim inf, N,({x})/r is positive. Let {a(x;)[Z;(x;) — ©O(x,)]} be a sequence of inde-
pendent random variables having variances bounded above by a number ¢* such
that every subsequence satisfies Condition K, HW, P’ or C’. Then for each
number x in {x,}, there is a positive number _# such that

(6.2) P[lim sup, (r/loglog r)}®,/(x) — O(x)| =] =1.

Proor. Let x be an element of {x,}. Then there exists an integer 4 such that
x = x,. For fixed r at least this large, define ¢ by x,, = x. We will show first
that for some negative constant .7,

(6.3) P[lim inf, (r/loglog r)}(®,(x,;) — O(x)) = A] = 1.
Using (6.1), we write
0,'(x) — O(x) = min,z, Xt Wil Z,'(Xs) — O(X,)) Ll We -
Since a(+) is a bounded positive function the inequality
Di=g Wil Nigm; 20> 0

holds; here 4 is a lower bound on a(.). Using @ A 8 to denote the smaller of
two numbers a and j, by the last two inequalities we then have

(6.4) 0,(x) — B(x) = 0,'(x,,) — O(x,,)
= min,;, (1/0)(0 A X5-, Wi Z,'(x,:) — O(x,.)]/ X5, M) -

In order to use previously obtained Laws of the Iterated Logarithm, for n =
1,2, ... let r(n) be the index of the nth number among x,, x,, - - - which is at
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least as large as x. Set ¢, = x,,,, Y,(t,) = a(t,)[Z,., — O(t,)] and S, (t) =
225=1 Yi(1)h(0).

Let iy, iy, -+, I, be the permutation of 1,2,...,n such that t, =
ti,, = -+ =t (Where in case exactly two of the s are the same, say ¢, and
t;, with i < j, we leti = i, and j = i,,,, for the appropriate integer /. We adopt
a similar convention in the case of three or more identical #’s). Since the value
of t, does not affect the values of 1,, 1,, - - -, £,_;, the sequence of permutations

whose nth permutation is represented by i, i, - - -, i,, is an order preserving
sequence of permutations. Thus,

sup;, lSn(t)I = maX;g, lSjnl =R,’

where S, = Y., Y, (¢,)-

We now show using iterated logarithm convergence rates for R,’ and a lower
bound of ©,/(x) — ©(x) in terms of R,’ that (6.3) obtains.

For x,.,, £ t < X,(n)ss1» WE WTite

Sn(t) = Zg=q wi[Z;'(n)(x'r(n)i) - g(xr(n)i)] *
Using this equation and the hypothesis that /N, ({x}) is bounded it can be shown
that there exists a constant _#, such that

(6.5) 0N Xty Wil Zl iy (Xpinrt) — @(xrmi)]/ZL., m; = Zy (0 A [S.(5)/r(n)])

if Xr(nrs é t < xr(n)s+1'
By inequalities (6.4) and (6.5), we conclude that

(r(n)/log log r(m)}[©;,)(x) — B(x)] = (/0)(0 A S,(1))/(n log log )t .
Observe that the right-hand member of this inequality is constant for r between
r(n) and r(n + 1). Thus,
(6.6)  (rfloglog H[8,'(x) — O(x)] = (F/8)(0 A S,())/(n log log n)?
for any integer r in [r(n), r(n 4 1)).
Since {Y,(z,)} satisfies Condition K, HW, P’ or C’, by Theorems 1 and 3 and
Remarks 2 and 8, it follows that

P[lim sup, (nloglogn)=t . sup, |S, ()| < ] =1
for some constant %, > 0.

Equation (6.3) can then be derived using (6.6) and the last equation above.
By a similar argument we can conclude that

P[lim sup, (r/loglogr)t . [0,/(x) — O(x)] < A,] =1

for some positive constant _#,. This equation and (6.3) are sufficient for the
conclusion (6.2).

It should be noted that the requirement (stated in the hypothesis) that every
subsequence of {a(x,)[Z,(x,) — O(x,)]} satisfies Condition K, HW, P’ or C’ fol-
lows in many cases from the statement that the sequence {a(x,)[ Z,(x,) — O(x,)]}
itself satisfies these conditions in the presence of reasonable added assumptions.
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For instance, if the above sequence of random variables satisfies Condition
HW, and the variances of these random variables are bounded away from zero,
then Condition HW holds for every subsequence.

Furthermore, if these random variables have second and absolute third
moments bounded above and bounded away from zero, then by Remark 4,
Condition P’ obtains for every subsequence.

Finally, if Condition C’ holds for the above sequence of random variables, it
holds for every subsequence.
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