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EXTENSIONS OF KESTEN’S ADAPTIVE STOCHASTIC
APPROXIMATION METHOD

By H. J. KusHNER! AND T. GAVIN?
Brown University

Kesten proposed a method for adjusting the coefficients of a scalar
stochastic approximation process, and proved w.p. 1 convergence. A
family of multidimensional processes for function minimization are treated
here. Each method consists of a sequence of truncated one-dimensional
procedures of the Kesten type. The methods seem to offer a number of
advantages over the usual Kiefer-Wolfowitz procedures, and are more
natural analogs of the schemes in common use in deterministic optimiza-
tion theory.

1. Introduction. Over the-past twenty years the stochastic approximation
method has attracted great attention in both the mathematical statistics and
engineering literature (see e.g., [2], [3], [5],[7], [8], [9], [11], [12]). Itsattraction
to engineering systems optimization lies in the fact that it provides a systematic
approach to Monte Carlo optimization, when one has a system with a perform-
ance or cost function f(x) depending in a largely unknown way on a vector
parameter, and only noise corrupted observations can be taken. Convergence
w.p. 1 of the sequence of estimates of the optimum operating point can be guar-
anteed. Unfortunately, there is a serious disadvantage to the method in that the
actual asymptotic rates of convergence, and the initial behavior of the sequence
of estimates are very sensitive to the choice of gain sequences {a,} and finite dif-
ference sequence {c,}.

Kesten (1958) investigated a procedure in which these actual gain and finite
difference sequences are allowed to depend on the observed data in a certain way,
and proved convergence for a Robbins-Monro and a type of one-dimentional
Kiefer-Wolfowitz method. His method is a quite natural and intuitively reason-
able procedure. The multidimensional version of his procedure has not been
investigated. Furthermore, all the usual forms of the Kiefer-Wolfowitz method
for the multidimensional problem are essentially stochastic versions of Newton’s
method for function minimization, where an estimate of the gradient direction
is obtained and one or more search steps are taken in that direction. The most
effective deterministic methods for hill descending, such as the conjugate gradient
or Partan (see, e.g., Wilde and Beightler (1967), pages 304-338, Fletcher and
Powell (1963)), do not search along gradient directions and operate something
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as follows: A direction d, and initial point X, are selected. We search along
the line through X; in the directions +d, until a reasonable approximation (de-
noted by X;,) to the location of the minimum along that line is obtained. A new
direction d, is selected, etc. The methods differ by the schemes for selecting the
d,, but the gradient directions are almost never selected, since methods are avail-
able which yield faster convergence in both the initial and terminal stages of
search. (See Fletcher and Powell (1963) for an empirical comparison of several
methods).

We follow somewhat the same procedure here. The procedure to be investi-
gated consists of a sequence of one-dimensional search procedures (or cycles as
they will be called), each one being a truncated form of a procedure of Kesten’s
type. Many methods of selections will work. Let X, denote an initial point;
select a direction d,. Do an iterative search ( a truncated procedure of Kesten’s
type) on the line through X, in directions +d,, letting X', - .-, X7, denote the
iterates in the first cycle, where L, is usually random. Then select d,, define X,
by X, = X}, search along the line through X; in the direction +d,, and generate
the sequence of estimates X;?, - -, X7, of the location of the minimum of f(+)
along the second line; define X, by X; = X}, etc. The procedure will be de-
scribed in detail below. The exact method of selecting the {d,} is not important
for the convergence proofs, provided that an apparently essential property ((A3)
below) holds.

A further difficulty with standard Kiefer-Wolfowitz algorithms is that they
require unimodality of f(+). Yet it occurs frequently in applications in control
theory, that f(+) is not unimodal. In this paper we prove that the sequence of
iterates for a fairly general multidimensional version of Kesten’s procedure con-
verge w.p. 1 to a set where the gradient of f{x) is zero for a class of multimodal
functions. In this sense, a common current practice in deterministic optimization
is followed, where it is usually proved only that the algorithm yields a sequence,
any convergent subsequence of which converges to a point where a necessary
condition for optimality holds.

Our method of proof differs substantially from that of Kesten, and is some-
what closer in spirit to that of Venter (1967). Kesten did not actually treat a
complete Kiefer-Wolfowitz procedure, even in one dimension, since his finite
difference intervals were held constant. His convergence theorem isa type of ran-
dom contraction theorem, a generalization of the type introduced by Dvoretsky
(1956). In these proofs it is essential that there be a point about which there is
a “contraction.” Such methods appear to be inapplicable when there are many
stationary points. Venter’s method of proof is also closely connected with the
uniqueness of the stationary point, and each iteration consists simply of one step
in an estimated gradient direction. Owing to the possible non-uniqueness of the
stationary point, the general method of selecting the directions for the one-
dimensional search cycles (and their random duration), and the “adaptive”
method of selecting the coefficients, a somewhat more elaborate method of
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proof is required here. Rather than proving convergence directly, we examine
the consequences of non-convergence, to obtain the desired contradiction.

2. Description of the process. For each x € R", Euclidean r-space, let H(y|x)
denote a distribution function of a real-valued random variable with finite mean
f(x) and uniformly bounded variance § [y — f(x)]?dH(y|x) < 6* < oo (for some
real ). The sequence generated by the algorithm converges to the point or set
where f{.) is stationary. Let f,(+) and f,,(+) denote the gradient and Hessian of
f(+), if they exist. Next, some terms will be defined, then the method is described
and discussed, and some conditions listed. The convergence theorem is proved
and discussed in Section 3.

Let the sequence of random variables X, - - -, X,,, - . denote the initial points
of the sequence of one-dimensional search cycles, and the random variables
d, ---,d,, -, the sequence of directions of iteration. On the nth cycle, we
search on the line through X, in directions +d,. Let X,", ..., X;", ... denote
a sequence of random variables generated during the nth search cycle. Even
though the cycle is stopped at a finite time, it is notationally convenient to suppose

(which we will do) that X" is defined for all i.

Let L, ---, L,, --- denote a sequence of positive integer-valued random vari-
ables. Let <7, and <% denote the smallest g-algebras which measure
(x;",m=1,...,n—1;i=0,1,...;d, --.,d,_},
(xx;r,m=1,...,n—1;i=0,1, ...;d, ---,d,} and
X~ m=1,...,n—1;i=0,1, ~~.,d1, s dy Xt X, -, XY
respectively.

That is, <Z, measures all the data up to and including the start of the nth cycle,
but not d,, and &z measures, in addition, d, and the first i iterates of the nth
cycle. Note that X, is <%, measurable.

When we say that a random time M is non-anticipative with respect to the
{X,,n=1,...}or {X,i =0, ...} sequences, we mean the usual, that the o
set {M = m}e <z, or {M = j}e &, resp. (i.e., whether or not M = m or
M = j can be determined by watching the X; only up to time m, or watching
the X;* only up to the first j iterates of the nth cycle, resp.) If r is a non-antici-
pative integer-valued random variable we define (in the usual way) <Z. as the
collection of sets A satisfying, for each n, {r = n} n 4 e <Z,, and similarly for
B and .. All the random times used in the sequel will be non-anticipative, or
assumed so, without explicit mention. If = < oo only on a set C, with P(C) < 1,
then all subsets of Q — C are <Z,, by the above definition.

Let {;", e;"} denote real-valued random sequences which are non-anticipative
with respect to the {X;"} (i.e., b, is <&, measurable). Suppose that X, is defined.
Define X7, by

(2.1) Xi’fl-l = X‘n —d b'n[Y§+l - Y2’-§]/2e'n

where Y7, and Y7 are drawn from H(y|x) with parameters X" 4 d,e;* and
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,e", resp. Thus Y., and Y} are noise-corrupted observations on the
system at parameter points X" + d, e,", resp.
Define

X" —d,e™

DY(X;", e, d,) = [Y5,, — Y] 2e,",
DI(X;", e, d,) = [fX;" + d,e") — X" — d,e)]/2e,"
£ = DY(X;", e, d,) — DE(X;", e, d,) .

Then (2.1) can be written as
(2.2) X = X" — d,b(DR(X", e, d,) + £7) -

Next, we describe the method for determining the 4,", e,*. The method to be
described is only one of a large family of interesting possible methods to which
Theorem 1 can be adapted.

Let N,, N,, - -+, N,, denote a sequence of integers. (With a slight bit of extra
complication, we could let N, be a finite valued random variable.) Let {a,", ¢,"}
denote sequences of positive real numbers satisfying

S Dim et = oo, T Zim (@ eM)? < oo
(2.3) S nimtare < oo, " —0, a0, a*(c"—0
as n+i—oo.

The following version of Kesten’s method will be used. Let 5" = b," = a,",
e," = ¢ = ¢,". The sequences b,", e, remain fixed as i increases as long as the
X" sequence is monotonic as i increases. The b,*, e,” are changed only when
the X;” sequence oscillates in the direction d,. In particular, suppose that, for
some i = j, b* = a;”, e = c¢;”. If i = 1 and both

(X — X)), 4G — X))

have the same sign, or one or both are zero, then set b7, = b," = a,", e?,, =
e,” = c;”. If, however, neither

4/ (X — X", 4N — XIL)

are zero and they are of opposite sign, then set b7,, = a?,,, e?,, = ¢?,,. At the
N,th change in coefficient, the cycle terminates. That is, let Q, denote the last
value of j for which b, equals ay . Then X7 ., will be calculated, and we
define Xg |, = X,,, = X"*'; we then select d,.,, and continue.

We require the following additional conditions.

(Al) f(-) is continuous, together with its first and second derivatives, it is
bounded from below by a real number B, and there is a real K, for which
[V'foa(x)y] £ Ky|y[?, for any vectors y, x, where the Euclidean norm is used.

(A2) Let 0 and 0, denote arbitrary positive numbers. For arbitrary scalar c,
and direction vector d, define

Ay(c,d) = {X: |DI(X, ¢, d)| < 6} .
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Suppose that
P.@i”{DY(Xin’ e, dn) > O} = 51 s

PQ,{”{DY(Xin’ ein’ dn) < 0} g 51 b

on the set where X;" ¢ A,(e;”, d,).

In other words, if the finite difference.estimate Df(X,", e;", d,) of the directional
derivative is small enough, then there is a minimum nonzero probability that
DY(X;", e;, d,) will be positive, and that it will be negative. Noise need only
play a role, where the “slopes” are small, a reasonable assumption. The proof
remains valid if (A2) holds only for n = v, some random time. When the slope
or the Df is large, the noise may not be sufficiently large to allow the possibility
of an oscillation or change in value of b, e;*. The conditions should reflect this
fact. It is sensible, from an applications point of view, to suppose that the noise
plays a role (concerning whether or not the coefficients are changed) where the
slopes or the Df are small, but may not play a role where the slopes or Df are large.

Let D, denote the set {x: f,(x) = 0}. Let N(.) denote a nonnegative continuous
real-valued function on R" — D,. ~

(A3) For some positive real numbers 7,, 7,, let

Pﬂn{]dnlfz(Xn)l = rl (X} = 12

w.p. 1, on the set where f,(X,) # 0 and n = N(f,(X,))-

Condition (A3) is the only condition to be placed on the choice of the {d,}.
It is rather weak, and intuitively, says that the direction d, must not be almost
orthogonal to the gradient too often.

For any vectors v,, ¥,, let 6[v,, v,] denote the angle between N, and N,. Then
(A3) is equivalent to

(*) Pﬂn{ICOS 0[dn’fx(Xn)]| 2 Tl} g Ta»

from which it is obvious that if the r-dimensional vector d,, is selected at random
from a distribution Q(-) which is not concentrated on a hyperplane in R” and we
define d, = d,/|d,|, then (A3) holds.

Under broad conditions, d, can also be chosen to be an estimate of the gradi-
ent direction. Let u; denote the unit vector in the ith coordinate direction, and
{k,} a sequence of non-anticipative (with respect to the <7,) scalar-valued random
variables, which tend to 0 as n — co. Then, with finite difference interval k,,
we can obtain an estimate of the derivative of f(x) in direction u;, at x = X,,, of
the form

k, 2k, ”
where |B,| < K,/2, E_, ¢,; =0, E_ |¢, ' < ¢* for some real o. One of the
reasons for the introduction of the function N(.) in (A3) is to allow us to ignore
the k, B, term in (**). That is, if the direction vector obtained from the vector
d, = {(¢../k,) + DE(X,, k,, u;),i =1, -+, r} satisfies (*), then (A3) holds for

(**) ¢n,i + [f(Xn + unkn) _f(Xn _ unkn)] — S_bl;n_,% + Df(X”, kn’ ui) + kan ,
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some suitable function N(.). Asn — oo, the ¢, ,/k, terms dominate the Df (X,
k,, u;), and (*) will not hold if the ¢, = (¢,,, -+, ¢, ,) tend (in probability,
conditioned on £%,) to the hyperplane orthogonal to the f,(X,), as n — co (unless
E\¢,|*lk,} — 0). However, if, given <%, the ¢, ,, - -+, ¢, , are independent and
satisfy, for real positive o;, 0 < 0> < E|¢, ;|* < 62, for all n, i, then (*) holds.

(A3) holds for many other schemes. In particular, it holds if we select a ran-
dom unit vector d, in any way at all, and we define {¢,} to be a sequence of
independent identically distributed random vectors with zero mean whose distri-
bution Q(+) is not confined to a hyperplane, and where ¢, is independent of <Z,
and d,, and define d, byd, = (d, + ¢)/|d, + ¢.]. To see this, merely note that
(with an obvious abuse of notation) )

P aflcosOl(d, + ¢.) vl 2} =1

for some real positive 7, and 7, and for any <, measurable vector v,. Thus a
slight random perturbation of any direction determining method will satisfy (A3).

Although we will not pursue the point in detail, the proof can be modified (at
some increase in notational complexity) to yield convergence even if (A3) does
not hold on every cycle. The required modifications in the conditions are that
(loosely speaking) the ratio of the sum of the a;*, n < N, over the cycles for
which (A3) does not hold to the sum of a;*, n < N, over these cycles for which
(A3) does hold, does not tend to infinity, as N — co. Thus, assuming the above
assertion, we can select the directions d, by the method: for some integer s, let
d,, - -+, d,_, be unit vectors in the appropriate estimated gradient directions, let
d, be selected by an (arbitrary) functionof X, ..., X,_;, d,, - --, d,_, (as in some
of the deterministic schemes in Wilde and Beightler [13], Chapter 7). Then re-
peat the method for d, 4, - - -, d,,, etc.

We also require

(A4) There is a real ¢ for which, for all n, i, E_.§" =0, E a6 <
a*/(e,"* w.p. 1.

3. The main theorem.

THEOREM. Under (2-3) and (Al)—(A4), X, — D, U {oo} w.p. 1 and X;* —
D, U {co} w.p. 1.

Remarks and Outline of Proof. The proof will be divided into several parts.
First, it will be proved that each a;” is used only finitely often w.p. 1. Then, in
Part 2, an upper bound to the average number of iterations (the number of ;’s)
that both b, = a,* and X;" € A,(¢;", d,) hold simultaneously is obtained. In Part
3, it is proved that f(X,”) converges w.p. 1 as n + i — oo, and a very useful
representation of the difference £, f(X,,,) — f(X,) is obtained. The actual con-
vergence result is completed in Part 4. It will be supposed that {X;"} is bounded
w.p. 1, for otherwise, the proof implies that |X;"| — co as n + i — oo, for any
path for which a subsequence of the {X;"} are unbounded. The convergence to
oo, if any, is in the topology of the one point compactification. Thus either
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X» — D,as n 4 i — oo, or for any positive number r, lim sup |X;*| > r (w.p. 1).

Conditions guaranteeing lim sup |X;*| < oo w.p. 1 can be introduced (i.e.,
f(x) — oo as |x| — oo or lim,_, inf |f,(x)| > 0, and similar conditions, or the
existence of only one finite point at which f,(x) = 0) but it does not seem worth
the effort here. The methods of proof suggest a variety of other schemes for
adjusting the b,*, e,* coefficients. For example, we could switch after Q,” oscil-

lations, where {Q;"} is a bounded sequence. Various more complicated methods
will also work.

ProoF oF THEOREM.

Part 1. For each i and n, let M;* denote the number of j’s for which 6," = a,".
Then M;* < oo w.p. 1,1i.e., 5" —0asn 4 i— co.

Proor. Let M;* = oo for w € A. There is a random variable X so that, for
almostall w € 4, X;» - X as j — co. Thus, for almost all @ inA4,Df(X;*,a;",d,) —
Df(X, a,*, d,), and X, — X, — 0. Hence

3.1) Df(X,a, d,) + &, —0,
which implies that Df(X, a;", d,) = 0. Thus |Df(X;", a,", d,)| < 9/2 infinitely

L3 L3

often for almost all w € A. This fact, together with (A2), implies that 4 is a
null set.

Part 2. For arbitrary but fixed n and i, let a,, - - -, @, denote the sequence of
values of j for which both b, = @, and X;" € A,(¢,", d,) hold. It follows from
(A2) that, w.p. 1,

(3.2) Egzlr =%, Pﬂzl{r >sp< 14 2/0, .

Part 3. Next, it will be shown that there is a finite valued random time p, and

a sequence of nonnegative random variables {3,} satisfying (3.3) and (3.4):

(3.3) E,p Tazn Bu < 0

(3-4) E g fXni)) = [(Xn) = P
w.p. 1, for any random time m > p,. Observe that (3.3) and (3.4) imply that f(X,,)
converges w.p. 1 (by application of the supermartingale convergence theorem,
see Kushner (1966)). A similar proof yields that f(X;") converges w.p.1 as
n + i — co, but we omit the details.

Define B;* by Df(X\", e, d,) = d,f(X,") + ¢;"B;". By (Al), |B;"| < K/2.

Equation (2.2), and a truncated Taylor series expansion yield
E o f(X2) — fIXT) S —Eoalb(d/fX))DIX, 67, d,) + £7)]
n\2
i @2,) E . K(Df(X;", e, d,) + 7).

Using |d,/'f(X;")| £ 1+4|d,'f(X;")?and |Df (X", %, d,)]* < 2|d,"f(X;")[*+ 2K *(e;"),
we obtain

(3-3) E 5 f(X2) — fIXT) = —b7d, f(XM)q" + u™,
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where ¢,* = (1 — K,e," — 2K,b;") and u;" = K[e,” 4 o°b;"/(e;")’ + 2K*b;"(e,")*1b;".
By Part 1 (since e, — 0), there is a random time p, < oo w.p. 1, so that for any
n > o, IDf(X;" e, d,)| <0 if |d,/f(X,")] < d/2, and also ¢,* = } and u" <
b.*(0%/16). Let a;" denote the first value of j for which b,* = a;*. Then for any
random time n > p,, the expectation (given £Z,) of the number of uses of a,"
when |d,'f(X,;")| £ 9/2, is bounded by (1 + 2/d,) w.p. 1, by Part 2.

For any set A, let /, denote the indicator of 4. For n > p,, (3.5) can be
bounded above by

(3.6) _bin(az/l6)I(ldn'fx(X,in)lz¢$/2)

- lz”bin[ud,,'fx(xin)xa/z)|dn'fz(X~;n)]2 + uinludn'fx(xin)mm) .
Define the last term on the right of (3.6) as ", and define 8, = E;_¥; f;". Then
(3.3) and (3.4) hold by (2.3) and Part 2.

Observe that (3.6) and the lower bound B on f{(+), imply that for any sequence
of random times m; — co w.p. 1, where m; > p,,

. 2 —
lim; Egmi Zn;mi 25b; [ud,,'f,(xjnnza/z) =0.

Part 4. Let D, D’ denote any open sets satisfying D’ D D and sup, ,.p |X —
y] < 6/(8K,) and for some point % in D with f,(x) # 0, and for x € D', 2|f(X)| =

|/:(¥)| = 3|/.(%)], and
) infzep;yev' |x — yl =d,>0.

For each such D', there is a positive real number 7 so that sup,., N(f,(x)) = &.
Define the sequence of random times #;, #,* (if 7, (or #;*) is not defined at some
w, set t; = oo (or t;¥ = o) there)

tt,=min{r: X, = XyeD,r = p,,r = 0}

tt =min{r: X;7¢ D', forsome i >0 and r = 1}
t,=min{r: X, = XyeD,r>tl_}

t,* =min{r: X;7¢ D', forsome i >0 and r=1¢,}.

If we can show that ¢, < oo only finitely often w.p. 1, and that if ever in D,
the sequence {X;"} must eventually leave D’ w.p. 1, the theorem will be proved,
since for any compact set D not containing any points of D,, there are a finite
number of pairs (D, D) satisfying our conditions, for which the collection of D
covers D. A slight variation on the following proof yields a similar statement
for the {X;"}.

The nth re-entry cycle starts with the iterate X;/» and ends when we obtain the
first subsequent iterate X;'»* which is not in D’.

If X;* e D’ for all iterates from X,'» up until at least X‘»*™, then set J;»™ = 1,
and zero otherwise. Define J»™ =1, if X/»* =X, | € D for s=0,...,m,
and zero otherwise.

Part 4 is divided into three subparts. In the first subpart, it is proved that only
the bwtmd; ., f.(X/»*™) component of Df (X'="™, e/»*™, d, im) + Efnt™ plays a
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role, for large n, in the movements of the iterates out of the set D’. In the second
subpart, the above fact is used to obtain (3.14), a lower bound to sums of some
of the g!»*™. In the third subpart, the latter result is used to obtain an estimate
of the average change in the function f(.) during a re-entry cycle, which yields
the desired conclusions.

In (3.7) et seq., the sums are empty if #, = oo, but it may avoid some con-
fusion to carry the 1“1<m, term. From Part 3, w.p. 1

(3.7) E;itl Dy <oy Dimzey 205 (€70™ + (B [e™) M ya, o poxpm<arm <

(3.8) Eatllulao) Zmztl Zibiml(ldm’fx(xim)lzwz) < oo.
Thusas n — oo, w.p. 1 (by (3.7), (3.8), and the fact that e,” — 0, b,"/(e,™)* — 0)
(3.9) Eatﬂ Ly <o) 2imzt, 2 (e,"b;" + (b;"[e;™)") — 0.

Now we estimate the effects of the terms in

(3.10) Xi™ = Xpatn = bwtnd, L f(X )

+1
t,+myp t +mpt, +m t,+meE t +m
—biw elnt™Btn —bin E«;" .

In the indefinite sum Y., , bln*™E !n*™ it is supposed that the terms are summed
in precisely the order in which they are obtained by the iteration (2.2). Thus,
the sup over the indefinite sum makes sense. The above indefinite sum is a mar-
tingale. Using (Doob (1953), Theorem 3.4, page 317), Chebyshev’s inequality
and (3.9) yields (3.11) w.p. 1, as n — oo.

(3.11) P, {sup | X (BifntmE ™ - blatmeat MBIt M), o) = dyf2} — 0.

Assume for the moment that the re-entry cycles have finite duration w.p. 1.
Then (3.11) implies that the sums of the terms (second term on r.h.s. of (3.10))
bitrd, ., f(X;»*™) must pull the iterates out of D’ for large n. Majorizing the
sum of these terms over the re-entry cycle yields that (3.12) holds with a prob-
ability (conditioned on <7, ) that approaches 1 as n — oo.

n,m| Jr m d
(3.12) Dimzo 2us bt |dt"+mfx(Xitn+ )]](t,,<°°) = ag I(t,,<eo) .

The bound |d; ., f,(X'**™)| < 2f,(%)], for X/»*" & D', yields
I d,
liminf, E, I, <o, 2im ; btatm]mm > 1im inf, ~fa<=l0
n =@y, Aty < } Z 20 Z‘b i i = 4lfx(5('f)|
Thus (w.p. 1) T > 0 if and only if #, < oo infinitely often. By (3.8) we can write

T.

il

(3.13) T <liminf, B, Ly o) Snso Do b0 ™"y,

tytmf 2z Xitnt ™IS 0/2)

Since J™™ > J;»™ and the average (given <Z,) number of times that a;" is used
while |d,'f.(X;")] < d/2 holds is bounded by 1 + 2/d,, we have

(3.14) T < liminf, E, Iy cuy Sinzo s Gn*™I"™(1 + 2/3,) .
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Next, calculate the asymptotic conditional average change in f{(+) per re-entry
cycle, namely
G = lim inf, E15‘t,n 1«t~,,<eo)f(’\%”) - I(t,n<°°)f(Xt”) >
where we let Xt» denote the first iterate after X,” which is not in D’. By Part 3,
2

(3.15) 6= - <f6> liminf, E,,, Iy, co) Dmzo Ts 03" g,

t”+mfx(xit,.+1n)|ga/z)

+ lim Supn Ewtn ZmZt,n ‘Bm ’
where the last term on the right is zero w.p. 1.
Since sup, ,.p |x — y| =< 9/(8K,), .
xitatmnzom " Z Lya kg piza T

I
! ( =
{l t mf{l) t,,+m

Thus, using (3.8),

tytm

62 1 1 mjJn,m
(3.16) G=— <R> lim inf, Eg,nl(t”«o) Dimzo 235 b M gy L sxy pmiiza)

52 1 1 t,tm jn,m
- <R liminf, E;, 1, <o) Zimzo 20s 4™ Iud;“mfm(xt“mnga) .

tn

IA

It can be supposed without loss of generality that y, (see condition (A3)) is
sufficiently small so that 6 > 7,|f,(X, ..)| for X, ., eD’. Using this in (3.16)
and taking suitable conditional expectations using (A3), yields

2
(3.17) G<—1 <%> lim inf, E.,, Ly, <o Dmso X @t

Observe that if we had used the same type of upper bounding procedure which
took us from (3.15) to (3.17), but for fixed n. Then };, 37,4, = co yields
Em,,f(thw) — f(X,,) > —oo on the set {r, < oo} N {f,* = oo}, modulo a null
set. Thus, as asserted earlier, each re-entry cycle has a finite duration w.p. 1.

Next, (3.14) and (3.17) yied that G < 0 on the set 4 where ¢, < oo infinitely
often. Since this contradicts the convergence of f(X;*), unless P(4) = 0, the
proof is concluded.
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