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ESTIMATION OF THE COVARIANCE FUNCTION OF A
HOMOGENEOUS PROCESS ON THE SPHERE

By RocH Roy!
Université de Montréal

A homogeneous random process on the sphere {X(P): P e S;} is a pro-
cess whose mean is zero and whose covariance function depends only on
the angular distance ¢ between the two points, i.e. E[X(P)] =0 and
E[X(P)X(Q)] = R(9). Given T independent realizations of a Gaussian
homogeneous process X(P), we first derive the exact distribution of the
spectral estimates introduced by Jones (1963 b). Further, an estimate R'7(6)
of the covariance function R(6) is proposed. Exact expressions for its first-
and second-order moments are derived and it is shown that the sequence
of processes {T#[R'T)(0) — R(6)]} 77—, converges weakly in C[0, =] to a given
Gaussian process.

1. Introduction. Let {X(P): P e S,} be a real-valued process on the unit sphere
S, of the three-dimensional space R*, which has finite second-order moment and
which is continuous in quadratic mean (q.m.). Under these conditions, the
process X(P) can be expanded in a spherical harmonics series which is convergent
inq.m. If for each integer n = 0, {Y,,(P): —n < k < n}denotes an orthonormal
basis for the real spherical harmonics of order n, we can write

(1.1) X(P) = Dm0 Tieon Zun Yol P) » all Pes,
where
(1.2) Z,, = {5, X(P)Y,(P)a(dP),

o being the surface measure on S,. The integral (1.2) is the integral in the q.m.
sense and the series (1.1) converges in q.m.

The process X(P) is said to be homogeneous if its first and second-order mo-
ments are invariant under the group of rotations of the sphere. This is equivalent
to saying that the mean E[X(P)] is constant (and without loss of generality, we
can assume that E[X(P)] = 0) and that the covariance function E[X(P)X(Q)]
depends only on the angular distance 6 ,, between the points Pand Q. E[X(P)] =0
implies that E[Z,,] = 0 and from Obukhov (1947) (see Yaglom (1961)), the
process X(P) is homogeneous if and only if

(1.3) E[Z,, Zui] = 0,n0 @, = 0

for —n<k<n —m<h<mand mnz=0, d,; being the Kronecker delta.
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From (1.1) and (1.3), it is easily deduced that
(1.4)  E[X(P)X(Q)] = R(05) = (4m)™* 15, (2n + 1)a, P,(cos 0,)

where P,(+) is the Legendre polynomial of degree n and the spectral parameters
a, are such that

(1.5) >iw_ona, < oo .

Jones (1963b) has proposed estimates of the spectral parameters a,, given one
realization of the process on the sphere. The estimates considered are unbiased
and for a Gaussian process, the variance is calculated. In Section 2 of this paper,
the exact distribution of these estimates is obtained for a Gaussian process. In
Section 3, an estimate of the covariance function R(6) is presented and some of
its statistical properties are studied. For numerical analysis of random processes
on the sphere, the reader is referred to Jones (1963a), Cohen and Jones (1969).

2. Spectral estimates. In the following, we will say that the process X(P) is
Gaussian if for any finite collection of points P, P,, - - -, P, € S,, X(P,), - - -, X(P})
has a joint normal distribution. For a Gaussian process, the coefficients Z,, have
a joint normal distribution since they are defined as q.m. integrals and since the
q.m. limit of a sequence of finite linear combinations of normal variables is
always normal. Then we have,

LemMa 2.1. If X(P) is a Gaussian homogeneous process whose mean is zero, then
the coefficients Z,, are mutually independent and Z,,, —n < k < n are N(0, a,) if
a, > 0, degenerate at 0 if a, = 0.

Given one realization of the process X(P), one can compute the coefficients
Z,, by (1.2) and since E[Z2,] = a, for —n < k < n, a natural unbiased estimate
of a, is given by

Q2.1 G, =@2n+ 1)1y 72, .

Ifa, = 0, 4, is degenerate at 0 and for a, > 0, (2n + l)d,/a, is x%,.,, (chi-square
with (2n 4 1) degrees of freedom). Also, the random variablesd,, n = 0,1,2, ...
are mutually independent.

By replacing Z,, by its definition (1.2) in (2.1) and using the addition formula
for spherical harmonics (see Sansome (1959), page 268), one can write

= (4n)? s, §s, Pu(c08 0,,4)X(P)X(Q)o(dP)a(dQ) ,

which is precisely the estimate studied by Jones (1963b). Besides computlng
its variance in the case of a Gaussian process, Jones has shown that 4 d, is the
unbiased estimate of minimum variance in the class of the quadratic estimates
of the form q,* = §s, §s, W(P, Q)X(P)X(Q)o(dP)a(dQ) where W(P, Q) is a sym-
metric square integrable function.

Suppose now that we have T independent realizations of the process:
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{X(P,0): PeS)},t=1,2,...,T. Letd,, be the estimate (2.1) corresponding

to the rth realization, then

(2.2) a,” =T N4,

is unbiased for a,, and by the previous remarks we have the following results:
THEOREM 2.2. Let X(P) be a Gaussian homogeneous process whose mean is zero

and let a,'™ be given by (2.2). Then, if a, =0, a,' is degenerate at 0 and if

a, >0, T2n 4 1)a,'"/a, is yramsn. Also, a,”, n=0,1,2, ... are mutually
independent.

From the previous theorem, we see that Var (a,'”) = 24,2/(2n + 1)T, which
means that a,'” is consistent for a,. Also, an advantage of a,'™, T > 1, is its
increased stability for small n. From Jones (1963b), we conclude that @, is
the estimate of minimum variance in the class of the unbiased estimates of the
form: g §s, W(P, Q)( L. a, X(P, )X(Q, 1))o(dP)o(dQ) where the a,’s are real
and W(P, Q) is symmetric square integrable and such that

E[\s, §s, W(P, Q) X(P)X(Q)o(dP)o(dQ)] = a, .

3. Estimation of the covariance function. As an estimate of the covariance func-
tion R(#), we will consider
(3.1 RD(0) = (4n)* 2107, (2n + 1)P,(cos O)a, ", 00

where for each T, N, is a positive integer. By the paper of Schoenberg (1942),
R™)(0) represents a positive definite function on the sphere since a,'” > 0 for
all n = 0. For a homogeneous process on the sphere,

3.2) E[RT(0)] = (4r)* 2277 (2n + 1)P,(cos O)a,

which means that R”(f) is asymptotically unbiased for R(6) if N, — co as
T — co. Furthermore, for a Gaussian process by Theorem 2.2,

(3.3) Cov (R'"(6,), R"(0,)) = (87*T)* 3%, (2n + 1)P,(cos 6,)P,(cos ,)a,? .
So,

lim;_., T Cov (R'"(6,), R™(0,)) = (87*)~! 312, (2n + 1)P,(cos 6,)P,(cos 0,)a,’
which is well defined since |P,(x)| < 1 for [x| £ 1, n = 0and J o na? < oo,
by (1.5).

The bias of our estimate is given by

R(6) — E[R™T(0)] = (47)7 Lasny (21 + 1)P,(cOs O)a,

which implies that [R(6) — E[R™(0)]] < (47)* 3 ,sn, (2n + 1)a,, and by a
suitable choice of the N,’s the bias can be uniformly reduced to the order of
magnitude we want.

For the following, let us define the processes

€2(0) = THR™(0) — E[RT(0))) , 0

IA
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If the N,’s are such that
3.4) Tt 3oy, na,—0 as T— oo,

the results obtained for the processes §,(6) will be valid also for the processes
THR™(0) — R(9)), since sup,cy<. {THR(O) — E[RT(0)])} - 0as T — oo.

THEOREM 3.1. Under the assumptions of Theorem 2.2 and if N, — oo as T — oo,
then for any 0., ..., 0,¢€[0, w], (§4(6,), - -+, §.(0,)) is asymptotically normal with
mean zero and covariance matrix

[(87") 7" 2130 (2n + 1)P,(cos 0,)P,(cos 0)a,’];, ;- -

Proor. If cum (X, ..., X;) denotes the joint cumulant of order % of
X, --+, X,, we have only to show that cum (§2(0:), - -+, §(0;,)) — 0 for
i, «--,5,e€{l,2,...,k} and A > 2. By elementary properties of cumulants

(see for example Brillinger (1970), Section 1), for z > 2,

cum {ST(ail)’ ) ST(eih)}
= T"(4r)~* 3.7, 2n + 1)*P,(cos b, ) - - - P,(cos f,) - cum,(a,'™)
where cum,(X) is the cumulant of order # of the random variable X. Further-
more, cum,(y,?) = (b — 1)!2*'nfor h > 1 andsincea,'™ = a, x%,1,r/(2n + 1)T
by Theorem 2.2, we see that cum,(a,'™) = a,*(h — 1)! 2*"(T(2n 4 1))=*** which
implies
lcum {£,(6;), -+, §2(0,,)}) < MTO» %0 (2n + 1)a,’

where the constant M is independent of 7. Thus the proof is complete, since
e (20 + 1a,* < oo by (1.5).

From the previous theorem, we have the convergence of the finite dimensional
distributions of {{,(f): 0 < 6 < =}. Under a stronger assumption on the process
on the sphere X(P), i.e.

(3’5) Z:z°=0 ngan < o,

we can establish the weak convergence of the processes §,(f). Condition (3.5)
means that the spectral parameters a, decrease faster to zero than under the
existence of the second moment of X(P) which is equivalent to (1.5).

THEOREM 3.2. Under the assumptions of Theorem 2.2 and if (3.5) is satisfied,
the processes {£,(0): 0 < 0 < =} converge weakly in C[0, n] to a Gaussian process
{£(0): 0 < 0 < =} with mean O and

(3.6)  Cov (£(0,), £(6)) = (87)7* Tz, (2n + 1)P,(c0s 0,)P,(cos O,)a,? .

Proor. {£,(6)}is a sequence of random elements of C[0, ]. By Theorems
8.1, 12.3 and 12.4 of Billingsley (1968), since we have already the convergence
of the finite dimensional distributions, it is sufficient to show that

E[|€2(0) — €2(0)Ir] = |F(0,) — F(0)|
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for 6, < 6,and T > 1, where y = 0, « > 1 and F is a non-decreasing, con-
tinuous function on [0, x].
But

Ef[€7(62) — €2(6)["]
< T@Am)> Tu L, Zule 2ny 4 1)(2n, + 1)|P, (cos 8,) — P, (cos 6))
X [P,nz(COS 02) - Pn2(COS 01)] : E[]a'(n? - anll |a;72') - anzl] ‘

By Schwarz inequality and Theorem 2.2,

o — a,|[a? — a,]] < 2a, a,,/(T2n, + 1)}(2n, + 1)}).
Also, by the mean value theorem,

P, (cos,) — P,(cos ) = —P,'(cos 0*)sin §*(8, — 0,)

for some 6* ¢ (6,, #,), and from Sansome (1959), page 251, [P,’(x)| < n* for
[x] £ 1 and n = 0, which implies that |P,(cos §,) — P,(cos 0,)| < n?|0, — 0, for
all 6,, 0,€[0, =] and for every n = 0. Then,

E[6:(0) — &:(6)]
< (879716, — O, (ZV%, (20 + 1)nia,y
< 10, — O, (87)(Tieo (20 + 1)inia, ) = M|0, — 0,

where M < oo by (3.5). This completes the proof.
In the following corollary, the results of this section are summarized for the

sequence of processes T R (6) — R()].

COROLLARY 3.3. Let X(P) be a zero mean Gaussian homogeneous process satisfy-
ing (3.5) and let R™(0) be defined by (3.1) where the N,’s satisfy (3.4). Then, the
processes T} R (0) — R(0)]: 0 < 0 < =} converge weakly in C[0, x] to a Gaussian
process {§(0): 0 < 0 < =} with mean O and covariance function given by (3.6).

REMARK. If X(P) hasa nonzero mean, the results of this paper continue to hold
if we replace X(PZby the process X(P) = X(P) — X where X = (4x)~'{5, X(P)o(dP)=
(27)tZ,. Then X(P) has mean 0 and for the computations, we have the relations

Z,.,=0 if n=0, k=0,
=Z, if n>0, all &,
since Z,, = Z,, — X {5, Y,(P)o(dP) and
s, You(P)o(dP) = (4 {5, Yoo P)Y,(P)o(dP) = O
by the orthogonality of the spherical harmonics. Also
E[X(P)R(Q)] = (4m)~ X5, 2n + 1)a, P,(cos ) ,

i.e. the constant term is removed from the covariance function.
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