ON SUFFICIENCY AND INVARIANCE

By D. LANDERS AND L. ROGGE

University of Cologne

Let $\mathscr P$ be a family of probability measures defined on a σ -field $\mathscr M$ on X and G be a group of transformations on X such that $Pg^{-1} \in \mathscr P$ for all $P \in \mathscr P$, $g \in G$. Let $\mathscr M_I$ be the σ -field of G-invariant sets of $\mathscr M$ and $\mathscr M_{I^*}$ the σ -field of $\mathscr P$ -almost G-invariant sets of $\mathscr M$. Let $\mathscr M_S$ be a sufficient σ -field for $\mathscr P | \mathscr M$. Hall, Wijsman and Ghosh proved that $\mathscr M_S \cap \mathscr M_I$ is sufficient for $\mathscr P | \mathscr M_I$ if $g\mathscr M_S = \mathscr M_S$ for each $g \in G$ and $\mathscr M_S \cap \mathscr M_I \sim \mathscr M_S \cap \mathscr M_{I^*}(\mathscr P)$. They posed the question whether the first condition alone suffices to prove this result. An example shows that the answer is no. For dominated families we show that $\mathscr M_S \cap \mathscr M_{I^*}$ is always sufficient for $\mathscr P | \mathscr M_{I^*}$, a result which is not true any more for undominated families.

Let $\mathscr P$ be a family of probability measures (p-measures) defined on a σ -field $\mathscr A$ over a basic set X. If $\mathscr B$, $\mathscr C \subset \mathscr A$ are σ -fields we write $\mathscr B \subset \mathscr C(\mathscr P)$ iff for every $B \in \mathscr B$ there exists $C \in \mathscr C$ with $P(B \triangle C) = 0$ for all $P \in \mathscr P$, and $\mathscr B \sim \mathscr C(\mathscr P)$ iff $\mathscr B \subset \mathscr C(\mathscr P)$ and $\mathscr C \subset \mathscr B(\mathscr P)$. Let G be a group of bijective $\mathscr A$, $\mathscr A$ -measurable transformations on X, $\mathscr A_I := \{A \in \mathscr A : gA = A \text{ for all } g \in G\}$ the σ -field of G-invariant sets and $\mathscr A_{I^*} := \{A \in \mathscr A : P(A \triangle gA) = 0 \text{ for all } P \in \mathscr P$, $g \in G\}$ the σ -field of $\mathscr P$ -almost G-invariant sets.

Assume that $\{Pg^{-1}\colon P\in\mathscr{S},g\in G\}=\mathscr{S},$ where Pg^{-1} denotes the p-measure on \mathscr{N} , defined by $Pg^{-1}(A)\colon =P(g^{-1}A), A\in\mathscr{N}$. Let \mathscr{N}_S be a sub- σ -field of \mathscr{N} which is sufficient for $\mathscr{S}|\mathscr{N}$. Starting from problems in the domain of applied statistics Hall, Wijsman and Ghosh [3] investigate the question under which conditions the σ -field $\mathscr{N}_S\cap\mathscr{N}_I$ is sufficient for $\mathscr{S}|\mathscr{N}_I$. They show as their main result (Theorem 3.1) that the conditions $A(i)\colon "g\mathscr{N}_S=\mathscr{N}_S$ for all $g\in G$ ", and $A(ii)\colon "\mathscr{N}_S\cap\mathscr{N}_I\sim\mathscr{N}_S\cap\mathscr{N}_{I^*}(\mathscr{S})$ " ensure that $\mathscr{N}_S\cap\mathscr{N}_I$ is sufficient for $\mathscr{S}|\mathscr{N}_I$. They pose the question (see page 596) whether condition A(i) alone suffices to prove this result. The following example shows that the answer is no, even if $\mathscr{N}_I\sim\mathscr{N}_{I^*}(\mathscr{S})$ and $\mathscr{S}|\mathscr{N}$ is dominated.

EXAMPLE 1. Let $X=\{0,1\}^\mathbb{R}$ and \mathscr{S} be the power set of X. Let G be the group of all coordinate permutations of the product space $\{0,1\}^\mathbb{R}$. Let $P_0 \mid \mathscr{S}[P_1 \mid \mathscr{S}]$ be the p-measure concentrated at the point $x_0 \in X[x_1 \in X]$ with coordinates identical 0 [identical 1]. Let $\mathscr{S}:=\{P_0,P_1\}$. Since $P_0g^{-1}=P_0$, $P_1g^{-1}=P_1$ for all $g \in G$ we have $\mathscr{S}g^{-1}=\mathscr{S}$ for all $g \in G$. Let \mathscr{S}_S be the product σ -field of \mathscr{S}_r , $r \in \mathbb{R}$, where \mathscr{S}_r denotes for each $r \in \mathbb{R}$ the power set of $\{0,1\}$. Obviously $g\mathscr{S}_S=\mathscr{S}_S$ for each $g \in G$ and $\mathscr{S}_I \sim \mathscr{S}_{I^*}(\mathscr{S})$. Since there exists $A \in \mathscr{S}_S$ with $x_0 \in A$ and $x_1 \notin A$, \mathscr{S}_S is sufficient for $\mathscr{S} \mid \mathscr{S}$. As \varnothing and X are

Received February 1972; revised September 1972. AMS 1970 subject classifications. Primary 65B05; Secondary 62A05. Key words and phrases. Sufficient σ -fields, invariance. the only G-invariant sets contained in \mathscr{A}_S , $\mathscr{A}_S \cap \mathscr{A}_I$ is not sufficient for $\mathscr{S}|\mathscr{A}_I$.

If $\mathscr{A}_S \cap \mathscr{A}_{I^*}$ is sufficient for $\mathscr{P}|\mathscr{A}_{I^*}$ then condition A (ii) guarantees in a trivial manner that also $\mathscr{A}_S \cap \mathscr{A}_I$ is sufficient for $\mathscr{P}|\mathscr{A}_{I^*}$ and hence for $\mathscr{P}|\mathscr{A}_I$. Therefore it is desirable to give conditions under which $\mathscr{A}_S \cap \mathscr{A}_{I^*}$ is sufficient for $\mathscr{P}|\mathscr{A}_{I^*}$. Berk ([2], Lemma 3(i)) proves that " $g\mathscr{A}_S \sim \mathscr{A}_S(\mathscr{P})$ for each $g \in G$ " is such a condition. Since each minimal sufficient σ -field fulfills this condition (see Lemma 2 of [2]), since each dominated family admits a minimal sufficient σ -field and since for dominated families each σ -field containing a sufficient σ -field is sufficient itself we obtain

Remark 2. If $\mathscr{P}|\mathscr{A}$ is dominated and \mathscr{A}_{s} is sufficient for $\mathscr{P}|\mathscr{A}$ then

- (1) $\mathscr{A}_{S} \cap \mathscr{A}_{I^{*}}$ is sufficient for $\mathscr{P}|\mathscr{A}_{I^{*}}$,
- (2) $\mathscr{A}_S \cap \mathscr{A}_I \sim \mathscr{A}_S \cap \mathscr{A}_{I^*}(\mathscr{T})$ implies that $\mathscr{A}_S \cap \mathscr{A}_I$ is sufficient for $\mathscr{T}|\mathscr{A}_I$.

The following example shows that the assertions of the preceding remark are not true in general for undominated families $\mathscr{P}|\mathscr{M}$, even if $\mathscr{P}|\mathscr{M}_{I^*}$ is dominated.

EXAMPLE. 3. Let $X=\mathbb{R}-\{0\}$, \mathscr{A} the Borel-field on X and G the group of all transformations $x\to \alpha x$ for $\alpha>0$. Let $P|\mathscr{A}$, $Q|\mathscr{A}$ be the p-measure defined by $P(-1)=P(1)=\frac{1}{2}$, $Q(A):=\lambda(A\cap(0,1))$, $A\in\mathscr{A}$, where λ denotes the Lebesgue-measure. Let $\mathscr{P}:=\{Pg^{-1},\,Qg^{-1}\colon g\in G\}$. Then $\mathscr{P}g^{-1}=\mathscr{P}$ for each $g\in G$. Since the empty set is the only $\mathscr{P}|\mathscr{A}$ -null set, we have

$$\mathscr{A}_{I^*} = \mathscr{A}_I = \{\emptyset; (-\infty, 0); (0, \infty); X\}.$$

The σ -field \mathscr{A}_S : = $\{A \in \mathscr{A} : \{-1, 1\} \subset A \text{ or } \{-1, 1\} \subset \bar{A}\}$ is sufficient for $\mathscr{P} | \mathscr{A}$ but $\mathscr{A}_S \cap \mathscr{A}_{I^*} = \{\emptyset, X\}$ is not sufficient for $\mathscr{P} | \mathscr{A}_{I^*}$ because $P | \mathscr{A}_{I^*} \neq Q | \mathscr{A}_{I^*}$. Example 1 shows also that the second assertion of Remark 2 is not true in general if the condition $\mathscr{A}_S \cap \mathscr{A}_I \sim \mathscr{A}_S \cap \mathscr{A}_{I^*}(\mathscr{P})$ is replaced by $\mathscr{A}_I \sim \mathscr{A}_{I^*}(\mathscr{P})$.

REFERENCES

- [1] BAHADUR, R. R. (1954). Sufficiency and statistical decision functions. *Ann. Math. Statist.* 25 423-462.
- [2] BERK, R. H. (1972). A note on sufficiency and invariance. Ann. Math. Statist. 43 647-650.
- [3] HALL, W. J., WIJSMAN, R. A. and GHOSH, J. K. (1965). The relations between sufficiency and invariance with applications in sequential analysis. Ann. Math. Statist. 36 575-614.

MATHEMATISCHES INSTITUT DER UNIVERSITAT ZU KOLN 5 KOLN 41 WEYERTAL 86-90, GERMANY