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ON CONSISTENCY IN MONOTONIC REGRESSION!

By D. L. HANsoN, GorDON PLEDGER? AND F. T. WRIGHT

University of Missouri, Columbia, Florida State University

and University of Iowa

For each ¢ in some subset T of N-dimensional Euclidean space let F;
be a distribution function with mean m(f). Suppose m(t) is non-decreasing
in each of the coordinates of ¢. Let #,, £z, - - - be a sequence of points in T
and let Y3, Yz, --- be an independent sequence of random variables such
that the distribution function of Yi is Fy,. Estimators #u.(#; Y1, - -+, Ya)
of m(t) which are monotone in each coordinate of ¢t and which minimize
D2, [a(ts; Y1, - - -, Yu) — YiJ2are already known. Brunk has investigated
their consistency when N = 1. )

In this paper additional consistency results are obtained when N =1
and some results are obtained in the case N = 2. In addition, we prove
several lemmas about the law of large numbers which we believe to be of
independent interest.

1. Summary. Let N be a positive integer; let ¢t = (¢, ..., ") and s =
(s, - -+, ") be “variable” ordered N-tuples of real numbers; let#, = (¢,%, - - -, £,")
for k = 1,2, ... be a fixed sequence of (not necessarily distinct) ordered N-
tuples of real numbers; and let m(f) be a real valued function of ¢ which is
non-decreasing in ¢* fori=1, ..., N.

For each ¢ let F, be a distribution function such that § x dF,(x) = m(f). Let
Y, for k = 1,2, ... be an independent sequence of random variables and let
Y, have distribution function F, . When y, is used, it will be a real number
and is to be thought of as an observed value of Y,.

Let £, be the collection of subsets L of R, having the property:

) {t in L

imply s in L.
< st fOI‘i:l,-H,N} Py

Let ¢ be the collection of complements (in R,) of members of .°,. Define

(2 (s Vs ** *s Va)

_ : Z(a:t eLnK,asn)ya
= ma‘x(L:tkeLebe mln(K:tkeKe >N £

#Ha:t,eLnNK, a <n}
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where #(A) is the number of elements in the set 4. (Most of the time we will

write #1,(t) = m, (t; yy, -+, y,).) The functions 7, can be extended to all of R
so that
3) ift! <stfori=1,..., Nthen m,(t) < m,(s).

This extension is not unique.

The purpose of this paper is to present some results about the consistency of
the sequence {r,(f; Y;, -+ -, Y,)} of estimators of m in the cases N = 1 and
N=2.

Section 2 contains some more preliminaries. Sections 3 and 4 contain, re-
spectively, our results for the cases N = 1 and N = 2; in each case an example
and our theorems are presented first, followed hy our proofs. Section 5 con-
tains some remarks about some theoretical questions which have come up in
the course of this investigation.

The first half of Theorem 1 (N = 1, Section 3) is a variant of Theorem 4.1 of
Brunk [6] giving weak consistency instead of strong consistency but with weaker
moment conditions and without Brunk’s assumption about the asymptotic dis-
tribution in [0, 1] of the points at which observations are taken. Our Theorem
2 shows that if Brunk’s assumption is just omitted then there exist cases in
which one does not have strong consistency. The second half of our Theorem
1 gives Brunk’s Theorem 4.1 under considerably weakened moment conditions.
Our proofs are different from those given previously and depend heavily on
some lemmas (which we believe to be of independent interest) about the law of
large numbers. In particular, Lemma 3 shows that the strong law holds uni-
formly for all independent (not necessarily identically distributed) sequences of
random variables satisfying certain moment conditions.

We believe our results in Section 4 (N = 2) to be the first explicitly dealing
with a higher dimensional situation.

2. Preliminaries. The estimates #, (#; y,, - - -, y,) are known and are known
to minimize
4) 2ik=r (my(t,) — yi)
when the minimum is taken over all functions m,(¢f) which are non-decreasing
in each of the coordinates of r. To see the latter we let s,, - - -, s, be the distinct
members of (¢, ---,1,); let n; for i =1, ..., a be the number of times s; ap-
pears in (#,, - - -, t,); and let
(5) yi = Z(a:ta=si,15a5n)ya/ni .
Let u be the measure on the Lebesgue subsets of R, which assigns measure n;
to {s;} for i =1, ..., a and which assigns measure zero to Ry — {s,, - - -, 5,}.

Then (4) may be put in the form
(6) Zian(my(s;) — i) + €
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where C depends on y,, - - -, y, but not on m,. Minimizing (4) then amounts to
minimizing the sum in (6) which can be put in the form

(7) §y (m,(5) — F(5))* dpe(s)

where

(8) .}-)(s):)-)z lf S=S1- l=1”a
=0 otherwise.

We use the notation of Brunk, Ewing, and Utz [7] and set « = j, m, = 6, and
T(u) = u* so that F(u, v) = T(u) — T(v) — (v — v)T'(v) = (u — v)®. Then (7)is
of the form § Fla(s), 6(s)] du(s). By Theorem 3.3 (of [7]) a minimizing func-
tion 7, exists. By (4.15) and (4.16) of Theorem 4.3 it is unique at the points
$, - -+, 8, and can be written either as :

(9) mn(si) = SupsieLeyN infsieKestc sLnKy(s) d/,l(S)/ﬂ(L n K)
or as
(10) ’ﬁn(si) = infs,ieKech SupsieLeyN sLnK)-’(s) dpt(s)/)u(L n K) .

With a little manipulation (9) can be put in the form (2) and (10) can be put in
the form

(11) mn(ti; Yo oo Yn)

R Dtarige Lok, asn) Va
- mln(K:tieKech} maX{L:tieLeyN) &

#la: t,eLn K,a<n})

The estimates being investigated are related to conditional expectation given
a o-lattice and can undoubtedly be obtained from the currently existing theory
there or from slight modifications of it. The results of [7] seem to give the
minimizing property of these estimates in a more straightforward manner.

If N=1and weorders,, --.,s,sothats, < s, < ... < s, then an “obvious”
extension of 7, to all of R, requires that it be continuous; be linear between s;
and s;,, for i=1, ...,a — 1; and be constant to the left of s, and to the right
of s,.

For all Ndefine t < s (t < s)if £ < s* (! < s?)fori=1, ..., N. Define

m,(f) = max {m,(1;): ;, < 1,1 < i < n} if ¢,<1¢

(12) forsome 1 <i<n
= min{m,(t;): 1 < i < n} otherwise
and
m,(f) = min{m,(t;): t < t;, 1 < i < n} if t<y
(13) ' forsome 1 <i<n
=max {m,(t,): 1 £i < n} otherwise.

These are, respectively, the minimal and maximal possible definitions for s,
which are restricted to values in the interval [min {r,(¢;): 1 < i < n}, max {r7,(¢;):
1 <i < n}]. They are not continuous. There are many continuous functions
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possible for 7, between m, and m, but the authors know of no obvious or
“natural” choice except (as already given) in the case n = 1.

3. The case N = 1. Throughout this section #,(f) will be the estimator
m, (t; Y, ---, Y,) defined as in Section 2 so as to be continuous and piecewise
linear for fixed values of Y;, ... Y,. We will restrict ¢ to the interval [0, 1].

One example of a situation in which one might wish to estimate the entire
function m(r) is as follows: ¢ is to be thought of as dosage or concentration of
a given drug and m(f) is to be thought of as the expected proportion of the or-
ganisms of some particular type killed (under a fixed set of conditions) by that
concentration of the drug. The experimenter decides in advance to run an ex-
periment using dosages ¢, - - -, ¢, and wants to estimate m(f) in some interval
based on the outcome of his experiment.

For y = 0 define

(14) F(y) = sup,_,,,... P{|Y, — m(t,)] = y}
and for any set J € R define
(15) NWU)=#{i:1<i<n and t,eJ}.

THEOREM 1. If m is continuous on [0, 1],0 < a < b < 1, {t,} is dense in [0, 1],
F(y) > 0asy — oo, and {3 y|dF(y)| < oo, then for every ¢ > 0

P{supyg,, [11,(1) — m(£)] < ¢, SUP,guci [M(F) — M, ()] < e} — 1 as n-—oo.

If in addition 1im sup n/N,(I) is finite for every non-degenerate interval I contained
in [0, 1] then
P{lim, ., Sup,,, [,(f) — m(f)] = 0} = 1.

Theorem 1 is a modification of Theorem 4.1 of Brunk [6]. The following
theorem shows that the condition “lim sup n/N,(/) is finite. . .” cannot just be
omitted in Theorem 1 if we are to have the conclusion of the second part of
that theorem.

THEOREM 2. Let m be continuous on [0, 1], let 0 < a < b < 1, and suppose
there exists 0 > 0 such that sup, F[m(t) + 0] < 1 — 0 and inf F,[m(f) — ] > 6.
Then there exists a sequence {t;} dense in [0, 1] and an ¢ > 0 such that

Plinf, ., lim sup, [, (1) — m(t)]
= ¢ SUPyggp liminf, [7,(1) — m()] < —¢} = 1.
The following two theorems give “‘rates of consistency.”

THEOREM 3. If m is continuous on [0,1], ¢ >0 and 0 <a<b <1,
lim sup n/N,(I) < oo for every interval I C [0, 1], and lim_ ., y"F(y) = 0 with
r>1, thenasn— oo

" P{SUD < e [P1,(8) — m(£)] = ¢ or sup,q,< [m(f) — M, (1)] = ¢} — 0.

THEOREM 4. If mis continuous on [0, 1], lim sup n/N,(I) < oo for every interval
I [0, 1], F(y) >0 as y — co, there exisis © > 0 such that {7 e|dF(y)| < oo,
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e>0,and 0 < a< b< 1, then there exis.t a real number p in (0, 1) and a real
number C such that for all n > 1

P{SUPyzics [n(t) — m(D)] = ¢ OF SUP,zezy [m(t) — 1, (1)] Z ¢} < Co™ .
PrOOF INDICATION FOR THEOREM 1. We begin with three lemmas.

LemMA 1. Let X, X,, - - - be independent random variables with EX, = 0 and
EX,? < oo for all k. Suppose

(16) Yo EX K< oo
Corresponding to each positive integer n = 2 let iy ,, - -+, i,, be a permutation of
the positive integers 1,2, .-, n obtained by assigning a place to the integer n be-
tween some two successive integers of, or at the beginning of, or at the end of, the
permutation corresponding to the integer n — 1. Forj =1, ..., n define

Sjn = 2o Xikm .
Then

P{lim,_,, max;_, ..., n"|S;,| =0} =1.

J

eeny

Proor. This is the special case r = 1 of Theorem 6.1 of Brunk [3]. There
are several typographical errors in the proof of Brunk’s Theorem 6.1 and the
hypothesis r = 1 should be added to it.

LEMMA 2. The preceding lemma is true if the hypothesis EX,} < oo for all k and
hypothesis (16) are replaced by the hypotheses

17) F(y)—0 as y— oo and $& yldF(y)| < oo
where
(18) F(y) = sup, P{|X,| = y}-

ProoF. The proof follows from Lemma 1 in the same way that Kolmogorov’s
Strong Law of Large Numbers ([11] page 239) follows from Theorem A ([11]
page 238).

LeEMMA 3. Let F be a real valued function on [0, co) satisfying (17). Then for
every ¢ > 0 there exists a positive integer M such that if {X;:i=1,2, ...} isan
independent sequence of random variables such that EX; = 0 and P{|X;| = y} < F(y)
forall i and all y > O, then

(19) P{SupMén n—lle + 0+ X’nl > 5} =e,
“and
(20) P{max,_,., |Sil/n > ¢} < e forall n = M.

PrOOF. Assume there exists no M such that (19) is true. Then there exist an
¢ > 0 and sequences {X, ,,: k = 1,2, ...} of independent random variables for
M=1,2, ... such that

P{supy<, ”—lle,M + .-+ Xn,Ml >el>e¢
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for all M. We will assume that all the random variables {X; ;: i{,j=1,2, - ..}
are defined on the same probabilityospace and are independent; we can always
define a product space on which are defined replicas of the original random
variables having the desired properties. For each positive integer i let v, be a
positive integer such that
P{max;,,, X 4 e+ X >l > e

We now construct a sequence {X,: i = 1, 2, ...} of independent random vari-
ables such that EX; = 0 and P{|X;| = y} < F(y) for all i and all y = 0. The
sequence {X;} will thus obey the strong law of large numbers.

Let i, = a, = 0. Suppose X, -- -, X, have been chosen. If k = 0 let T, be
such that

Pla, X, 4 - + X, | S Td >4

Let i,,, be such that i, < i.,,, a, <i,,,, and (when k = 0) 4a,T, /e < i,,,.

Define a,,, = a, + v, and X, =X, forj=1,... The sequence

{X;} has the property that for k > 1
P{sup,, <, n7HX; + -0 + X, > ¢/4)
2— P{maxak+ik+1§n§ak+l n_lle + tte + an > 5/4}
= Plmax;, <., (4 + DXy, + o+ Xyl > €2}
X P@, + i) X+ e+ X, | 64

1
&5 .

» Vi

v

Thus {X;} does not obey the strong law of large numbers, giving a contradiction.
This completes the proof of the first part of the lemma.

Now suppose there exists no M such that (20) is true. Then there exist an
¢ > 0, independent random variables {X; ;: i,j= 1,2, ...} all defined on the
same probability space and satisfying the distributional assumptions of the
lemma, and a sequence {n,} of positive integers with M < n, such that

P{max, o, | X1+ o0 Xul/hy > €} = ¢

for M=1,2,.... Let M, = a, = 0. Suppose X, ---, X, have been chosen.
Let T, = 1 and if kK > 1 let T, be such that

X, 4 -+ Xy ITe <3} >}

Let M,,, be such that M,,, > max {M,, a,,T,}. Then define a,,, = a, + ny,
and define X, ;= X, ,,, for j=1,..-,ny . The sequence {X;} defined
inductively in this manner satisfies the hypotheses of Lemma 2 so that

max, <, |Si//n — 0 a.e. and in probability. However
P{max,;,, .. |S;l/@m = ¢/6}
= P{max, ;<. IS;l/ah41 = ¢/6}
= P{le + o A+ Xakllak+l < 6/3}
IS; — Sak[/ak+1 = ¢/2}.

X P{max i

ap<jSap4q
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Note that a,,, > ny,, = M,,, > max {M,, a, T,} so that the above is bounded
below by

P{lX; + -+ + Xaki/Tk < ¢/3}

X P{maxléjényk |X1,Mk+1 + e+ Xj,Mk+1|/an+1 = ¢}

+1

[\%

3e.
This contradicts max,_,., |S;|/n — 0 in probability and completes the proof of
the lemma.

We return to the proof of Theorem 1. Let s be some fixed observation point
(i.e. some t,) in (0, 1). Choose # in the interval (s, 1) such that m(u) — m(s) <
¢/2. For n large we have from (2)

1,(S) = MaX,g, MiN,gs 3 Giass <pism Vil Na([@5 B)] )
< MaX,g, X jiiast;suisn Yil Na([@s #])
< m(s) + /2 + maX,g, 7 iashsuism [Yi — m(2)]/No([a, u]) -
The sequence {Y; — m(t,)} satisfies the conditions of Lemma 3 so when n is large
enough that N,([s, u]) = M = M, then

P{ma‘xaés lZ(i:aSbSu,ign) [Yz - m(ti)]/Nn([a’ ll])l > 6} é 5 °

4=

Thus,
Pl (s) < m(s) + ¢2+ 0} >1 -0

for n large enough, and as n —
P, (s) — m(s) < e} — 1.

We choose a finite number of observation points s;, - .-, s, such that 0 <
< L85 —1<b<s, <1, m(s) — m(0) < ¢/2, and m(s;) — m(s;_)) < ¢/2
for i =2, ..., k. Then if m,(s;) — m(s;) < ¢/2 for i =1, -.., k we see that
m,(f) — m(t) < ¢ for all ¢ in [0, b]. It follows that for every e > 0, as n — oo

P{supo.<s [, (1) — m(] < e} —1.

The proof of the other half of the first part of Theorem 1 is “symmetric” and
omitted.

The proof of the second part of Theorem 1 is essentially just Brunk’s proof
of Theorem 4.1 of [6] using Lemma 2 instead of Lemma 1.

INDICATION OF PROOF OF THEOREM 2. Let {t;, - .-, t,,o} be n, distinct “observa-
tion points” in (0, 1). Let y be a positive integer with 1 < y < n,. We give four
ways of adding additional observation points to this sequence.

(A) Let t* =min{t, -..t,}. Define ¢, = r*/2* for k =1,2,.... If
observations Y, were to be taken at ¢, for i = 1,2, ... then m,0) < Y, for
n > n,. Since m is continuous, ¢, — 0, and inf, F,[m(f) — J] > 8, we see that
P{lim inf #7,(0) < m(0) — 6} = 1. In particular, there exists M = M(v) such
that P{min,, <, 1 7.(0) < m(0) — 6/2} = 1 — 27, Wefixvand let our “length-
ened” sequence be #;, - -+, 1, .y
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(B) Let r* = max{t, .-, t,}. Define ¢, ., =1—(1—r¥)2% for k =
1,2,.... An argument similar to that used in (A) would provide an M such
that P{max, ., . .u (1) > m(1) 4+ 6/2} = 1 —2-*. Our “lengthened” se-
quence would be ¢, - - ., Lygiar

(C) Let s be the maximum member of the set {0, #,, - - -, t,,} Which is strictly
less than 7. Define

ot = b, — (1, — 5)[2% for k=1,2,....
Suppose observations Y; were taken at ¢, for i = 1,2, .... Note that if k =k,
then
() = mim {[ 3500 Ygrns — 250 Y |1/ko
DIy Yogrimi — 252 | Y5[1/(my + ko)} .
Also note that if .
A, = lim sup, N (Yorr = m(t, ) + 0}

then P(4, ) = 1 so that (remember that m is continuous) w € 4 ¥, implies
lim sup, [,(t,)](@) = min {m() + 5 — - 3730, Y,(@),
0
kyk 1
ny+ ke my+ ko
If we N4, then limsup, [7,(t)](®) = m(t,) + 6 so we can find M =
My, t,, ---, t,) such that
P{maxn0<n<n0+M mn(tr) > m(tr) + 5/2} ; 1 — 2~ .

We “lengthen” our observation sequence to ¢, - - -, byginre
(D) Let s be the minimum member of the set {1, ¢, - - -, t,,} which is strictly

greater than t.. Define

[m(t) + o] S (Y@}

tn0+k:t7+(s_tr)/2k for k=1,2,....
An argument similar to that used in (C) would provide an M such that
P{min, ., <, 4o 7,(1,) < m(t,) — 32} = 1 —27*.  Our “lengthened” sequence
would be 7, - - -, £, .

Now let ¢ = /5 and choose 0 < 1, < --- < t, < 1 sothaty, < a; b < Lys
m(t) — m(0) < ¢; m(t;) — m(t;_)) <efori=2,...,n;and m(1l) — m(t, ) < e.
If we can construct {#,} so that

P{lim inf, m,(t) < m(t) — 6[2} = 1
fort=0,1¢,..-, ty, and so that
P{lim sup, 11,(t) > m(t) + §/2} = 1

fort =1, .-, Luys 1 we will be done.
It is sufficient to be able to guarantee that for each ¢ = 0, ti, + -+, 1, Wecanget
N,,and M,  forv=1,2,...sothat N,, < M, ,, N, , — oo as v — oo, and

Plminy, | o, , M,(f) < m(t) — 82} 2 1 — 27,
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and to be able to guarantee that for each t = ¢, - - -, Lups 1 we can get Ny, and
M}, forv =1,2, ... so that N}, < M},, N}, — oo as v — oo, and
P{maxzv’{,,,wgm,, (1) > m(t) + 0/2} = 1 — 27~

We do this as follows. Start with {r, ..., #,}. Lengthen the sequence at
t = 0 using (A)and v = 1.
Then lengthen the sequence using (D) and v =1 at t =1#,, - -+, = f, succes-
sively. Now lengthen the sequence at + = 1 using (B)and v = 1. Next lengthen
the sequence using (C) and v =1 at t =4, ..., ¢ =1, successively. Next
lengthen the sequence by adding an observation point midway between each
adjacent pair of observation points already defined. (The final sequence of ob-
servation points may not be dense unless this is done after completion of the

other lengthening procedures for each value of v.) Repeat this procedure using
v=2,v=3,... toobtain {t;;i = 1,2, ...} as needed for the validity of the

theorem.

LemMMA 4. Let r > 1 and let F be a real valued function on [0, oco) such that
V'F(y) = 0asy— co. Then for every ¢ > O there exists a positive integer M such
that if {X;: i = 1,2, ...} is an independent sequence of random variables such that
EX; = 0and P{|X,| Z y} < F(y) for alli and all y = 0O, then for all n = M

nTP{SUPe, KTHX, 4 e R X Z ) Sk
Proor. If {X;} is a specific sequence satisfying the assumptions of the lemma,
then an argument of Baum and Katz ([1] Theorem 4) shows that
n T P{sup,., k7YX, + -0 + X =6} — 0
as n — oo. The type of argument used in the proof of Lemma 3 completes the
proof of this lemma. We omit it.

ProorF oF THEOREM 3. As in the proof of Theorem 1 we let s be a fixed ob-
servation point in (0, 1) and choose « in (s, 1) so that m(u) — m(s) < ¢/2. For

n large enough we have
’hn(s) é m(s) + 5/2 + maxags Z]i:aSt-Su,i§n) [Y'L - m(t‘b)]/Nn([a’ ll]) *

2=

The sequence {Y; — m(t,)} satisfies the conditions of Lemma 4 so when n is large
enough that N,([s, u]) £ M = M, then

{No([s, uD)} 7 Pimax, <, | X jiastysuizml Y — m(1)]/Na([a, #])] 2 0} < 6.

Thus o
{Nu(Is, W)Y PP, (s) = m(s) + ¢[2 + 0} < &

for n large enough. Since lim sup, N,([s, #]) < oo, as n — oo
n* P{,(s) — m(s) = ¢} — 0.

The remainder of the proof follows the arguments of Theorem 1.



410 D. L. HANSON, GORDON PLEDGER AND F. T. WRIGHT

The following lemma is well known. It follows easily from Theorem A of
[9] but is essentially due to other author(s) in earlier work.

LEMMA 5. Let F be a real valued function on [0, oo) such that F(x) — 0 as
X — oo, and suppose there exists © > 0 such that \7 e~|dF(x)| < oco. Then for
every ¢ > 0 there exist a positive constant C and a constant p in [0, 1) such that if
{X;:i=1,2, ...} is an independent sequence of random variables such that
EX; =0and P{|X;) = y} £ F(y)foralliand all y = 0, then forn = 1,2, ...

Plsupis, k74X, 4+ -+ + X,| = ¢} < Cp™.

Proor oF THEOREM 4. This proof is essentially the same (given Lemma 5) as
the proofs of Theorems 1 and 3. We omit it.

4. The case N = 2. Throughout this section 72, will be any monotone esti-
mator taking on the correct values at observation points. We will worry about
specific values of 72, only at observation points. Values of ¢ will be restricted
to a closed rectangle which we take to be the unit square [0, 1] x [0, 1].

One example of a situation in which one might wish to estimate m(t) =
m(t*, %) is just the extension of the example of Section 3 to include time of ex-
posure to the drug. ' is dosage or concentration of the drug (or insecticide, - - -)
under consideration and £ is minus the length of time the organism(s) are ex-
posed to it. m(#!, *) could reasonably be assumed to be non-decreasing in each
variable.

Another example could involve a study of the effect of a particular drug on
the reaction time of the individual. 7 might be dosage (or dosage per unit body
weight) of the drug under consideration and ¢* the length of time elapsed since
the drug was administered. m(#, ) might be considered to be either the ex-
pected. reaction time of an individual #* time units after a dosage * of the drug
was administered, or it might be the average of these for some group of people.
In either case one would expect m to be monotone in #* and, provided #* were
at least large enough for the body to have assimilated the drug, to be monotone
in £ also. One could, of course, change sign on either or both variables to
guarantee that m be non-decreasing in each variable.

We retain the notation (14) and (15). The definitions are modified very
slightly in that #, = (¢,%, ¢,%) is no longer just a real number and the sets J are now
subsets of the plane.

THEOREM 5. Suppose
(21) m is continuous on [0, 1] x [0,1];
0<a<b< 1 for somer =1
(22) s"F(s) —> 0 as s — oo;
23) 17 sldF(s)] < oo;

(24) lim inf, ., N,(J)/n > O for every rectangle J of the form (a, B;) x (s, B,)
with0 < a; < B; < 1 fori=1,2; and
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(25) there exist positive constants M, ¢, and d with ¢ < d such that if yis a
positive integer and cn* < 9 < dn then

No(lifn, G+ D/l x Liln, (G + Dfpl) = M

for,i,j=0,...,9p— 1.
Then for every ¢ > 0, as n — oo

(26)  nVAPlsup,. , [ (1) — m()] = € or sup,. , [m(1) — i (1)] = ¢} — O where
A =[a, 1] x [a, 1] and B = [0, b] x [0, b].

Note that (23) and “F(s) — 0 as s — co” imply (22) when r = 1, and that (22)
implies (23) when r > 1.

THEOREM 6. Suppose m is continuous on [0, 1] x [0, 1], 0 < a < b < 1, there
exist positive constants 2 and D such that F(y) < De~% for y = 0, (24) holds, and

(27) there exists a constant M such that for every positive integer 7 there exists
an n(x) such that

N.([i[n, (0 + D[] x [j[n, (j + 1)/y]) < My~*n

fori,j=0,..-,9 — 1andall n = n(y).
Then for every ¢ > O there exist positive constants p < 1 and C such that for all
n>=1

(28) P{sup,. z [1,(t) — m(t)] = ¢ or sup,. , [m(t) — ()] = ¢} < Cp™ where
A =a, 1] x [a, 1] and B = [0, b] x [0, &].

As in the case N = 1 (Theorem 2), when N = 2 we do not get consistency if
assumptions (24) and either (25) or (27) are simply replaced by the assumption
that the sequence of observation points (the sequence {t,}) is dense in the unit
square. An example similar to that of Theorem 2 can be constructed. A grid
of points is properly chosen and the sequence {r;} chosen so as to approach the
grid points closer and closer, one at a time, diagonally from the lower left and
then diagonally from the upper right. In this way the sequence {#71,(7)} is “forced”
to behave badly at each of the grid points . We omit the details since the
argument is like that given in the “proof” of Theorem 2, and since a great deal
of space would be consumed if it were given in complete detail.

We will need the following lemmas in the proof of Theorem 5.

LEMMA 6. Let F be a non-increasing function from [0, co) into [0, 1] such that
F(y) >0 as y — oo and such that \§ y|dF(y)| < co. Then there exist a non-in-
creasing sequence {a,} of real numbers converging to zero and a non-increasing real
valued function g with lim,_, g(T) = O such that whenever X,, X,, - - - is an inde-
pendent sequence of random variables satisfying EX; = 0 and P{|X;| = y} < F(y)
fori=1,2,...and0 < y, then if

(29) X,* = maX,g,<, S;/n and Sy =20
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we have
(30) EX*<a, for n=1,2,..., and
(31) |E[(X,* — EXn*)[(an*—EXn”|<T)]I = 9(T)

forn=1,2,...and T = 0.

Proor. Let X,, X,, - - - be a sequence satisfying the assumptions of the lemma.

We see that E|X, *| < {5 x|dF(x)| for all n so we may assume a, < oo, and in
fact a, < {5 x|dF(x)|.

Suppose ¢ > 0. There exists 0 > 0 such that if P(4) < ¢ and X is a random
variable satisfying P{|X| = x} < F(x) for all x then {,|X|dP < ¢/2. From
Lemma 3 there exists M (independent of the particular sequence {X;} involved)
such that P{|X,*| > ¢/2} < 0 foralln = M. Thenif n = M

EIX | = Suxgnserm [ X AP 4 070 Tk S prsem [Xul dP S e
This completes the proof of (30).
Now note that
[EL(X,* — EX, ) xpepx <]l
(32) = IE[(Xn* - EXn*)qun*—EXnnan
= Suxpoexmen (X5 + @) dP
=ntYia San*—EXnugm |Xk‘ dP + alP{(Xn* — EX,*| = T}.
Using (30) of this lemma and using Lemma 3 choose M (independent of the
sequence {X;}) such that n > M implies E|X,*| <} and P{X,* =3} <

min {d, ¢/2a,}. Then, using (32), we see that if T = 1 and n = M then
|E[(X,* — EXn*)I(an*—EXn"KTI]l se.
Now notice that if T > a, and n < M, then
{IX* —EX | 2T (XX 2T — a}

T —
cUfinzT-4

beum{mz"2.

There exists an x, such that x, > 1 and such that {7 x|dF(x)| <
min {6/M, ¢/2a,M}. Then if T = x, M + a, we see that as long as {X,} satisfies
the hypotheses of the lemma we have

P{|X,| = (T — a,)/M} < min {6/M, ¢/2a, M}
for all n, and for n < M we have

P{|X,* — EX,*| = T} < min {9, ¢/2a,} .

Thus (32) is bounded by e. Putting these together we see that if 7 >
max {1, x, M + a,} then

|E[(X,* — EXn*)I(IXn*—EXn‘KT)]l =e
for all n.
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LEMMA 7. Let F be as in Lemma 6, suppose t = 1, and suppose y'F(y) — 0 as
y — oco. Then there exists a real valued function f(y) such that f(y) — 0 as y — oo
and such that whenever X,, X,, - - - is an independent sequence of random variables
satisfying EX; = 0 and P{|X;| = y} < F(y) fori = 1,2, - - then

forally > 0.

Proof. Since EX,* — 0 uniformly in {X;} as n— oo (from Lemma 6) it
suffices to show the existence of f(y) as above such that

yisup, P{IX,*| =y} = f(y)

for every sequence {X}satisfying the assumptions of the lemma. Now if

X,, X,, - - - is a sequence satisfying the assumptions of the lemma, and if
X' =X, if |X;| < ny
=0 otherwise,
then
P{IX,*| = y} = P{max,q,, |Sil/n = )}
(33) = Xk P{IX] = my)
(34) + P{jn~ max gz, 2150 EX;T| 2 y/2)
(33) + P{n™ max,gig, Jj- (X" — EX;T) 2 y/2)

In the following whenever o(y*) is used for any real a (including & = 0; i.e.
« = 1) it will denote some fixed function (independent of n» and of {X,}) such

that o (y%)/y* — 0 as y — oo.
Expression (33) is bounded by

nF(ny) = y='n'~"[(ny)'F(ny)]
=y~ l(ny) F(ny)]
=o(y .
Note that the bound is uniform in »n and in the sequences (X;).
Expression (34) is bounded by
Pin=t Y5, EIX,| = y/2) < P(§7 x|dF(x)| = y/2}

This expression is zero when y > 2 {Fx|dF(x)|. We use the “Generalized
Kolmogorov Inequality” (see problems 2 and 3 on page 263 of [11]) to bound
(35). Let v be a fixed even positive integer with v > t. Then (35) is bounded by
(36) (2/ny)E[X3-1 (X;" — EX;T)) -
Note that
|EX;"| = ISIXj|<"W X;dP| = |§|X,-l>nu X;dP|
= Sixjizny [ X1 dP < § .20y X|dF(x)|

and that this converges to zero uniformly in n and in j as y — co. If we let
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a,;=1forj=1, ..., nand 0 otherwise then we can use the techniques and
notation used on pages 354-355 of [8] to obtain

E[ X3 (X" = EXT)] = 20 2, € (my, - -0, )

X %22 anlyon E(XFay — EXT))™ -
If ¢, is the largest positive integer less than ¢, then the fact that y'F(y) — 0 as
y — oo (along with the fact that the tails of the distributions of the X,’s are
bounded by F uniformly in j) guarantees that E|X,”|™ are uniformly bounded
in j, n, and y for m, =1, ..., t,,, Combine this with the uniform bound on
|EX,”| to obtain a uniform bound on |E(X;,” — EX;")™| for k =1, ...,a. As
in [8], we use C to represent any constant whose exact numerical value does not
matter. For k=1, ..., a we get

jazs E(X," — EX;")y™| < Cla
Ifa+1<k<a-+ bthen
|E(X;" — EX;7)™| < 2*|EX;T|™ + 2*E|X;T|™ < CE|X;"|™

S ClVacny X™HdF(X)| + (ny)"eF(ny—)]

< CL§ x™ ' F(x) dx + (ny)™*o(1)]

< C[1 4 ()™~o(1) + §3* x™s~~lo(x7) dx] .
If m, = ¢ this is bounded by o(1) log (ny). If m, > t it is bounded by (ny)™+~‘o(1).
(We continue using the notation used on pages 354-355 of [8].) We want
to bound

(37) (2/ny)” 22 |C(y)(m1’ tey ma+b) H‘H’b ::L’ff(k)E(X;(k) — EX§(k))mk|
for various of @ and b. We first consider the case a = 0 with b fixed; we con-

sider separately the two subcases t=1and + > 1. If r=1 and a = 0 then
m, = 2 > t so (37) is bounded above by

107 nd DIPR | § 4 an,f(k)][ny]”‘“o(l) < Cnbt=Dy=big(1)
< Cyto(l).

n,j| .

But thisis o(y~*) since b > land t=1. If t>1and b =1 then m; =v > ¢
s0 (37) is bounded above by
Clmyl”[Xs au s ][yl fo(1) = Crm "y~ (1)
=00
If + > 1 and b > 1 then (37) is bounded above by
ClmyI™*[ 2 k=1 @, s [y ) =" [log ()] < Cn==Vy~*[log (my)] .

Since ¢ > 1 and & > 1 this is o(y~*). For the case a > 0 we see that (37) is
bounded by

Cly] ™[ T TIE2E @, s Iy IZicass e log (ny) [0 (1)]
(38) < Clny] Zi=1ime*n]*+*[log (ny)'[o(1)] -
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Note that m, =2 and +>1 in (38). If b=0 then —>¢  m, — bt =
— >4, m, = —v so that (37) is bounded above by

Cy)~nfo(h] = 0(y™) -
If 5 > 0 then (38) is bounded above by
Cn—2a—by—2—tna+b[10g (ny)]b é o(y—t) .

When (36) is expanded as in [8] it is a sum of the form }},(---). We have
shown that each of the terms of this finite sum is o(y~*) so the whole sum is
o(y~*). This completes the proof of Lemma 7.

LeEMMA 8. Let F be a non-increasing function from [0, co) into [0, 1] such that
F(y) =0(y™). Let{X;:i=1,2, ...} be an independent sequence of random vari-
ables such that P{|X;| = x} < F(x) fori = 1,2, ... and x = 0 and such that

(39) lim,_,, sup; |EX,.I“Xi,<T,| =0.
Let{a,,:n k=1,2, ...} be real numbers such that
(40) 2kl = C< o0
forn=1,2, ... and such that

(41) sup, |a, | — 0 as n— co.

Then
Pl 2k anu Xil = €} = 0( Xk (@)
for every ¢ > 0.

Proor. This is almost Theorem 2b (case t = 1) of [10] and the proof is almost
identical to the proof of Theorem 2b. The bounds (4.5), (4.6), and (4.7) on
page 85 of [10] are used. In dealing with (4.5) and (4.7) in the proof of Theorem
2b, the condition }, |a, ;| — 0 was used only to imply sup, |a, ,| — 0; we have
assumed the latter in this lemma. In dealing with (4.6), the condition }7, |a, ,| — 0
was used to imply |3}, a, , EY, ,| — 0; in the proof of this lemma assumption
(39) serves that function. We omit further details.

Proor oF THEOREM 5. Choose ¢ > 0. It is sufficient to prove that

R RP(sup, . [, (1) — m(1)] Z ¢} — 0

and that
n"=PP{sup, . , [m(t) — m,(t)] =Z ¢} — 0.

The proofs are essentially the same. We will prove only the former.

Because of (24) and the uniform continuity of m on [0, 1] x [0, 1] there ex-
ists a k, such that for every ¢ € B there existsa #' € {#,, - - -, 1 } such that t < ¢ <
((1 + 5)/2, (1 + b)/2) and such that m(¢) > m(t') — ¢/3. Let T* be the collection
of points # € {#,, - - -, t, )} such that ¢/ < ((1 + b)/2, (1 + b)/2). For each te B
there exists a ' € T* such that ¢+ < #, such that m(#) — m(f) < ¢/3, and (from
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the monotonicity of 7,) such that m,(f) — m,(f) < 0. It follows that
(1) — m(t) = e} < {m,(t') — m(t') = 2¢/3},
and thus it suffices to prove that

. n'"V2P{max, . . [, (f) — m(t)] = 2¢/3} -0

or that
n=V2P{m (f) — m(t) = 2¢/3} — 0
for every te T*.

Now fix te T* and let s = t + (At, A¢) where At is chosen so that 0 < Ar <
(I — 5)/2 and such that m(s) < m(t) + ¢/3.

In that which follows almost everything depends on n. In order to simplify
notation this dependence is not exhibited (by using subscripts or superscripts
for example).

For n sufficiently large let » = »(n) be a positive integer in the interval
[cnt, dnt] and divide [0, 1) x [0, 1) into »* “little squares” of the form

[i/n, (0 + Dn) x Lifn, (G + Df) .
The “picture” (for » = 16) is as in Figure 1. Define

={x=(x4x%:0,0 = x<s}
and
Dy={x:t<x<s}.

Let .5 be the collection of sets each of which is nonempty and is the intersec-
tion of Q with one of the »* “little squares.” Decompose & into “chains” so
that all members of a given chain have the same main diagonal line running
from upper right to lower left. One chain is shown in Fig. 1. Number these
chains from one to 2. Note that 2 < 27 — 1. Suppose the ith chain consists of
the sets (members of &) S; ,, - - -, S; ,, where the ordering starts with the member
of the chain at the upper right and proceeds downward and to the left. Let

e ={Y,: 1<k<n and t,e5,]}.

Remove one Y, from each 27 _ (i ﬁxed) which is nonempty. There will be some
number v, , of these. If they are Y, , ..., Y, takenats >, > ... > t,,
define Y;, ; = Y. (Note that since two dlfferent s are in two dlﬁ'erent mem-
bers of the ith chain it follows that one is to the upper right of the other. Thus
the v, , observation points are linearly ordered.) Now remove one more Y, from
each 777, . which is not now empty There will be v, , of these. If they are
Y , -, Y taken at ¢, L >, define Y, , ; = Y, .. Continue this pro-

ay ay;

cedure until 21211 the collectlons N have been emptied. If

r: = max. (77 )

and if the above procedure is carried out for i = 1, ---, 2 then Y, ; , will have
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been defined for i=1, .-, 4 j=1,---, 73 and v=1,.-.,vy; ;. From the
definition

Z(a:taeLnK,as'n) Ya
N,(L n K)

(1) = MAX (1 e e op MNgieke o))

e Y,
< max {a:tge LnQ,asn} * a .
= {L:te Le o}

?TN(L N Q)

Since EY, < m(t) + ¢/3 for t, € Q we have

Z(a:t eLnQ,as<n} (Ya - EYa)
a . t 3
N(L N Q) +mll) el

Z(a:taeLnQ,aén) (Ya - EYa
N,(Dy)

(1) < MaX(pyere oy

)-}— m(t) + ¢/3 .

é max(L:teLeyg)

Since Y iat crnaasm (Yo — EY,) can be written as a sum on i and j of partial
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sums of the sequence Y, ;, — EY, ; |, ---, Yiguii — EY; ;.. » it follows that if
we define
Z;; =max,_, .., g 2ak=1 (Yo — EY; 5 4)

where }9_, a, is defined to be zero, then

() < Tis 751 Z; jINA(Dy) + m(t) + ¢/3
so that
Pim, () — m(1) = 2¢/3} < P{Xi Biti Zi,; 2 Nu(Do)e/3} -
From (24), if n is large enough, then N, (D;) = Cln for some positive constant
C, so

PUAL(0) — m() 2 263} < P { £ mit, %t (o) < 201

vi,j
where ¢’ = C,¢/6. This is bounded by
(42) P {ZJL] Z;glir‘[if _ E(Lﬂ > 5/}
oLy Vi,
(43) + P {zi i i B\ Bl 2 o]
v,

2%
From Lemma 6 there exists m* such that v, ; > m* implies

EIZ 1/”1 .7| = SUP<mx G, < e’/2
Then if Zl is the sum over all pairs (i, j)such that 1 <i<2, 1 <j <7, and
< m*; and if };, is the sum over all pairs (i, j) such that 1 <i <2, 1<

1]_

J=7e and v; ; = m*; we have
c Vs |2
(44) Tia DL E\hi < 3 mrafn + Fa (v,yln)(E'f2)
%)

Now 1 < 27 — 1 and (from assumption (25) and the definition of ;) 7, < M so
that the number of terms in )}, is bounded by 2pM < 2dMnt. Thus

Ym*afn < 2dMm*a;/nt — 0.
We have
Z«; 121 Vi = n(Q)én
so that 33, (v; ;/n)(¢'[2) < ¢')2.
Thus lim sup of expression (44) is at most ¢’/2 so that for n large enough (43) = 0.
Note that

ji=1

Zj=1 o 1’<1—n0
n

Yi,j
n

max; ; < p/n <dnt, and

Zio Tk (%5) < 2M(yjmy
< 29M(y/n)r < Cn~r-b72
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Lemma 7 says that the tails of the distribution functions of the random vari-
ables (Z,; — EZ, ;)/v, ; (for all i, j, n) are uniformly o(y~*). When r > 1 this
fact and the inequalities directly above enable us to apply Theorem 2 of Franck
and Hanson [8] witha =0, 8 =}, t = r, and p = (r — 1)/2; this shows that
(42) is o(n="~V/%) and completes the proof of Theorem 5 when r > 1. When
r = 1 we use Lemma 8 (with Lemmas 6 and 7) to show that (42) is o(1), com-
pleting the proof of Theorem 5.

PrOOF OF THEOREM 6. Choose ¢ > 0. Defining T* as in the proof of Theorem
5 we will show that for each t € T* there exist positive constants C and p < 1

such that
Pih,(1) — m(i) = 2¢/3} < Co~

for all positive integers n. This is enough to guarantee that there exist positive
constants C* and p* < 1 such that
P{sup,.  [,(f) — m(1)] 2 ¢} = C*(0*)"
forn = 1,2, .... The part of the proof involving
P{sup,. , [m(1) — m,(1)] = ¢}

is similar and we omit it.
Now fix e T* and, as in the proof of Theorem 5, choose s, define Q and D,,
and observe that (as in the proof of Theorem 5)

Z(a:taeLnQ,aén) (Ya - EYa) _|_ 6/3 .
N.(Dy)

We remind the reader that (24) implies that there exists a positive constant C,
such that N,(D,) = C;n for n sufficiently large. Thus for n sufficiently large

Pp, (1) — m(t) = 2¢[3}

(45) ’ﬁn(t) - m(t) é max(L:te Le &g}

is bounded above by
(46) P{max(L:teLeyg} Zm:taeLnQ,aén) (Ya - EYa) g Cln5/3} .

Now for a fixed 5 (to be chosen later) divide [0, 1) x [0, 1) into the 7? squares
/7, i + V)/n) x [j/n, (j + 1)/p) for i,j=0,1, ..., 9 — 1. The reader is re-
minded of Fig. 1. Label the squares in the ith row (from the top) from right
toleft I, .-+, I;,. Setl,,=1,,,, = ¢ forall i. Define o2 (C &,) to be the
collection of sets of the form J;_, Ui, I;; where p > j, =j, > - .- =j, =0,
and for a fixed R € & define F, = |, Uiit) I;; where j, = . The number
of sets I, in Fpis Bl DiFA1 =5+ D0, (jia — j) < 27. If Le &, then
let R(L) be the largest R € 2 such that R — L. Note that L n ([0, 1] x [0, 1])
R(L) U Fp,. For convenience let S,,= 3 acnica (Ya — EY,) where
A [0,1] x [0, 1] and the sum is 0 if {a: @ < n, t, € A} = ¢. Expression (46)
is bounded above by

(47) Z(Reﬂ:teRuFR) P{SRnn,n + maX(A:AcFR} SAnn,n g Cln€/3}
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and for R € &2 the summand in (47) is bounded by

(48) P{Spran = Cinel6} + iaacrm PSinan = Cuncf6} .

We use Theorem A of [9] with p = 1, with weights @, = 1/n if 1 < k < n and
t,€ A and a, = 0 otherwise, and with ¢ replaced by C,¢/6. This shows the ex-

istence of a positive constant C, depending only on D, 2, C,, and ¢ (and in par-
ticular not on %) such that

P{S, , = Cine/6} < exp(—C;n)
for every 4 [0, 1] x [0, 1]. Since

Nn(]i.i) é M7]_2n

for n sufficiently large, we see that, for n sufﬁciéntly large, there are at most
(29)(My~*#) points in F, and at most 2?7~ distinct subsets of F,. Thus (48) is
bounded above by

(227 4 1) exp(—C,n)
and (47) is bounded above by

277227 ') exp(— Cyn) .
If » is chosen large enough that

22My~1o=Cy < 1

then
(49) Prh,(1) — m(t) 2 2¢/3} < Cp"
where p = 27 e~ and C is a positive constant at least as large as 25”.

5. Concluding remarks. It would be interesting to know whether the rates of
convergence presented herein are sharp (or reasonably so). It seems likely that
the rates results presented in Section 3 are about as good as can be obtained,
but then the method of proof used in that section would seem (at least at first)
to involve inequalities which should be reasonably tight. It would be interesting
to know whether the rates results presented in Section 4 can be improved sig-
nificantly, and whether the bound consisting of expressions (42) plus (43) can
be improved upon.

In Section 4 we ran into the following problem. Let Q be a finite set, and
for each i in Q let X; be a random variable. Let .2 be a lattice of subsets of
Q with Qe . Define

Sy = Dlier X;
for every subset 7 of Q, and define S, = 0. What can be said about proba-
bilities of the form )
P{max, . S, =¢}?

If Q={1,...,N} and ¥ ={¢,L,, ---, L,} where L, = {1, ..., i} then the
probabilities above occur standardly. If % = 29 then the probabilities above
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may be much bigger; how much ’bigger? Can Kolmogorov’s inequality be
modified so that it is of the form

P{max,. . |S;| 2 ¢} < Co(of + -+ 4 a)/&

where C_, is a constant depending on the lattice <? (C_. = N will always work
but is it a good bound when .~ = 2%, and how can it be improved upon when
& is a smaller lattice?)

(1
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