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UNBIASED TESTING IN EXPONENTIAL FAMILY REGRESSION

By ARTHUR COHEN,! J. H. B. KEMPERMAN? AND H. B. SACKROWITZ!

Rutgers University

Let (X;;,2),i =1,2,...,k, j=1,2,...,n;, be independent observations
such that z; is a fixed X 1 vector [r can be 0 (no z’s observed) or 1,2,...,
k—1],and X; ; is distributed according to a one-parameter exponential family
which is log concave with natural parameter 6;. We test the hypothesis that
6 = Z(3, where 0 = (01,...,0;),Z is the matrix whose ith row is z] and
B = (B1,...,Br) is a vector of parameters. We focus on r = 2 and z} =
1,z),i = 1,2,...,k,2; < 2;,1. The null hypothesis on hand is thus of the
form 6; = 1 + B22;. In such a case the model under the null hypothesis
becomes logistic regression in the binomial case, Poisson regression in the
Poisson case and linear regression in the normal case. We consider mostly
the one-sided alternative that the second-order differences of the natural
parameters are nonnegative. Such testing problems test goodness of fit vs.
alternatives in which the natural parameters behave in a convex way. We
find classes of tests that are unbiased and that lie in a complete class. We also
note that every admissible test of constant size is unbiased. In some discrete
situations we find the minimal complete class of unbiased admissible tests.
Generalizations and examples are given.

1. Introduction and summary. Consider the model where (X;;,z,),i =

1,2,...,k, j=1,2,...,n;, are observed. Here X;; has a one-parameter exponen-
tial family density with natural parameter ;. That is, for each i = 1,2,...,k
and anyj = 1,2,...,n;, the density of X;; is

(1.1) f){ij(xij, 0;) = e_M(oi)“‘Uo"hi(xij).

Further assume A;(x;;) is log concave for i; that is, the distributions are PF,.
The dominating measure for each x;; is Lebesgue measure on (—oo, c0) for the
continuous case and counting measure on {0, +1,+2, ...} for the case where X;;
is integer valued. The vector z; is an r x 1 vector of fixed constants such that the
matrix Z of order k x r is of rank r < k and consists of the k rows z.. Note that
r=0,1,...,k — 1. When r = 0 no z;’s are observed. When r > 0 the z; represent
the independent variables in a potential regression model. Let

Si=Y "Xy  Xi=Si/m, §=(S1...,5),
Jj=1

X' =(Xy,...,X), 0 =(,...,0).
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Sufficient statistics are S or X. For ease of exposition only, we take n; = n = 1.
(See Section 5 for generalizations.)

Consider testing H: @ = Z3, where 3 = (61,...,3-) is an r x 1 vector of
parameters. We focus on r = 2 and z; = (1,2;),i = 1,2,...,k,2; < 2;,1. Problems
with this null hypothesis are called goodness of fit or lack of fit. In the caser = 2,
the null hypothesis specifies that the natural parameters lie on a straight line.
McCullagh (1986) studies lack of fit for discrete data. Tsiatis (1980) and others
study logistic regression. Draper and Smith (1966) study normal regression.
Zelterman (1988) studies lack of fit (goodness of fit) for specialized alternatives
while Dean and Lawless (1989) and many others study Poisson regression.

Consider next the one-sided alternative K/H = K — H, where K specifies
that the natural parameters behave in a convex manner. That is, the testing
problem is

(1.2) H: Oi = ﬁl + ﬁzzi VS. K/H,

where K: (6,2 — 6;4+1)/@iv2 — 2iv1) = (6is1 — 6:)/(zis1 — 2i). Another way to
describe the alternative is that second-order generalized differences in the nat-
ural parameters 6; are nonnegative. Embedded in both null and alternative
hypotheses are some popular change point problems. See, for example, Miao
(1988), Kim and Siegmund (1989), Loader (1992) and others.

For testing (1.2) we find a class of unbiased tests that also lie in a complete
class. In the integer-valued case the class includes and often coincides with the
class of all admissible, unbiased tests. In the continuous case the class contains
all the admissible unbiased tests. From a practical point of view, any test used
in practice should be in the complete class and should be unbiased.

To describe the class of tests with the desirable properties, we start by noting
that (1.2) is of the form H: A;0 = 0 and K: A;0 > 0, where A; represents the
first (£ — 2) rows of the & x k& upper triangular matrix

riy —(ri+ry) r2 0 0
0 ro —(rg+r3) 13 0
(1.3) A=| : ’
0 0 rp—1 —(rp—1+r1)
0 oo 0 Tk

wherer; =1/A;,i=1,2,...,k -1, A; =2;,1 — 2;, r > 0. The particular choice
of r, > 0 is irrelevant. For concreteness, we define r, = 1 (corresponding to
Zr+1 =2k +Ak =2p+ 1).

The inverse matrix B = A~1is

Ay (A1+A2) (A1+A2:|....+Ak)
0 A Do+ + Ap)
(14) B = 0 0 A3 (A3+...+Ak)

0 0 Ap
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Now let Y = B'X and let Y = (%)), where Y is of order (k — 2) x 1. Thus the
Jjth component of Y is

i J J
(1.5) (Y(l))j = (ZA:‘)Xi + (ZAz)Xz +oo+ A X = Z(Zju -2z)X;,
i=1 i=2

i=1
j=1,2,...,k — 2. Further, Y? has components

k k k k
(1.6) [zk ZX', — ZziXi} and [(Zk + 1) ZX] — ZziXi .
i=1 i=1 i=1 i=1

Hence working conditionally on Y® = y? simply means working conditionally
on ¥*_, X; and ¥*_, z;X; being constant.

DEFINITION. Let @ denote the class of test functions p(yV, y®) of H vs. K /H
such that:

(i) ¢(y) is constant size o,
(i) ¢(y) is nondecreasing in y® [for fixed y],
(iii) ¢(y) has convex acceptance sections for almost all fixed y®. In the
integer-valued case, randomization can only occur at extreme points of these
convex sections.

A MAIN RESULT. Each test ¢ in @ is unbiased. All admissible constant-size
tests are unbiased and are in €. Moreover, € is contained in a nontrivial complete
class.

In Cohen, Kemperman and Sackrowitz (1993), the problem of testing H: A;6
= 0 vs. K/H, where K: A0 > 0, is studied for a class of matrices A, (each
associated with a different testing problem). In that reference, it is assumed
that the X;; ~ N(6;, 02),02 unknown. See Section 5 for a comparison of the
results in this paper with results in the referenced paper.

To prove unbiasedness results, we introduce a notion of positive dependence
called weakly conditionally increasing in sequence (WCIS). This is done in
Section 2 where the connection between WCIS, CIS and the notion of asso-
ciation is made.

In Section 3 we return to the regression problem starting with a complete
class containing the class C. In Section 4 we prove the results on unbiased
testing and indicate how WCIS is used. The verification of the WCIS property
is given in Section 4 which also contains some new results on total positivity and
further results on stochastic ordering. Section 5 contains some related results,
extensions and examples.

2. WCIS. We need some definitions.

DEFINITION 2.1. The random vector V is stochastically greater than or equal
to a random vector U (U < V) if

(2.1) Eh(U) < Eh(V),
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for all nondecreasing h for which the expectations in (2.1) exist.

DEFINITION 2.2. The random variables in U = (Uy,...,U;) are said to be
conditionally increasing in sequence (CIS) if, forj=1,...,k — 1,

22  [Uj|Up1=tur,-, U =) < [Uj|U=tfq,. ., U = 1],

for uj,1 < Ul U < U [see Tong (1990), page 92]. (We reordered the

variables in Tong because it is more natural for our application.) In Cohen and
Sackrowitz (1992), Remark 2.8, it is shown that (2.2) is equivalent to

2.3) [Uy,...,Ui|Ujs1 = tjer, .- -, Uy = ug]
' <st [Ul,n-,Ulej+1=u;+1w~,Uk=uZ]-

DEFINITION 2.3. The random variables in U are said to be weak condition-
ally increasing in sequence (WCIS) if, forj=1,...,k — 1,
[Ul""al]jltjj+l=uj+1""aUk=uk]

@.4)
<o [Une oy Ul Upsr =y, Up = ),

for uj,; < uf,;. In other words, WCIS means that, for each j = 1,2,...,k,

the random vector [Uy,...,U;] given Uj,1,...,Us need only be stochastically
nondecreasing in Uj,1 = 4j,1.

DEFINITION 2.4. The random variables in U are said to be (positively) asso-
ciated (A) if

(2.5) Ehy(Uhy(U) > Ehq(U)Eh,(U),

holds for all nondecreasing k1, ks for which expectations in (2.5) exist. [Esary,
Proschan and Walkup (1967) introduced the notion of association.]

THEOREM 2.5. The following implications are true:

(2.6) cis @ wers R A.

Furthermore, all implications are strict for k > 3.

ProoF. The implication (a) follows from (2.3) and (2.4). To prove (b), we
need to show that (2.4) implies (2.5). For notational convenience take 2, = @,
hy = W and let @ = Qy, W = W, be given nondecreasing functions on R*. For
j=1,2,...,k — 1define

(2.7 Qj(uj+1a ey UR) =E[Q0(U1, o UR | Uj+1 SUjrly-- Uy = uk]

and Q, = EQu(Uy,...,Us). Similarly, define Wj(u;,1,...,ur) and W;. Since
Qo(uy, ... U Ujs1,. .., U) is nondecreasing as a function of u;,; and also as
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a function of uy, ..., u;, the stated condition of the lemma implies that Qi) 1,
..., Ug) is nondecreasing as a function of u;, ; (keeping u;, s, . .., u; fixed). Simi-
larly, Wj(u;,1,...,u) isnondecreasing in u;, 1. By virtue of the one-dimensional

correlation inequality, if follows, for j = 0,1,...,k — 1, that

E[Q(Ujsr,...,UW;(Wjsr,...,Up) | Uy, ..., Uy
> E[QiUjs1,...,Up) | Ujss, ..., Us]
x E[WUjs1, .-, U | Upass ..., U]
= Qj+l(l]j+2a ) Uk)VVj+l(U'j+2,' o Up).

(2.8)

Now (2.8) implies

EQ(Ujs1,...,UdW U1, .., Uy)

(2.9)
> EQj+l(l]j+2’ B Uk)m+l(l]j+2) R Uk)

This implies (2.5) since the right-hand side of (2.9) with j = £ — 1 reduces to
E[QO(UI’ ceey Uk)]E[WO(Ul’ ceey Uk)] 0

A sufficient condition for random vectors U and V to be stochastically ordered
is as follows: let fy(-) and fy(-) denote the densities of U and V, respectively.
Consider r(u) = fy(u)/fy(u). Conditions implying U < V (U is stochastically
less than or equal to V) are the pair (2.10) and (2.11) where

(2.10) “ r(u) is nondecreasing in u

[nondecreasing means that r(u) is nondecreasing in u; for uq,...,u; _1,U;41,
..., upfixed, fori =1,2,..., k],

(2.11) Uis A.

This is essentially proved in Perlman and Olkin (1980). In light of this and
Theorem 2.5 we have the following result.

COROLLARY 2.6. Suppose U is WCIS and (2.10) holds. Then U <y V.

3. Complete class. We now return to the statistical model of Section 1.
Recall Y = B’X and let v = A6. Since the X follow an exponential family and
are independent, it follows from (1.1) that the joint distribution of Y can be
written as

f(y,v) = exp[-M*(v) + y'v]h*(y)

(3-1) ’ 79\

= exp[—M* () + YV vV 4+ y& L) px(y),

.The hypotheses are H: 'V = 0 vs. K/H, where K: v > 0. Hence, from (3.1), it
follows that Y® is a complete sufficient statistic under H. Also, from Lehmann
(1986), page 144, it follows that all exact-size o tests must have Neyman struc-
ture; that is, all exact tests must be such that, conditional on y®@, they have
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size a. From Lehmann (1986), page 58, we note that the conditional density of
Y | Y? = y@ can be written as

3.2) f,,u) (y(l) I y(2)) = Cy<2) (V(l)) exp [y(l)/ I/(l)] hy(m (y(l)).

Conditional on y@, then the problem is to test the simple hypothesis H: vV = 0
vs. K/H, where K: vV > 0.

THEOREM 3.1. The class of tests (y) where ¢(y) is nondecreasing in yV) for
fixed y® and has convex acceptance sections is a complete class in the continuous
case. In the integer-valued case the same conclusion holds for ¢(y) provided we
require in addition that randomization is only permitted at the extreme points
of these convex acceptance sections.

ProoF. See Eaton (1970). For the integer-valued case, see also Matthes and
Truax (1967) and Cohen, Gatsonis and Marden (1983). O

REMARK. In many integer-valued cases, including binomial and Poisson
distributions, the class is minimal complete. See again the last two refer-
ences above.

4. Unbiased tests. In this section we prove the main application, namely
that tests lying in the class € are unbiased for testing H vs. K/H. To prove
unbiasedness, our plan is to prove conditional unbiasedness, where the con-
ditioned variables are y?. Conditional unbiasedness implies unbiasedness. To
achieve conditional unbiasedness, we will demonstrate that the distribution of
Y| Y® = y@ under the alternative K/H,K: vV > 0, is stochastically larger
than the distribution of YV |Y® = y®@ under H: vV = 0. To prove such a
stochastic ordering, we will invoke Corollary 2.6. Hence we will prove the fol-
lowing result.

THEOREM 4.1. Let o(y) = o(yV,y?) be a size a test. Then, if o(y) is
nondecreasing in y for fixed y?, o(y) is unbiased.

PrOOF. By the remarks preceding the statement of the theorem, the result
is proved if

4.1) r(¥) = o (0 |v?) /foly M | y@)
is nondecreasing in y¥, and

(4.2) Y® | Y? is WCIS under H.

4That condition (4.1) holds follows immediately from (3.2). The remainder of this

section is devoted to proving (4.2). The proof culminates with Theorem 4.8 below.
0O
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Our remaining task is to show (4.2) which can be written as

(Y1, s Yo ) | Yome1 =Ymats - Yao2 =Yk —2)

(4.3) x
<ot (Y1, s Y | Ymu1 =951 Y2 = Ve 2]

under H assuming Y®' = (Y}, _1,Y}) are fixed, where y,,+1 < ¥% .1, m = 1,
..., B — 8. (Since Y, _1,Y; are fixed throughout, from this point we will not
include them in the argument.) We note from (3.2) that the distribution of
YV | Y is parameter free under H. Hence in establishing our goal it suffices
to assume that the random variables X3, ..., X} under H are independent with
PF, densities A;(x),i=1,2,...,k. Recall Y =B'Xor X = A’Y, where B= A1, A
and B are given in (1.3) and (1.4).

We need some new results in total positivity and stochastic ordering. Let
g(x,u) be a joint density of (x, ).

LEMMA 4.2. Suppose g(x,u)is TPy and, moreover, log concave in (x,u). Then,
for a > 0, f(x,u) = g(x,u — ax) is log concave and TPy in (x,u).

PRrOOF. Thelog concavity of f in (x, ) is immediate since the transformation
(x,u — ax) is linear in (x, u). Furthermore, log concavity implies that both f and
g are PFy in each variable. Let x < x*, v < u*. Then

flx, u)f(x*,u*) — fle*,u)f(x,u*)

4.4
“e =g(x,u —ax)g(x*,u* — ax*) — glx*,u — ax*)g(x,u* —ax) > 0,

by Lemma 5.2 of Karlin (1968), page 126. O

REMARK. It can be shown that the result of Lemma 4.2 holds also for
f(x,u) = glax — bu,cx + du) for each choice of nonnegative constants a,b,c,d.
Even more generally, the TP, property holds for f(x, u) = g(a(x) — B(u), —y(x) +
6(u)) where a, 3,7, 6 are nondecreasing functions.

We next state two well-known results.

LEMMA 4.3. Ifg(xy,...,x) is log concave in (x1,%s, .. .,x), then for any m =
1,2,...,k — 1, the marginal f(x1,...,%m) = [ps_n8(x1,. .. ,xk)Hf=m+1dx,~ is log
concave in (x1,...,%m)

PRrROOF. See Dharmadhikari and Joag-Dev (1988), page 61.

LEMMA 4.4. If wi(x,y) is TPy in (x,y) and wy(y,2) is TPy in (y,2), then
w3(x,2) = [wi(x,y)wa(y,2)dy is TPy in (y,2).

ProoF. See Karlin (1968), page 123.

LEMMA 4.5. Form =1,2,...,k — 2, the conditional distribution of [(Y1,Ys,
o s Yo ) (Y1, Yoy - - -, Yi—2)] is the same as the conditional distribution of
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(Y1,Ys,...,Ym) | (Ym+1, Yim +2)]. As a consequence, the conditional distribution
of (Y1,Y,)|(Yrms1,Ymas2,s. .., Yr_o)l is the same as the conditional distribution

of (Y1,Ym) | (Yims1, Yms2)].

Proor. Since X =AY, from (1.3) we have, for j=1,2,...,(k - 2),
(4.5) X;i=rjYi—(rj_1+r)Yj_1+rj_2Y;_o,
and from (1.5)

J J
(4.8) Yj=(ZAi)Xl+<ZAi>X2+---+A,XJ
i=1 i=2

Now (4.5) implies that the event Y.,y 1 = ¥m+1, Y42 =VYms2,--+s Yb—2 = Vi 2
is equivalent to the event Y, ;1 = ¥m+1, Ym+2 = Ym+2, Xm+3 = Xm+3s.+-, Xp—2
= xp, _ 9. However, from (4.6), Y1,Y5,...,Y,, are independent of X,,.3,...,Xp _o
since the Y3,...,Y,, depend only on (X3,...,X,). O

LEMMA 4.6. The conditional density of [Y1,Ym | Ym+1, Ym+2l is TPy (and log
concave).

The proof is given in the Appendix.
An immediate consequence of Lemma 4.6 is the following result.

COROLLARY 4.7. For m = 2,...,k — 2, the conditional distributions of Y,
1Y, Yme1, Ymaz and Yo | Y1,Y 0 41, Yo+ 2 are stochastically nondecreasing in
Y,, and Y, respectively.

THEOREM 4.8. Fori = .k —2, let Wi(y1,ys,...,y;) be a nondecreasing
function of (y1,...,y:). Then forﬁxedyl+1’yl+2’ Yiei=yi+1, Yie2a =Yiso.

4.7 E[Wi(Yy,...,Y)|(Y;,Y;41,Y;.2)] is nondecreasing in Y;.
(48) E[Wi(Yl, ey Y,) | (Yl, Yi+1, Yi+2)] is nondecreasing in Y1.

Note (4.7) is equivalent to the desired result (4.3).

Proor. Fori = 2, (4.7) and (4.8) easily follow from Corollary 4.7. That is,
let yo <y;. Then

E[Wy(Y1,Y5)|(y2,y3,94)] = E[Wa(Y1,92)|(¥2,¥3,54)]

INA

E

E[Wy(Y1,52) | (v3,¥3,54)]
E[Wa(Y1,59) | (55,38,50)
E[Wy(Y1,Y2)| (3,53,54)].

IN
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Now assume (4.7) and (4.8) to be true for i = 2,...,m. To establish (4.7) and
(4.8) for i = m + 1, begin by defining
W*(YlaYm+1aYm+21Ym+3)

(4.9)
= E[Wm+1(Y17 [ERE) Ym+1)|Y11Ym+17 Ym+21Ym+3]-

Note from the proof given in Lemma 4.5 that the conditional distribution of
(YZa LR Ym), given (Y11 Ym+17 Ym+27 Ym+3)’ does not depend on Ym+3' Thus W*
is nondecreasing in Y; for fixed Y,,, , 1, Y, +2 as (4.8) holds for i = m.

Next, let)?l =X;,1,0=1,2,...,k — 3, and define

R Jj+1 R J+1 . N
Y= (ZA,)Xl + (ZAi>X2+“'+A(j+1)Xj’
i=2 i=3
so that from (4.6) we have
j o~
Y}:(ZAi>X1+Yj_1, j=2,...,k—2.
i=1

The variables X'J are independent of X; and are related to IA’J as X;’s were related

to Y;; thatis, Y=4%X , Where the matrix A has the identical structure as A only
the order of the square matrix is one less than that of A. Therefore

E[Wm+1(Yl, o YD) Y1291, Y me1 =Yme 1, Yme2 = Ym+2, Y3 =ym+3]

m+1
=E[Wm+l<y1, [(Ar+ Ag)/Aq]y1 +Y1,..., [( Z Ai) /AlJm +Ym>
i=1

(4.10) . m+1 R m+2
Yo =yme1— | D A/A151, Yme1=maz — | D Di/Ar|y1,
i=1 z=1
N m+3
Yit2 =Ym+3 — [ > Ai/AI:IyI:I :
i=1

Now (4.10) is nondecreasing in y,, , 1 by virtue of (4.7) for i = m. Hence W*(Y7,
Yi1, Yme2, Ym+3)is nondecreasingin Y; and Y, . 1.

Finally,
(4 11) E[Wm+1(Y11---)Ym+1)|Ym+1,Ym+2aYm+3]
. =E[W*(Y1,Ym+1,Ym+2aYm+3)'Ym+17Ym+2,Ym+3]
and A
E[Wm+1(Y1, v -7Ym+1)|Yl,Ym+27Ym+3]

(4.12)
. =E[W*(Y17Ym+1aYm+2,Ym+3)|YlaYm+2,Ym+3]-

The nondecreasing property of (4.11) and (4.12) in Y,, .1 and Y}, respectively,
follows from Corollary 4.7. O
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THEOREM 4.9. All admissible tests of constant size are unbiased.

Proor. All admissible tests must be nondecreasing in y® for fixed y® and
have conditionally convex acceptance sections by Theorem 3.1. All constant-
size tests have constant conditional size by completeness. All tests with condi-
tionally constant size which are conditionally nondecreasing are unbiased by
Theorem 4.1. Thus the theorem is proved. O

REMARK. We used the notion of WCIS in proving Theorem 4.1. The relevant
variables do not have the CIS property.

5. Generalizations and remarks for statistical problem.

5.1. Unequal sample sizes. The results of Sections 3 and 4 hold with only
minor modifications if the sample sizes at each z; are n;. We would then
consider the vector 8’ = (Sy,...,S;) whose natural parameter would still be
0' = (61, ...,6). Hence no changes would be required in defining the matrix A.
Note that the development in Section 4 only used the fact that under H, X; were
independent with PF, densities a;(x),i = 1,2, ..., k, which is also true of the S;.

5.2. Regression through the origin vs. increasing ratios or star shaped with
respect to the origin. The model to be tested is 6; = 3z;. For this problem r = 1
(see Section 1) and the A matrix is

N 0
21 22
0 —1- — 0 0
22 23
0 o =L 1
Zp_1  Z
0 ... o _1
2

0 < 2; < 2;41. Thus A, is now the top (¢ — 1) x & submatrix of A. Under the
alternative, (6;/z;) is increasing. The analogue of Theorem 4.1 is proved by
noting that the distribution of Y, of order (£ — 1) x 1, given Y® is MTP,. This
is established as in Cohen, Perlman and Sackrowitz (1990).

Aremark isin order about the practicality of the formulation. Testing the null
hypothesis that the natural parameters lie on any line through the origin vs. the
alternative that the ratios (¢; /z;) are increasing is somewhat realistic, although
perhaps not frequently of interest. However, testing the null hypothesis that the
natural parameters lie on a line through the origin with a nonnegative slope vs.
the alternative that the ratios increase in such a way that they lie above a line
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is contained in the null hypothesis that the parameters lie on any line through
the origin, and the alternative is contained in the alternative that the ratios
increase. This implies that any test which is unbiased for the larger null and
larger alternative is also unbiased for the smaller null and smaller alternative.

5.8. Linear regression with zero slope vs. convex increasing. For this prob-

lem the A matrix is as in (1.3) except that the last row is deleted and a first row
of the form (—ry,r1,...,0) is added. The relevant Y = (YV', Y®) is obtained by

finding B = A~!, and so
k
- (ZA‘) —Ay

(2

—(Ap+Ap-1)
—Ay =4 EAYA
It follows from (5.2) that
k
(53) Y.I = z Ain
i=j

where T; = i _ X;; thatis, T; are the partial sums of X;. Clearly, Y® = Y}, = — T},

Now any test which is nondecreasing in y™® for fixed y® is unbiased. To
see this, first note that this problem is contained in the problem of testing
homogeneity vs. the “simple order” 6; < .- < 6. Any test which is unbiased
for the larger problem is certainly unbiased for the smaller problem. Size «
tests which are nonincreasing in the partial sums are unbiased for the larger
problem by virtue of Cohen, Perlman and Sackrowitz (1990). Finally, note that
tests which are nondecreasing in ¥V are nonincreasing in the partial sums. To
see this, write ©(y1,...,ys) = ¢*(t1,...,t;). Assume ¢ is nondecreasing in y
and then we must show ¢* is nonincreasing in (1, ...,#, _1) for #, fixed. First,
let ¢o,...,t;, be fixed and let ¢; decrease. Note from (5.3), since all A; > 0, y;
increases and no other y; is effected. Hence ¢* is nonincreasing in ¢;. Similarly
treat the other¢;,i=2,...,k — 1.

5.4. Change point problems. Several change point problems have their null
hypotheses and alternative hypotheses contained in null and alternative hy-
potheses, respectively, that we study. For example, one change point problem
tests homogeneity H: 0; = --- = 6, vs. K/H, where K: 01 = - = 0, < Opp 41 =

- = @ for some m = 1,2,...,k — 1. Such an alternative is contained in the
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alternative that natural parameters are nondecreasing and so tests which are
unbiased for the larger problem are unbiased for the smaller problem.

Another change point problem model is to test that the points (z;, 6;) lie on a
straight line vs. the alternative that instead, for some choice of m =2,... k-1,
this is true of the (z;, §;) with { < k and also for the points (z;, 6;),i > h, but where
the two slopes can be different. See, for example, Kim and Siegmund (1989),
Miao (1988) and Loader (1992). A one-sided change point problem is one where
the slope of the second line is larger (smaller) than the slope of the first line.
As such, the null hypothesis is equivalent to our null hypothesis and the alter-
native is contained in our alternative. Whereas we do not necessarily advocate
generating a procedure that is designed to be good for our broader hypotheses
(when the smaller hypotheses are of interest), it follows nevertheless that if the
test for the smaller hypotheses does not satisfy the conditions of Theorem 3.1
it will be inadmissible. If it does satisfy the conditions of Theorem 4.1 it will be
unbiased.

5.5. Normal case. When X; are normally distributed with known common
variance, the results of this paper apply. However because the normal distri-
bution has special properties, more extensive results are obtainable even in
the case where the common variance is unknown. The methods for the normal
case are decidedly different from those used here. The results for the normal
case appear in Cohen, Kemperman and Sackrowitz (1993). There, the lack of
fit problem is but one example of a general case that is treated. The general
case involves testing H: A;0 = 0 vs. K/H, where K: A;0 > 0, where the matrix
A, is such that (A;A})~! = G=! > 0. For the general case, in addition to a re-
sult like Theorem 4.1, other sufficient conditions for a test to be unbiased are
given. It is sometimes possible to verify one set of sufficient conditions and not
another set.

5.6. Examples. For all the problems mentioned the conditional likelihood
ratio test with constant conditional size function qualifies as an unbiased test
which lies in C. To see this, refer to (3.2). Since under H, the conditional dis-
tribution is parameter free, we easily recognize from (3.2) that the conditional
likelihood ratio is nondecreasing in y® for fixed y@. From Birnbaum (1955) it
follows that the acceptance sections are convex as well.

Many other examples of unbiased tests which lie in € can be offered. Suppose
~ is a (k — r) vector whose elements are nonnegative. Let X,(y®) be critical
values such that

(5.4) P{'y'Y(l) > fKa(y(Q))} =a.

Then tests which reject when v'Y®? > X,(y?) are unbiased and lie in €. (In
the discrete case randomization at extreme points may be required.)
Still another unbiased test in C is one which rejects when

max(Yl,Yz, AN 7Yk—r) > JCa(y(2)).
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APPENDIX

PROOF OF LEMMA 4.6. Inlight of Lemma 4.5, the density of [(Y1,Yn) | Vi + 1,
..., Y, _g] is the same as [(Y1,Y,,)| Yin+1, Yim+2]. The density of this random
vector is obtained from

m+2

LI 2i(rimy = oy + )y 1+ 1135 2)
Jj=1

(y; = 0if j < 0), by integrating out the variables ys, ¥3,...,¥m - 1. We can set
aside the factor A1(r1y1)hm +2(Tm+2Ym+2 — (Fma1 + Tma2)Ym+1 + 'm+1Ym) since
this factor has no influence on the desired TP, property.

Now consider the function

(A1) f(Ym —2:Ym —1,Ym) =hm(rmym _(rm—1+rm)ym—1+rm—lym—2)
' Xhm+1(rm+lym+1—(rm+rm+l)ym +rmym—1)

and recursively define

f}(yj—%yj—l;ym)
(A.2)
= /hj(rjyj — (i1 +r)yi—1+ 11— 2) 10— 1,3, ym) dyj,

J=m—-1m—2,...,2. We want to show that f5(yo,y1,¥m) = fo( ¥1,¥m) is a
TP, function.

Define 5, +1 = 1+ ry +1/7m, and further recursively

A.3) G =1+ (ry/ri-1) (1 - (1/B+1)),

J=mm—1,..,2 (Thus §; > 1; it would be natural to let S,.2 = 00.)
In particular,

Bm =1+ [(rmrm+l)/rm—1(rm+rm+1)]
= [(rm+rm—1)(rm+rm+l)—r,2n]/rm—l(rm+rm+l)-

Further, let

pm+2=1 and pj=pj+1/ﬂj, j=m+1,...,2.
Thus, .
pi= 1/ﬂjﬂj+1 - BB +1-

In particular, p,, +1 = 1/Bn+1 = m/(Fm +7m + 1). We will work with the quantities

(Ad) Vi=Bi¥j-1—Yj-2  Wi=Ym—pYi-2
J=2,...,m;vg = Poy1;We =Y.
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Note that since p;,1 = p;53;,
(A.5) Wj+1 = W; — pjv;.
Now in (A.1) we make a change of variable in integration by letting
¥i=&+yi-1/Bj+1.
Then, using (A.3) and (A.4), we see that
riyi—(rj_1+r)yj—1+1r_1yj-2
=r - [rj—l +7j— (rj/ﬂj+1)]yj_1 +Tj_1j-2
=ré—ri-1lByj-1-yj-2l =r —rj_1v;

Hence (A.2) leads to the recursion formula

-2, ¥i-1,9m) = /hj(rjf —Trj_1v))
(A.6)

X fi+1 (yj— LE+ (- 1/ﬂj+1),ym) dg.
Consider the TP, function
A 25,0, w) = hp, (rmw [+ rm)/ﬁm]v)
X hm+l(rm+1ym+l + (rm/ﬂm)v —(rm + rm+1)w)-
It follows from (A.1) and (A.6) that
(A.8) fn(Ym —2,Ym — 1,9m) = EmOm, Wn).
Namely,

'mWm — [(rm—l"'rm)/ﬁm]vm
=Im(Ym — PmYm—2) — [(rm—l"'rm)/ﬂm]ﬂmym—l —Ym-2
=Tm¥m — T 1+ Tm)Ym—1+Tm—1Ym -2

and further,
(rm/,gm)vm ~ (P + T+ W

= (rm/ﬂm)(ﬁmym—l —Ym-2) — T + T s D) Ym — PmYm)
= (I +Tm+ DYm +TmYm - 1-

Here, we used the fact that

‘rmpm"'(rm—l"'rm)/ﬂm=(_rmpm+1+rm—l+rm)/,3m=rm—1
[see (A.3)] and

_(rmﬂm)+(rm+rm+l)pm = [‘rm+(rm+rm+1)Pm+1]/ﬁm =0.
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Next, apply (A.6) with j = m — 1. Here, from (A.8),
fm (ym —2,&+ (ym - 2/ﬁm) ’ym> = 8m(Bm&, wm).

Replacing y,, — 1 by € + (¥ — 2/Bm) causes vy, = BmYm — 1—Ym — 2 to be replaced by
Bm€ (and has no effect on w,, =¥, — pmYm — 2). In this way, (A.5) and (A.6) yield

frn-1¥m—-3Ym—-2Ym) = 8m—-1Un — 1, Wmn)
=8m-1Upm—1,Wm—1— Pm—1Vm—-1)
=g;kn— 1(Um— 1, Wm - 1)

Here, g,, 1 and g, _; are defined by

gm_1(v,w) = / B - 116 = - 20)8" (Bt w) dE

and
g;kn - l(va w) = 8m - l(v, w— va)~

Lemma 4.3 implies that g,, _1(v,w) is log concave in (v,w). Lemma 4.4 im-
plies that g,,, _ 1(v,w) is TP;. Hence Lemma 4.2 can be applied to establish that
g} _ 1, w) is TP,. This procedure can be continued to imply by induction that

i(yj— 2,5 —1,9m) = i), w;+1) = g} (vj, w)),
Jj=m,m—1,...,2 Hence g; and g} are recursively defined by

gi(v,w) = / hi(ri€ — 17— 1008} 1B 16, w0) dE

and
g w,w) =gj(v,w — pj+1v),

j=m-1m—-2,...,2. Sinceg}, is a TP, function, it follows that all the functions
gj and g7 are TP;. We conclude that

fo(y1,9m) = 83(v2, w2) = g5(B2y1,Ym)
is TP,. O
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