The Annals of Statistics
1994, Vol. 22, No. 4, 18711883

ASYMPTOTIC CONSISTENCY OF THE MAXIMUM LIKELIHOOD
ESTIMATE IN POSITRON EMISSION TOMOGRAPHY
AND APPLICATIONS!

By I-SHOU CHANG AND CHAO A. HsiUNG

National Central University and Academia Sinica

This paper indicates that a minor modification of the maximum likeli-
hood estimate of Vardi, Shepp and Kaufman can be regarded as a step in
the standard nonparametric MLE by the method of sieves and establishes
the asymptotic consistency for it. This method of sieves suggests that the
number of pixels needs to be in line with the number of detectors in order
to avoid poor image reconstructions. A simulation study is also presented to
support this suggestion.

1. Introduction. Positron emission tomography (PET) deals with the es-
timation of the amount and location of a radioactively labeled metabolite in
the organ under study on the basis of particle decays indirectly observed out-
side the body. When a positron is emitted from the metabolite introduced into
the organ, it annihilates with a nearby electron. The annihilation creates two
gamma ray photons that fly off the point of annihilation, at the speed of light,
in (nearly) opposite directions with a completely random orientation. The two
photons are then detected in coincidence by two of the many detectors mounted
on a ring, positioned around the body. Based on data collected this way, Vardi,
Shepp and Kaufman (1985) (henceforth VSK) proposed a mathematical model
and the statistical methodology needed for it.

The mathematical model of VSK assumes that the emission location follows a
spatial Poisson process. Assuming further that the spatial Poisson process has
a discrete intensity function, called emission density, of a certain form, VSK
studied the maximum likelihood estimation (MLE) of the emission density,
including the relevant EM algorithm.

In this paper we will indicate that a minor modification of the MLE approach
of VSK can be regarded as a step in the standard nonparametric MLE by the
method of sieves and establish the asymptotic consistency for it. In fact, the
asymptotic consistency is established when the number of detectors, pixels and
data counts go to oo satisfying certain relations among them. These relations
have practical implications. They suggest we design the experiment according
to these relations so as to avoid possibly poor image reconstruction.

This paper is organized as follows. Section 2 fixes the notation and describes
the statistical problem for positron emission tomography.
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Section 3 introduces the sieves so as to establish the asymptotic consistency
of the MLE of VSK. In particular, we give explicit relations among the number of
pixels, detectors and the emission intensity so that the asymptotic consistency
is valid. In Section 4 we will take these relations as a guide for better image
reconstruction. Our simulation study indicates that with a given number of
detectors and data counts, increasing the number of pixels produces better
images initially and poorer images afterwards.

There is a substantial literature on PET image reconstruction and related
statistical theory. We refer the reader to Jones and Silverman (1989), Johnstone
and Silverman (1990) and Silverman, Jones, Wilson and Nychka (1990) and the
references therein for some of the recent developments.

2. Preliminaries. This section fixes the notation, presents the basic facts
of the Radon transform needed in this paper and describes the relevant statis-
tical problem for PET.

2.1. Notation and the Radon transform. This subsection adapts some of the
notation and framework set in Johnstone and Silverman (1990) for the purpose
of a concise presentation. The reader is encouraged to consult Deans (1983),
Natterer (1986), Jones and Silverman (1989) and Johnstone and Silverman
(1990) for more details.

Let both B and D denote the closed unit disk in the plane (B is usually
referred to as the brain space and D the detector space). Define a mapping from
B’ = B x [0, 7) to R? by sending (xV,x®, 4) to (s, ¢, t) as follows:

s =[x cosyp + 2@ sinp|,

{ ¥, if x® cos ¢ + x®@ siny > 0,
(P =

2.1) .
1 +m, otherwise,

t = —xWsiny +x@ cos .

Figure 1 depicts this mapping.

Let D’ be the range of this mapping in R®. Consider a further mapping from
D’ to D by sending (s, ¢, t) to (scos p,ssinp). Denote by u the composition of
these two mappings, which is from B’ to D.

Let L2(B, mp) be the space of square-integrable functions on B with respect to
the measure mp = 7~ 1x Lebesgue measure. Let L2(D, mp) be that with respect
to the measure mp = 27~ 2(1 — s2)/2dsde. '

Let P be the linear operator from L%(B, mp) to L2(D, mp) defined by

Pf(s,0) = E(f(X) | XD cos p + XP sinp = 5),

with X = (X, X®@) distributed uniformly on B. Pis called the Radon transform.
In fact, if f is a density function relative to mp, then Pf = g is a density function
relative to mp and

1-s2
Loy [

(2.2) gls,p)=3

5 g 1_szf(scosw—tsin<,o,ssin<,o+tcos<,o)alt.
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2.2. The statistical problem. In a typical positron emission tomography
study, a detector ring surrounds the patient’s head. To simplify the discussion,
we will assume that the whole problem takes place in a plane and the detector
ring is positioned on the boundary of the unit disk B.

Let N(G) denote the number of positrons emitted in a region G C B during
the study. Then N(G) is a Poisson random variable with mean

2.3) EN(G):A( / fo(x®,x?) de>,
G

where f; is a density function relative to mp and A is a constant. We note that
fo and A represent respectively the relative concentration and the total amount
of the radioactively labeled metabolite in B. The density f; will be called the
emission density and A the emission rate in the study.

It is clear that every pair of detectors defines a specific subset C’' of B’ =
B x [0, 7). A point (xV, 22 ) € B’ is in C’ if the line passing through (x*,x®)
in direction v intersects this pair of detectors. This set C’ specifies in turn a
subset C of D, by the mapping u from B’ to D. We assume that the detector
space D is the disjoint union of sets Cy, ..., Cg with each C;, specified by a pair
of detectors.

Let C;, be a subset of D defined by a certain pair of detectors. We will denote by
N(C,) the number of photon pairs detected by this pair of detectors during the
study. It follows from VSK and (2.3) that N(C,),...,N(Ck) is a finite sequence
of independent Poisson random variables with mean

(2.4) EN(C,) = A / ), 0) dmp.
Cy

. The statistical problem is to estimate the emission density f; based on the data
2.5) {NCY),...,N(Cx)}.
We will denote by N(-) the spatial Poisson point process on D satisfying (2.4).
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3. Asymptotic consistency of the maximum likelihood estimate. In
this section we will establish the asymptotic consistency of the nonparametric
maximum likelihood estimation (MLE) by the method of sieves for the statis-
tical problem stated in Section 2.2; namely, to estimate the emission density
based on the data (2.5).

In order to simplify the mathematics and avoid the situation of estimating
infinitely many parameters in this statistical problem, VSK assumed that the
emission density is constant on each of the pixels artificially created in the
brain space B and discussed the existence and uniqueness of the MLE under
this assumption. We will see that the MLE approach of VSK can be regarded
as a nonparametric MLE by the method of sieves and as such its asymptotic
consistency could be expected. We refer the reader to Grenander (1981), Geman
and Hwang (1982) and McKeague (1986) and the references therein for general
discussions of the asymptotic consistency of the method of sieves.

The main result of this section says roughly that, with a relatively large
number of detectors, moderate number of pixels and large data counts, the
MLE of VSK will be close to the true emission density in the sense of (3.8).

3.1. Nonparametric MLE by the method of sieves. In this subsection we
will define the sieve and the entropy concept and present the likelihood to be
used in establishing the asymptotic consistency of a nonparametric MLE. The
sieve we use corresponds to the pixelization of VSK. Although there are other
possibilities [cf. Silverman, Jones, Wilson and Nychka (1990)], we will focus
only on this sieve for the sake of a concise presentation.

Let A be the set of all density functions, bounded by C, relative to the measure
mpg on the brain space B. For every positive m, let A,, = {f € A|f is constant
on every pixel specified by the lattice points (¢/m,l/m), and f > 7 /m}.

For f,h € A, we define

3.1 H(f,h) = / (Pf)log Ph)dmp,
D

where P is the Radon transform in (2.2). In fact, H is the ordinary formal entropy
for the Radon transform of densities on B.
Let f,, € A,, be chosen so that

(3.2) mli_inooH(fO’f’") = H(fy,fo),

where f denotes the true emission density. Let
(3.3) Wr = {f € An | H(fo,) < H(fo,fm) — 26},

where § > 0 is a constant.

In the rest of this subsection we will give the relevant likelihood and some
related concepts. We will consider a sequence of PET studies indexed by n =
1,2,....
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Let m(n) = {C%, ..., Ck,} be a partition of the detector space D defined by a

ring of identical equally spaced detectors. Let N, (-) be a spatial Poisson point
process on D satisfying

(3.4) EN,(C}) = A, / (Pfo)dmp.
c

To simplify the notation, we set

I(Cp.f) = (/CZ(Pf)de)

Hence the likelihood for Ny ) = (N.(C}), ..., Na(Ck,))) specified by f is

K(n)

(3.5) Lo(f) =[] Lnx(F),
k=1

where L, (f) satisfies
I(Ch.1)

logL, (f) =log n
(3.6) * I(Cr, 1)

+(9(Cp.1) - 9(CLA) ) A

N..(C7)

and

K(n) j(cn f)
logL,(f) = log 2k
25 e

Na(CR)-

Here we used the fact that S5 (3(CF, 1) — I(CE, A, = (Jp(P)dmp — [5,(Pf)
de)An =0.
Let m(n) be a sequence of increasing integers with lim, _, ., m(n) = co. Let

3.7 O = {f € Ami | Ln(F) = L (Amiw) }

be the set of all maximum likelihood estimators in A,,,), given the data N,(,). In
(3.7) we adapted the convention that for a real-valued function /# and a subset
W of its domain, A(W) denotes the sup of & over W. This convention is used
throughout this section.

According to the arguments in VSK, €7, is not empty. We note that if we

did not require f > 7/m in the definition of A, ©7,,, would be precisely the
MLE of VSK.

3.2. Asymptotic consistency. Suppose K(n), the number of detector tubes,
goes to oo fast enough, m(n) goes to co slowly enough and A, goes to co as
described in (3.11), (3.12), (3.14) and (3.15). Then we have the following result.
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THEOREM 3.1.

(3.8) m sup / Pf — Pfoldmp =0 a.e.
T ofeer

m(n)

For the proof of Theorem 3.1, we need the following lemma.

LEMMA 3.1. For every 6 > 0,

(3.9) P(OF, iy N Winiy #D 8.0.) =

ProoFr. Observe that

?(@Z(n) n Wm(n) 71‘ ¢)

< fP( sup L,(f)>L, (fm(n)))

fe Wm(n)

SfP< sup (Zlog (C’“’f)Nn(C"))

FEWnin I(C},1)

> Z log ok lm®)) Ck’f’"("))N (e ))

Jj(ce, 1)

(3.10)
<P ( Sup 7, Z log ———(;f)hNn (Cr) = 0)

Wm(,,) (Cn I fm(n))

Ck y Wm(n))
< E %) >0
? (ﬂn 10 CZ , f m(n) ICo o) C -

(Ck, m(n)
<Eex lo
P{ﬂn Z EICT ) (Cz,fm(n)
= H eJ(C" )fo)Anan,

k

where Q. = exp{nn log [I(C}, Wy(n))/I(C}, fnn))]} — 1 and m, > 0is any constant.
Assume now that K(n) and m(n) go to oo at rates such that

K(n)

(3.11) sup | > (log|Cy| '(CR.1))I(Chfo) — H(fo, )| = o)
EWnm | =1

and
K(n)

(3.12) E(Iog|cz| I(CFs Fnw) ) 3(Ch fo) = H (fo foniw) | = 0(D),
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where |C}| = mp(C}).
Letf € Wym. Then using (3.11) and (3.12), for n large,

_J(.Ci’):)_ n
Z (log J(Cz,fm(n)) ) J( k’fO)

k

§
(3.13) < (H(fo,f) —H(fo,fmm) + §>
36
< 3
Assume further that
2
I(CR, Winw)
(8.14) sup( log A2 ) =0(1),
Tl kp( & j(CZ,fm(n))

(3.15) Ze“‘m""" < 00.

n

Then, using (3.10), (3.13), (3.14) and (3.15), we have, for suitably large no,

oo

> (O N Wi #9)

n=ng
I(C%, W)

<ZH9XP{ (Ck,fo) A <ﬂnlogm

2
‘J(CZ;Wm(n))
+12 [ 1og ke mtr))
K ( g J(Cz;fm(n))
Wm(n))

I(Ch
SZGXP{ nnnzj Ci.fo) (logm
I, W) \*
n | log - 57—
T (og I(C}, frnimy) ) )}
<Zexp{ n77n< 326 g)}

= Z exp{—Annnd}
n

(3.16)

< 00.

Thus Lemma 3.1 follows from (3.16) and the Borel-Cantelli lemma. O
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PROOF oF THEOREM 3.1. Using Lemma 3.1 and a standard argument [cf.
Geman and Hwang (1982), pages 405 and 406], we can show

(3.17) lim sup \H(fo, ) —H(fo,fo)] =0 a.e.

m(n)

Therefore, Theorem 3.1 follows from (3.17) and the Kullback—Csiszar—
Kemperman inequality [cf. Devroye (1987), page 10], which says, in particu-
lar,

2
(/D |Pf—Pfo|de> < 2(H(fo,fo) — H(fo,f)).

This completes the proof. O

3.3. Anexplicit sufficient condition. The asymptotic consistency of the MLE
was established under the condition (3.11), (3.12), (3.14) and (3.15). This is a
general condition. There are many simpler sufficient conditions for which this
general condition holds. We will give one such useful sufficient condition in this
subsection and use it as a guide in image reconstruction in Section 4.

We note that item (i) in Theorem 3.2 is a relation between the number of
pixels and the number of detectors and item (ii) is about the emission rates. If
we choose m(n) = n, then (ii) says that the emission rate needs to be as fast
as n(logn)®. We would like to remark that condition (3.14) and (3.15) depends
on the sieve we use; in particular, the condition that 7/m < f < Cfor f € A,
is crucial.

THEOREM 3.2. (i) If

m2(n)log m(n) =0

im dn)
then (3.11) and (3.12) are satisfied, where d(n) is the number of detectors. (ii) If
An > n(logm(n))3, then (3.14) and (3.15) are satisfied with the choice of 1,

= (logm(n))~3 in (3.14).

PRrROOF. The proof for (ii) is straightforward, recognizing that 7m(n)~! <

f < C for every f € Apmy-
We will now start to prove (i). Let

Ry = {(3,9) eD |S > sm(n)}a

3
Re = {<s,e> € Dmax{ol|s - 7|, 10~ xl.Jo - -2-7rl,|9—27r|} < em<n>},

where both s,,(,) and 6,,,) are constants to be specified later. Let I be the collec-
tion of the C}, intersecting R;, II be that intersecting R, but not in I and III be
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the rest. Observe that
K(n)

Z(log |C}n| ( Z’f)>3( Z,fo)—H(fo,f)

k=
1
3.18 = P log —— Pfd —log Pf|d
(3.18) ;/C; fo)[0g|cz|/cz( £)dmp — log f] mp

= St + Sp + S,

where S1,Sp and Sy denote, respectively, the sum of the integrals in (3.18)
with C? in I, IT and III. Note that we shall consider only f in A, for (3.18).
A careful examination of the geometry shows that each C} is contained in a

set of the form
or 27
{(S,H)GDIIS Sol > dn )a |9 0| =dn )}

for some (sg, 8p). Thus we can bound S; as follows.
Let

= {(s,G)EDls > Smn) — 32(—2—)}

Then, with a little calculation,

1S1| < 2C - logm(n) - mp(R})

(3.19) 32

16 ~ 32, (27

< — -C - (logm(n)) ((1 — Smm)" + (E(,T)) )
Similarly, let
T
={(s,0>eD|max{|9|, \0—5}%9—”!’ 4 }
< om(n) + d(n )}

Then

ISu| < 2C - (logm(n)) - mp(Rp)
(3.20)

= 10C - (logm(n)) - (m(")+d( )>

We recall that C is a constant depending only on the sup-norm of f;.
Next we are going to find a bound for Syys.
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Suppose (s1, ), (s2,0) € (R URy), |s; — s3| < s. Then the difference in length
of the two line segments (s, 6) and (sg, ) in each pixel specified by the lattice
points (k/m,l/m) is bounded by

1
(3.21) (S A (m)> (tan Hm(n) + cot Gm(n)) .

Suppose (s,61),(s,02) € (R; URy),[0; — 6] < 6 < 2sin"1,/1 - s2 Then

m(n)*
the line segments (s, #;) and (s, f3) meet in the unit disk and their difference in

length in each pixel is bounded by

(3.22) ((2 sin 8) A (—-1—>> (tan Omn) + cot em(n)) .

m(n)

Both (3.21) and (3.22) can be shown by examining the relative positions of the
line segments in the pixels. We omit the details.
With (3.21), we get, for large n,

[log(Pf)(s1,0) — log(Pf sz, 0)|

(Pf)sg,0)

< | BF)s1,6) — (Pf)s3, 0) ‘
- (Pf)(s2,0)

) }log (PF)s1,0)

(3.23)

1
< C-m?n)- (Isl —sg| A m) . (tanﬂm(n) + cotﬁm(n)),

for some constant C.
Similarly, we have

[log(Pf)(s, 61) — log(Pf)(s, Bs)|

(3.24)

. 1
<C-m2n)- ((2 sin @) A m) - (tan Oy, + cot Omn))-

Let spn) = 1 — (logm(n))~1, 0,,(,) = 1/(log m(n))?. Then it follows from (3.19),
(3.20), (3.23) and (3.24) that (3.18) goes to 0 as n goes to co uniformly for f
€ Apn)- This completes the proof. O

4. Simulation results. Our results in Section 3.3 show that the MLE im-
age reconstruction gets close to the true emission density when the number of
data counts, pixels and detectors becomes large in a certain way. In particular,
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F16. 2. ET phantom used in the experiments in Section 4.

it is desired that with a given number of detectors and number of data counts,
we sacrifice little in resolution when reconstructing the image with bigger pix-
els. It seems that this theoretical conclusion is also supported by the simulation
study presented in the following discussion.

We follow Shepp and Vardi (1982) very closely to do the simulations. In fact,
we essentially use their computer program. We recall that, because the exact
MLE is difficult to calculate, Shepp and Vardi (1982) provided an approximation
by the EM algorithm, which forms part of their computer program.

In our simulation data counts are generated from a spatial Poisson process
with emission density f; indicated in Figure 2. The emission density fj in each
region of Figure 2 is constant and is proportional to the number written in
that region. The precise definition of f; is as follows. Let B(a,r) denote the
disk centered at a with radius r. Then fo =cC- (Z.OIB((Oyo)’ 2 + 1.5[3((.3, 4,2+
1.8Ipo, .m,.1) + 1.8Ip( 2, —.5),.1)+ 1. LUp(- 4, .4), 15)+ L.Up (4, —.5),.05) + 0-5] rest area} )s
where c is a constant such that [ [,,fo =

Let f,, d,b,e(+) denote the approx1mate maximum likelihood estimate of f;
obtained by the EM algorithm, where n is the number of data counts, d is the
number of detectors, b is the number of pixels on each row or column and e is
the number of iterations in using the EM algorithm.

The integrated square error of the reconstructed image [ [, |folx,y) —

f,, d,b,e(x, ¥)|? dx dy for this simulated data is presented in Table 1, which is
computed by the subroutine DT20DQ(DTWODQ) in IMSL Math/Library with
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TABLE 1
Integrated square errors over the unit disk D for different values of (n,d, b, e) with e = 32

d =128
b=16 b =32 b=64 b =128 b = 256
n =108 0.03892 0.04206 0.04529 0.04804 0.04954
n=2x 105 0.02880 0.02813 0.02892 0.03006 0.03072
n=3x 105 0.02492 0.02264 0.02228 0.02294 0.02332
n=4x105 0.02360 0.02106 0.02043 0.02081 0.02106
n=>5x 105 0.02230 0.01912 0.01833 0.01855 0.01872
n=6x 10% 0.02189 0.01844 0.01743 0.01752 0.01763
n=17x 108 0.02109 0.01724 0.01611 0.01611 0.01617
n=28x 108 0.02067 0.01629 0.01510 0.01507 0.01511
n=9x 10° 0.02040 0.01615 0.01496 0.01487 0.01489
n =108 0.02037 0.01590 0.01458 0.01449 0.01447

d = 256
b=16 b =32 b=64 b =128 b = 256
n =105 0.04291 0.06798 0.09203 0.10655 0.11497
n=2x 108 0.02991 0.03884 0.04837 0.05461 0.05815
n=3x 10° 0.02509 0.03039 0.03560 0.03944 0.04173
n=4x108 0.02403 0.02708 0.03023 . 0.03294 0.03459
n=5x 108 0.02207 0.02184 0.02410 0.02608 0.02729
n=6x 108 0.02167 0.02151 0.02263 0.02414 0.02512
n="1Tx108 0.02078 0.01954 0.02029 0.02149 0.02231
n=8x 108 0.02024 0.01758 0.01812 0.01904 0.01970
n=9x 10° 0.01986 0.01700 0.01695 0.01762 0.01816
n =108 0.02007 0.01657 0.01592 0.01645 0.01688

IRULE = 2.

It is clear from Table 1 that with given detectors and data counts, increasing
the number of pixels produces better reconstructed images initially and poorer
images eventually. For example, with d = 128, n = 5 x 105, the reconstructed
image giving the least integrated square error is obtained with b = 64.
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