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It is a pleasure to add my congratulations to Luke Tierney on his
important paper, which not only provides a sound theoretical basis for the use
of Markov chain Monte Carlo (MCMC) methods in Bayesian inference but also
gives valuable practical guidance. It is noteworthy that versions of the paper
have been available for a couple of years now and have already proved to be
highly influential. Subsequent developments, often involving the author him-
self, have been extremely rapid and I hope he will take the opportunity to tell
us something about these in his rejoinder. For example, regeneration methods,
which are only briefly discussed in the paper, have been the subject of con-
siderable progress [e.g., Mykland, Tierney and Yu (1995)]. In the very recent
work of Geyer and Thompson (1993), they are used cleverly on a succession
of chains, ranging from “hot” (e.g., independence) to “cold” (the distribution of
interest). The idea is that swaps into the hot chain, which can be sampled ex-
actly and hence forgetfully, provide the regeneration points. These authors also
show how to adapt their strategy to a single chain by subsampling from a ran-
domly varying distribution between regenerations, so that no form of burn-in
is required.

Markov random fields and Gibbs. I particularly welcome Tierney’s
survey of a wide variety of different MCMC algorithms, including hybrid im-
plementations to which I shall return later. It is easy to be seduced into using
the Gibbs sampler as one’s only Bayesian inference machine, as I know only
too well in spatial applications [Besag (1989), Besag and Mollié (1989), Besag
and York (1989) and Besag, York and Mollié (1991)]. In fact, Gibbs has extra
allure in spatial statistics. The reason is that a standard means of obtaining
a distribution 7 for a random vector X = (Xj,..., X,), where each X; is asso-
ciated with a fixed spatial location (or site) , is in terms of a Markov random
field formulation [Besag (1974)]. This requires that one examines each site in
turn and specifies the “full” conditional distribution n(x; |x_;) there; these con-
ditionals are called local characteristics in spatial statistics. Such a conditional
probability approach to spatial interaction was advocated by Bartlett (1967),
as part of his presidential address to the Royal Statistical Society. There are
two immediate questions. Do the local characteristics determine 7 and what
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conditions must they satisfy in order to be self-consistent? The first of these is
answered by the simple but rather unusual Brook (1964) expansion [see also
Besag (1974)] which is restated below under slightly relaxed conditions.

LemMA 0.1. Let x = {x: n(x) > 0}. If, for each x € x and some fixed x° € x,
there exists a finite sequence x°,x1,...,x™ of states in x, with x™ = x and suc-
cessive states differing only in a single component, then the local characteristics
m(x;|x_;), L =1,...,n, determine .

ProoF. Given such a sequence,

m(x) _ m(xt) w(*?)  w(x™)
m(x0)  w(0) w)  w(xmo1)]

in which all terms are positive and the quotients on the r.h.s. are determined
by the local characteristics, since

m(x’)/m(x) = m () |x_ ;) /(2 | 2—;)
when x' differs from x only in its ith coordinate x;. O

The original version of the lemma assumed positivity of r; that is, that x = x1
X -+ X Xn, Where ¥; is the minimal state space of X;. The above trivial relaxation
suffices in some applications where there are deterministic exclusions between
the values taken by the X;’s. In particular, it covers the heredity condition needed
for (spatial) Markov point processes [Ripley and Kelly (1977) and Baddeley and
Mpgller (1989)].

The lemma identifies the close connection between Markov random field
formulations and the Gibbs sampler, through the role of the local characteris-
tics. It also identifies the conditions under which the random component Gibbs
sampler is ergodic. That is, the existence of the finite sequences ensures ir-
reducibility and hence ergodicity, since Gibbs cannot be periodic. The lemma
applies in this way to any componentwise Gibbs sampler under positivity and
can be easily extended to block Gibbs, though the latter is rarely practicable
unless there are Gaussian components or trivially when some components are
conditionally independent.

The second question, which concerns self-consistency conditions on the local
characteristics, is addressed by the Hammersley—Clifford theorem of 1971, see,
for example, Besag (1974) and, for the original proof and historical discussion,
Clifford (1990). The Brook expansion gives immediate insight. For example,
under positivity, if x and x° differ on m coordinate values, there are m! length m
factorizations of m(x)/m(x?), all apparently different but all of which must give
the same numerical result. Equivalently, positivity implies that, in a system-
atic Gibbs sampler, the updates can be scheduled in an arbitrary order. Fortu-
nately, the question of constraints is of less interest in nonspatial applications,
because one is unlikely to adopt the above noncausal conditional probability
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approach to the specification of 7. Nevertheless, it can be relevant in sensitiv-
ity analysis, where the effect of small changes in the local characteristics may
be under review.

As regards the pedigree of the Gibbs sampler, mentioned by Tierney, this
goes back at least to the heat bath method in Creutz (1979) and is implicit in
Ripley (1979). It is equivalent to Barker’s method when the variables are binary
but was not restricted to countable state spaces, at least in spatial applications.
The use of Gibbs as a Bayesian inference machine dates from Grenander (1983),
where it is called stochastic relaxation, as well as Geman and Geman (1984).
Of course, these are from the same stable but the former is less well known
and merits a much wider audience because it is very wide ranging (and con-
tains APL programs, a particular attraction to me!). For example, continuous
state spaces are approached via stochastic partial differential equations so as
to avoid the awkwardness of sampling from nonstandard, nonfinite, univari-
ate distributions. This idea has been very fruitful; see, for example, Grenander
and Miller (1994), read to the Royal Statistical Society in October 1993, and
the references therein. Incidentally, in Grenander (1983), page 71, one finds
the maxim, “PATTERN ANALYSIS = PATTERN SYNTHESIS,” which really
encapsulates all the aims of MCMC in Bayesian inference.

It may be of interest to mention the existence of continuous-time analogues
of the Gibbs sampler. For binary variables, see Besag (1972) and Preston (1973);
for integer-valued and Gaussian variables, Besag (1974, 1977); and, for a more
comprehensive treatment, Kelly (1979). The discrete-state processes can be
simulated in the usual way for continuous-time Markov chains [e.g., Ripley
(1987), page 105]. Indeed, thinking about the simulations recently led me to
construct a “nonstick” discrete-time Gibbs sampler, designed to exit at once
from any particular named states. This may be of some use in very sticky finite-
state applications.

So much for Gibbs. As a former addict, I strongly support Tierney in urging us
also to consider alternatives. For example, in continuous-parameter problems,
Metropolis is usually far easier to program from scratch, the code can easily be
amended to cater to sensitivity analysis and the algorithm is often more efficient
in terms of CPU time for the same accuracy, if only because it runs very much
faster per cycle. Of course, Gibbs is important but not to the exclusion of other
algorithms, as some of the literature seems to imply. Readers who still believe
that Gibbs is inherently more efficient than other single component algorithms
might refer to Frigessi, di Stefano, Hwang and Sheu (1993).

Some practical issues, exemplified by logistic regression. The re-
mainder of this contribution focuses on particular practical issues relevant to
MCMC in Bayesian inference. It is influenced by joint projects with Peter Green,
David Higdon and Kerrie Mengersen, though their views may be somewhat dif-
ferent from my own. Several general points can be conveniently illustrated by
reference to a two-factor logistic regression model with the inclusion of extra-
binomial variation.

Let m,. denote the number of individuals in cell (r, ¢) of a two-way table with
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R rows and C columns and p,. the corresponding probability that an individual
“responds.” Assume that the observed number of respondents y,. in cell (r,c)
has a bin(m,, p,.) distribution, with independence from cell to cell, and suppose
Prc 18 modeled by

ln{prc/(l _prc)} =+ 0r + P + 2re,

where z,. represents unknown covariates, in addition to the fixed effects u, 6,
and ¢.. Two contrasting situations in which this formulation has been used
are (i) in combining information (meta analysis) from 28 case-control and 3
cohort studies that deal with the effect on wives of ETS (environmental tobacco
smoke) and (ii) in reanalyzing the prostate cancer example in Holford (1983)
and Breslow (1984) from a Bayesian perspective. In (i), R = 31 and C = 2,
with ¢ = 1 for those women who have lung cancer and ¢ = 2 otherwise; p,. is
the corresponding probability of exposure to a husband who smokes. Strictly,
the binomial model is inapplicable to the cohort studies because the m,. are
not fixed but, so long as the probability that a wife falls in category (r,c) is
independent of p,., the contribution to the posterior is identical. In (ii), R = 7
and C = 13, with r referring to age group and c to cohort. Then y,. is the number
of deaths in cell (r, ¢) but the table is incomplete, with only 49 observed cells out
of the 91, because the original classification was 7 age groups x7 periods. In
(i), the rows and columns have no ordering but, in (ii), both relate to successive
five-year intervals.

Thus, in (i), our prior view might be that u, 6, ¢ and z are like independent
random samples from U(R), N(0, x~1), N(0, \~1) and N(0, v~ 1) distributions, re-
spectively, where «, A and v have specific independent (proper) gamma distribu-
tions (we use diffuse negative exponentials as our basic choice). Since the local
characteristics of the posterior distribution are all log-concave, one can imple-
ment a Gibbs sampler based on the faster, derivative-free version of ARS [Gilks
(1992)]. An alternative, hybrid solution is to use a componentwise Metropolis
algorithm for the u, 6, ¢ and z updates, with uniform or Gaussian proposals cen-
tered on the current values and scaled to give acceptance probabilities in the
range 30 to 65%, say. Note there is no intention in such proposals to approxi-
mate the full conditionals or to attain high acceptance rates at the expense of
mobility. Within the four blocks (u, &, A, ), 8, ¢ and z, components are condition-
ally independent and can be updated simultaneously. Reversibility of either the
ARS or Metropolis/Gibbs algorithm is achieved at negligible cost by updating
blocks in a random order within each cycle. This has the advantage that the
Kipnis—Varadhan central limit theorem and initial sequence estimators of the
accuracy of the Monte Carlo [Geyer (1993] are directly applicable.

In comparing the two algorithms, ARS converges faster and is more effi-
cient in estimation on a cycle-by-cycle basis but, for the same amount of CPU
time, the tables are turned since Metropolis/Gibbs is about 20 times faster per
cycle. One should not overemphasize computational efficiency but, when com-
parisons are made, they should be on the correct basis and not merely in terms
of conventional statistical efficiency. This is exemplified again in the Bayesian
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(spatial) analysis of agricultural field experiments, where the basic formulation
includes blocks with multivariate Gaussian conditionals. Block Gibbs can be
implemented via Cholesky decompositions and this speeds up convergence but
there is much less advantage per cycle thereafter, so that, even though there is
strong dependence between the variables, it seems preferable to switch back to
the simpler, faster algorithm during the collection phase. Incidentally, in Besag
and Higdon (1993), we carry out non-Gaussian sensitivity analysis in this type
of application, via importance sampling and Metropolis reruns, but also propose
replacing the Gaussian assumptions in the basic model by ¢-distributions with
variable degrees of freedom g forming an additional component in the MCMC.
This has now been implemented, though with mildly truncated #’s (cf. the final
paragraph of this contribution) and g an integer in the range ¢ = 1 (almost
Cauchy) to ¢ = 100 (almost Gaussian).

A common feature, especially in Bayesian formulations, is multimodality
and this perhaps poses the most severe challenge to successful MCMC. The
only reliable means of determining the probability in each mode is to devise
an algorithm that is capable of jumping freely between modes during a sin-
gle run. A useful preliminary in continuous parameter models is to locate the
modes, first crudely and then accurately by hill-climbing. Reparameterization
may reduce the multimodality to single variables but can be difficult to im-
plement in high-dimensional problems. Auxiliary variable and auxiliary pro-
cess techniques have met with some success [Geyer (1991), Besag and Green
(1993), Higdon (1993) and Geyer and Thompson (1993)] and promise consid-
erably more, though the problems are often more difficult than those faced by
physicists, because the data destroy any symmetries in the prior.

However, sometimes there is a very simple solution. Thus, it is apparent that,
in the above logistic formulation, there is confounding between the fixed and
random effects. This is quite apart from the near nonidentifiability in the fixed
effects, which can be easily removed by adding constraints (see below). In par-
ticular, if one examines the three ETS cohort studies on their own, one finds two
significant modes in which the between-study variability is absorbed either by
0 or by z. Standard single-component algorithms swap modes extremely rarely,
so that run lengths of the order of millions of cycles are required for reliable
results. The solution here is to end each cycle with a deterministic Metropolis
proposal into the other mode. Such a proposal is defined by the transformation,
u o= w0l =z, = ezl = 20e — 2p. + 0,6 = v, N = A\ V' = k, where dots
denote means. With this strategy, swaps occur every 14 cycles on average and
mixing is very rapid. For all 31 studies, the hybrid algorithm makes no swaps
(except possibly during early burn-in) and one may reasonably conclude that
only one mode in the posterior contains nonnegligible probability. Of course,
one cannot make such statements merely by comparing densities, though this
has been suggested. In one of the agricultural examples, there is an artificial,
prior-induced mode whose density is around 5% times greater than that in
the likelihood-induced mode, yet there is strong evidence that the former is
irrelevant [Besag and Green (1993)].

Incidentally, in trying to deal with severe multimodality in some spatial ap-
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plications, multigrid MCMC seems promising, because it enables one to process,
for example, images at different scales. In a rather general setting, one can de-
sign algorithms which make time-reversible transitions with respect to some
of the variables, losing track of others, which are then gradually reinstated by
Gibbs steps. The multigrid version of the auxiliary variable Swendsen—Wang
algorithm [Besag and Green (1993)] is a special case of this.

Turning now to the prostate cancer data, the above priors for § and ¢ make
little sense. An alternative for 6, say, borrowed from spatial applications, is to
choose a member of the pairwise difference family of priors.

(0] k) exp{—n Z (6, — 03)}.

r~s

Here « is a scale parameter, the summation is over “neighboring sites” r ~ s
and ¢ is an even function, not necessarily convex. For various choices, see
Geman and McClure (1985, 1987), Besag (1986, 1989), Green (1990), Geman
and Reynolds (1992) and Geman, McClure and Geman (1992). For example,
Besag (1989) discusses the two most obvious, ¥(u) = u2 and ¥(u) = |u| foru € R,
and Green (1990) uses a log cosh prior that ranges between these two extremes.
Such priors are just improper but informative. In the present context, we can
take r and s to be neighbors if they correspond to successive age groups. Then
(0 | k) has independent increments 6, — 6, , ; with distribution defined by . The
mean level of such a random walk floats arbitrarily and is its sole impropriety.
Of course, ¢ can be treated similarly. Only the L2 version has been implemented
on the prostate cancer data but could easily be replaced by any other choice.
Note that the roles of the scale parameters in the “constants” of proportionality
must not be forgotten when updating « and )\; these of course depend on the
choice of ¢’s.

A further embellishment, as yet untried in this context, is to apply a two-
dimensional prior for z. Thus, one can define cells (r, ¢) and (s, d) to be neighbors
ifr =sand |c—d| = 1orifc = d and |r—s| = 1. There is no longer an independent
increments interpretation. Lateral asymmetry can be incorporated by allowing
separate scale parameters for within-row and within-column differences. The
theory for the Gaussian case is well-developed [Besag and Kooperberg (1993)],
including allowance for edge effects. For a truly spatial agricultural application,
see Besag and Higdon (1993).

In any factorial structure, with or without interactions, one may prefer a
constrained formulation. Here the obvious choice is 6. = 0 = ¢., whether for the
exchangeable or the “spatial” nonexchangeable priors. Then single-component
updating is no longer relevant for # and ¢ but one can easily implement a
Metropolis algorithm with centered block proposals and suitably scaled-down
variances. The resulting Markov chain is ergodic on the reduced state space,
provided the initial values satisfy the constraints. In the present application,
the unconstrained and constrained formulations are equivalent and are almost
so in higher-order factorials with interaction terms.

As many authors have noted, MCMC is particularly well suited to problems
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with missing data or hidden variables. Thus, in the prostate cancer example, one
can either adopt a design-matrix approach to the complete 7 x 7 table or view
the 7 x 13 table as being incomplete. In the latter case, one simple procedure
is to define the number at risk m,, to be unity in each missing cell and to
generate corresponding independent Bernoulli y,.’s on each cycle, according to
the current values of the p,.’s; otherwise, the MCMC is carried out as if the table
were complete. Of course, the end results are equivalent, whichever method is
used, and automatically cater to the lack of balance in the numbers at risk in
each observed cell and the numbers of cohorts observed in each age group. I still
find it remarkable when the appropriate pattern of variability in the posterior
pops out effortlessly at the end of a run. Again, in the analysis of agricultural
field experiments, any number of missing yields can be included rigorously by
the addition of a single line of APL code.

My final remark ties in with Tierney’s warnings in subsection 4.4 about nu-
merical stability and I would appreciate any further enlightenment. My concern
is in using Hastings algorithms (including Gibbs) to calculate posterior means
and especially standard deviations when both the local characteristics and the
proposal distributions have unbounded support. Particularly in very long runs,
decisions will be made in the extreme tails of distributions where neither the
pseudo-random deviates nor the floating-point calculations are reliable. The use
of proposal distributions with bounded support may provide some protection but
otherwise it may be fortunate that Bayesian inference is more concerned with
probabilities, which can bé estimated accurately, than with moments.
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