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0. Introduction. In my comments I discuss two topics, the basic conver-
gence theorem (Theorem 1) and the importance-weighted Gibbs sampler, in
particular, the question of assessing the variability of estimates formed by this
method.
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1. The basic convergence theorem. Theorem 1 of the paper may be

stated as follows. If the chain has an invariant probability distribution =, is
aperiodic, and has the property that

for every set B with n(B) > 0, the probability that the chain eventually

(1.1 enters B is positive, no matter what is the starting point of the chain,
then
(1.2) : |1P"(x, -) —=w(-)|| = 0 for [«]-almost all x.

This theorem contrasts with the most standard results on the asymptotic behav-
ior of the n-step transition probabilities for general state space Markov chains
in that the standard results are stated under the assumption that there exists
a recurrent set A (recall that a set A is recurrent if from any starting point x,
the probability that the chain eventually enters A is 1). See, for example, the
main result in the classical paper by Athreya and Ney (1978) or the main result
in the treatment of asymptotics in the textbook by Durrett (1991) (cf. Theorem
6.8). Now verifying that a set is recurrent is extremely difficult in the problems
that arise in Bayesian analysis (at least in my experience). On the other hand,
in Theorem 1 in Tierney’s paper, the basic assumption (1.1) requires only the
verification that certain probabilities are merely positive, which is in practice
much easier.

Actually, (1.1) seems like a rather benign condition, but in fact is not quite
so, because to check it requires that we check a certain condition for all sets
to which 7 gives positive mass. Of course, if we are doing a standard Bayesian
analysis in which 7 is obtained via the formula “posterior is proportional to the
likelihood times the prior,” then 7 will be mutually absolutely continuous with
respect to Lebesgue measure (on some subset of R”) and therefore identifying
the sets in (1.1) is trivial. The problem is that in some complicated models, we
do not have enough of a handle on the unknown 7 to even identify those sets to
which it gives positive mass.

Here is an example which involves a Bayesian nonparametric analysis of
censored data. [This example is developed in Doss (1994); here we give only
enough detail to make the point raised in the paragraph above.] Suppose that
there are random variables Xj, ..., X, ~jq F, but that we do not necessarily see
the X;’s. For each i we know only a set A; within which X; is known to lie. (The
case where for each i, A; is either a singleton or an interval of the form [c;, c0)
corresponds to the model of right censorship.) Thus, our data, which will be de-
noted by the subscript data, consists of the sequence A,, . .., A,. Suppose we put
a Dirichlet prior on the unknown F and we want to obtain the posterior distribu-
tion of F given the data. For the purpose of showing how the Gibbs sampler can
be used to do this, we use the following special construction of D, the Dirichlet
prior with parameter measure o. Let a = ag - a(R), so that «aq is a probability
measure. Generate By, By, . . . ~;g Beta(1, o(R)), generate V1, Vy, . .. ~iig g, with
the sequences {B;} and {V;} mutually independent, let P; = B;TI’ ;11(1 —B,)and
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form the random distribution function
oo
Jj=1

where 6, denotes the probability measure giving unit mass to the point a. This
random F has the Dirichlet distribution with parameter o.

Let Lg4ata and L denote conditional distribution given the data and uncon-
ditional distribution, respectively. We wish to obtain Lgata(F). To implement
the Gibbs sampler, we need Lgata(X | F) and Lgata(F | X), the latter being simply
L(F | X), which is Da+g?=15xi. From construction (1.3), we see that it is easy to
generate a vector from Lg,¢2(X | F). To generate X; we generate Uy, a U(0, 1) ran-
dom variable, and determine the index J; such that £/17'P; < Uy < T2, P;.
If V;, € Ay, set X; = V;,; otherwise, repeat using an independent uniform and
continue until the corresponding “V-value” is in the set A;. This whole process

is repeated independently for i = 1,...,n, and this generates the random vari-
ables Xj,...,X,. (Note that we never need to generate all of F, but only the
part of F that we need.)

Note that the sequences Bj, By, ... and V3, Vs, ... are held fixed throughout
this process. For this reason, the random variables Xj, ..., X, are (uncondition-
ally) dependent. Look now at the Markov chain (X7, F?) formed by running
the Gibbs sampler. For 7 = Lgaa(X, F), it is clear that it is difficult to iden-
tify the sets to which 7 gives positive probability, the problem being both the
complicated dependence structure of the X’s and the fact that the Markov chain
is running in a high-dimensional space. In Theorem 1 of Athreya, Doss and
Sethuraman (1992), which includes Theorem 1 of Tierney’s paper as a special
case, the conditions that one needs to check are phrased only in terms of the
transition function P(-, -), and so this theorem is useful for establishing con-
vergence when one does not want to deal directly with the unknown 7.

2. Estimating variability when dealing with importance weighted
output of Markov chains. A very important point discussed in Hastings
(1970) is that by properly reweighing the output of a Markov chain correspond-
ing to a distribution 7@, one can study features of another distribution 7»..
The basic requirement is knowledge of (d7V/dn®)(6) up to a multiplicative
constant. [If 79 are posterior distributions corresponding to priors p¥, and 7%
are proportional to the likelihood times the prior, then (dnr® /dn{?)(6) is a con-
stant times (dpV/dp®)(8).] An important problem is to assess the accuracy of
estimates obtained by reweighing the Markov chain.

To gain a clear understanding of what is involved, let us review the reweigh-
ing method. Suppose that (d7V /dn@)(9) = cl(§), where [ is known. Let f be a
function of 6, suppose we wish to estimate [f(6)dn(6) and suppose that we

have available the output 6, . . ., 8, of a Markov chain which corresponds to the
distribution 7(?. To estimate
Moy _ ff(9)l(0)d7r(°)(0)
/ fOdT0 = =gy ar o)
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denote f; = f(6;),v; = 1(4;) and the weights w; = vi/ZJ"‘= 1vj and form

(2.1) Z‘-’#L—U—L =) fuwi

Zj:lvj i=1

To study the asymptotic distribution of ¥7_, fiv:/E}_v), we need to establish
conditions under which (37, fiv;, £F. ,v;) is asymptotically normal.

According to Theorem 1.5 of Ibragimov (1962), if a sequence of random vari-
ables {¢;} is ¢-mixing [a definition is given on page 349 of Ibragimov (1962)] and

(2.2) the sequence {¢(k)} of mixing coefficients satisfies Z #(k)? < o0,

k=1

(2.3) E(£2) < oo,

then

(2.4) the series var(&p) + 2 Z cov(&p, €;) converges absolutely,
j=1

T & — E(&) =

(2.5) (Zz-lf:l/2 &) —a N(0,0%) where 0® = var(éo) + ZZ cov(&p, ).
j=1

Now, if the chain {6} is stationary and uniformly ergodic, then for any func-

tion A(9), if & = h(6;), then the sequence {¢;} is ¢-mixing, and (2.2) is satisfied.

Thus, if we apply the Cramér—Wold device, we see that

(2.6) if the chain {6} is stationary and uniformly ergodic,
2.7 /(f1v1)2 dn'® < oo,

(2.8) /(v1)2 dr'® < oo,

then

o0
each of the three series, 71, = var(fovo)+2 Z cov( fovo, fjv)),

j=1
o0
(2.9) M2 ="21= cov(fovo, ”0)+Z [cov( fovo, v)) + cov(vo, fju))] and
j=1
- J
Yoo = var(vg) +2 Z cov(vg, v;), converges absolutely,
j=1
Zfivi - n/flvl dn'®
(2.10) n-l2| =1 —gN(0, D),

Zvi - n/vldw(O)
i=1
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where

e (’711 T2 )
Y21 Y22
The matrix I' can be estimated using standard techniques for estimation of
the cross-spectrum in multiple time series. Statement (2.10) implies, of course,
the asymptotic normality of (2.1). Conditions (2.7) and (2.8) make precise the
statement that unbounded weight functions should be used with caution. These
conditions place limits on how much the prior o) can deviate from p@. (Note
that the assumption that {6;}°° , is stationary is not necessary by Theorem 5 of
Tierney’s paper.)

To give an illustration, consider a variant of the example in Section 5. Tierney
considers the model in which 8 ~ G(yg, 69) and, conditional on 3, A1, ..., \, are
iid ~ G(ayg, B8). Here, vy = .01,60 = 1,9 = 1.802 and n = 10. If we consider the
same model, but with hyperparameters v, 6; and a4, then the calculation in the
Appendix below [adapted from Zhang (1993)] shows that (2.8) is equivalent to

(2.11) 261 — 6 >0 and 2na; —nag+2y; —v > 0.
[When f(A, 8) = A\; or when (X, 3) = E_ (A1 | 8), conditions (2.7) and (2.8) turn

out to be equivalent.] Thus, even if we stay within the same parametric family,
conditions (2.7) and (2.8) present nontrivial constraints.

APPENDIX

PROOF THAT (2.8) IS EQUIVALENT TO (2.11) FOR THE GAMMA MODEL. Let
&a,5(+) denote the gamma density with parameters e and b. We have

W ? ® 2
1= ([j—:@]u,m) aro0p) o [ ([%](W)) L kO, DA )

where p/, the prior on (X, 3) corresponding to the hyperparameter values v,, §;
and o, is given by

i=1

and the likelihood /; (X, 3) is given by

Is, (X, B) = H ((A;%i)Sl eXP(—)\iti)>.

i=1 v
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We have

- (I Bre Y exp(—30) - 67~ exp(—660)
X
(TT7- 1 B ~ Lexp(—BA)) - 7~ lexp(—£36,)
X (H A exp(—)\iti)> d\dp
i=1

- /ﬁznal —nog+2v1— v — lexp(—ﬂ(Z(Sl — (50))

(A1) X{ /ﬁ (/\?Oq—ao+s,~—1exp(_(18+ti)/\i)) dA} dg
i=1

= /ﬂ2na1—nao+2'yl—'yo—1exp(_18(261 —(50))

n
I'Qa; —agp +s;)
00 I@2na1 —nog+2y1—y —1
0 H:‘=1(ﬂ+ti)2a1—ao+s,

It is easy to see that conditions (2.11) are necessary and sufficient for conver-
gence of the last integral above.

In checking condition (2.7) for the function f(\, 3) = A; the calculation is the
same, except that in the third line of (A.1), the term

exp(—B(261 — 60)) dp.

X

1"(2a1 — Qo + Sl)
(/6 + t1)2a1 — g +8;

is replaced by

F(2a1 —Qap+s8; + 2)
(ﬂ+t1)2a1—ao+sl+2 ’

it is clear that this change does not affect the convergence of the integral. For
the function f(\, 8) = E,w(\1 | B), we wind up with the last line in (A.1), except
that we have the extra factor ((o; +51)/(8 + t1))?; again, this does not affect the
convergence of the integral.
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It is a pleasure to add my congratulations to Luke Tierney on his
important paper, which not only provides a sound theoretical basis for the use
of Markov chain Monte Carlo (MCMC) methods in Bayesian inference but also
gives valuable practical guidance. It is noteworthy that versions of the paper
have been available for a couple of years now and have already proved to be
highly influential. Subsequent developments, often involving the author him-
self, have been extremely rapid and I hope he will take the opportunity to tell
us something about these in his rejoinder. For example, regeneration methods,
which are only briefly discussed in the paper, have been the subject of con-
siderable progress [e.g., Mykland, Tierney and Yu (1995)]. In the very recent
work of Geyer and Thompson (1993), they are used cleverly on a succession
of chains, ranging from “hot” (e.g., independence) to “cold” (the distribution of
interest). The idea is that swaps into the hot chain, which can be sampled ex-
actly and hence forgetfully, provide the regeneration points. These authors also
show how to adapt their strategy to a single chain by subsampling from a ran-
domly varying distribution between regenerations, so that no form of burn-in
is required.

Markov random fields and Gibbs. I particularly welcome Tierney’s
survey of a wide variety of different MCMC algorithms, including hybrid im-
plementations to which I shall return later. It is easy to be seduced into using
the Gibbs sampler as one’s only Bayesian inference machine, as I know only
too well in spatial applications [Besag (1989), Besag and Mollié (1989), Besag
and York (1989) and Besag, York and Mollié (1991)]. In fact, Gibbs has extra
allure in spatial statistics. The reason is that a standard means of obtaining
a distribution 7 for a random vector X = (Xj,..., X,), where each X; is asso-
ciated with a fixed spatial location (or site) i, is in terms of a Markov random
field formulation [Besag (1974)]. This requires that one examines each site in
turn and specifies the “full” conditional distribution n(x; |x_;) there; these con-
ditionals are called local characteristics in spatial statistics. Such a conditional
probability approach to spatial interaction was advocated by Bartlett (1967),
as part of his presidential address to the Royal Statistical Society. There are
two immediate questions. Do the local characteristics determine 7 and what
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