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ADAPTING FOR THE MISSING LINK!

By S. WEISBERG AND A. H. WELSH

University of Minnesota and Australian National University

We consider the fitting of generalized linear models in which the link
function is assumed to be unknown, and propose the following computa-
tional method: First, estimate regression coefficients using the canonical
link. Then, estimate the link via a kernel smoother, treating the direction
in the predictor space determined by the regression coefficients as known.
Then reestimate the direction using the estimated link and alternate bet-
ween these two steps. We show that under fairly general conditions, nl/2.
consistent estimates of the direction are obtained. A small Monte Carlo
study is presented.

1. Introduction. In the usual generalized linear model we observe a
response Y which, given the value of a vector covariate X, satisfies

E(Y|X =x) =g(xTf)

b Var(Y | X =x) = a2v(g(xTﬁ0)),
where 8y and o > 0 are vector and scalar unknown parameters respectively, and
g and V are real functions. The function V is called the variance function and is
typically treated as known. This is appropriate when the response has a known
two parameter exponential family distribution but the model applies more gen-
erally to problems involving heteroscedasticity which is a known function of the
mean. The function g, called the link function, is usually assumed to be smooth,
monotone and hence invertible. In these circumstances, it is more usual to call
g~ 1 the link and g the inverse link but this terminology is untenable when g is
not invertible. The link is typically treated as known but our interest is in the
case of an unknown or missing link. When the link is known, we take 3, and X
to be of dimension p + 1, including p predictors and an intercept. When the link
is unknown, both the magnitude of 3, and an intercept can be absorbed into g.
In this case, X and S, will both be of dimension p excluding the intercept. For
uniqueness in the unknown link case we may standardise so that ||Go|| = 1. We
regard ¢ as a nuisance parameter and concentrate on estimating 3, and g from
n independent observations (Y;,X;) on the model (1.1).

The class of generalized linear models (1.1) is quite rich because of the flex-
ibility in the specification of the response distribution and the choice of g. It
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ADAPTING FOR THE MISSING LINK 1675

includes a variety of regression models including log-linear models for contin-
gency tables, binary response and survival data models, and the single index
models of Stoker (1986). See McCullagh and Nelder (1989) for details.

There are at least two good reasons for trying to estimate g. Firstly, an esti-
mate of g may be used to construct diagnostics to study the choice of a particular
g by examining how well the resulting model fits the data. Such diagnostics are
important in practice as well as in principle: Lord (1980), Wainer (1983) and
Azzalini, Bowman and Hérdle (1989) have all given examples of real data with
binomially distributed responses in which the usual logistic link is inadequate.
Secondly, if the chosen function is inadequate, we may obtain a better fit to
the data by using a data-driven or estimated function instead, while retaining
as much of the structure of the generalized linear model as possible. A fully
nonparametric approach requires p-dimensionallocal fitting, which in turn re-
quires extremely large sample sizes, even for modest p. In contrast, the method
described here uses only a one dimensional smoother.

If g were known, we could estimate 3y by solving

(1.2) n! Z

Y, —g(XF's

)

for 3, where in this equation and others for a fixed link g we assume that an
intercept term is included in the linear predictor, and 3 is not scaled. These are
the likelihood equations when the response distribution is a two-parameter
exponential family distribution. An iteratively reweighted least squares al-
gorithm is widely used for solving this system of equations. Given a current
estimate g3, compute

(1.3) B=pB+An ‘li;(/(f%)))&{l’i—g(?ffﬁ)},

where A* ~ ! is minus the expected information evaluated at E,

s &(XFB)*
(14) * 1 1 t}(iT‘
; V(g(x75))

Then, set 5 = 5 and iterate to convergence. This iteratively reweighted least
squares algorithm solves (1.2) and is identical to the Fisher method of scoring
version of the Newton—Raphson algorithm for solving these likelihood equa-
tions. When g is the canonical link for a generalized linear model, this algorithm
converges very quickly, even for poor starting values.

For the remainder of this article we assume that the link function g is un-
known and must be estimated. As pointed out previously, the intercept can be
absorbed into g, and so we now view X as a p-vector of covariates, and 3 is a
p-vector of regression coefficients that determine a direction in p-dimensional
space. Given an initial estimator 8 of the direction, which may be the result
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of estimating (3, with some fixed g, we can easily compute a nonparametric
estimate g of g. We use a kernel estimate g(x, 8) of g, where

" YK (x - X7)

1.5 gx, B) = (nh)™? =
1.5 gx, ) = (nh) ;Z: =)
The normalizing constant ¥(x, 8) is a density estimate,
(1.6) A, B) = (k)™ Ki(x — X7B),
j=1

with Kj,(x) = K(x/h) for an appropriate kernel function K, with bandwidth .
To estimate 3, with the estimated g, we also need to estimate g’. In the proofs
that follow, we use the estimator g’(x, 3) given by

- 11 -
A7) g f = ()Y = { VL (x - X6) - 8, )L (x - XT5) .

Jj=1

where Lj(x) = L(x/h), for an appropriate kernel function L. It is not necessary
to use the same h in both K and L; doing so affords some slight notational
simplification. When L = K’, g’ equals the derivative of g but the proofs allow
the flexibility of other choices of L.

We then propose the use of an alternating algorithm, first estimating the
direction determined by 3, and then the link function g, repeating until some
criterion is met. Given g and g, we use the scoring algorithm (1.3) to esti-
mate (,; given the estimate of 3, we use the kernel estimate (1.5) and (1.6)
to get a new estimate of the link g. It is not hard to implement this algorithm
because it involves only univariate smoothing; an implementation using Lisp-
Stat [Tierney (1990)] is described in Section 3. It seems to be only slightly more
complicated than estimating a parametric class of link functions as in Pregibon
(1981, 1982), and less complicated than other nonparametric alternatives. Un-
like a fully nonparametric approach, much of the flavor of the parametric fit of
the generalized linear model is retained.

Recently, the problem of fitting models like (1.1) with the link function as-
sumed unknown has received considerable attention. Li and Duan (1989), for
example, have shown the solution to (1.2) with g incorrectly assumed to be
a canonical link will give a consistent estimate of £3y for some £, if the dis-
tribution of the x’s is sufficiently nice. {Here 3y excludes the intercept.) What
is needed for the Li-Duan result to hold is that the conditional expectation
(@) = E(X|XTBy = v) must be linear in v. This happens for all 3, if and only if
X has an elliptically symmetric distribution [Eaton (1986)]. When the distribu-
tion of X is not elliptically symmetric, the condition may hold for particular gy,
and hence the estimate of 3 from fitting the wrong link may still be consistent.
The multiplier k£ will depend on the true link function, and will be 0 if the true
link function is symmetric [Cook and Weisberg (1991)]; this is a case that is
likely to be difficult or impossible to fit by any method.
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By virtue of the results in Li and Duan (1989), any global method of fitting
will fail when the link is incorrectly specified and the distribution of the predic-
torsis sufficiently perverse. For this case, methods based on the local behavior of
the regression surface have been shown to give consistent estimates regardless
of the distribution of the X’s. Hirdle and Stoker (1989) point out that 3, is the
normed expected derivative of g and so construct a n1/2-consistent nonparamet-
ric estimator of 3 using p-dimensional smoothing. Hardle, Hall and Ichimura
(1993) consider a similar problem to ours but minimize a least squares like
criterion to estimate both 3, and 4 simultaneously. Different approaches using
splines and monotone splines have been implemented by Yandell and Green
(1986) and Ramsay and Abrahamowicz (1989), respectively. The method pro-
posed here is a combination of global fitting, using (1.3), and local fitting, using
(1.4) and (1.5). We show that this method has the same theoretical properties
as the local methods proposed in the above references.

In Section 2, we discuss the theoretical aspects of our results, and derive
the properties of the estimation method; the proofs are detailed and require
a number of preliminary results, included in an Appendix. In Section 3, we
discuss the practical problems of implementation of the method, and give the
results of a small Monte Carlo experiment. Section 4 contains discussion and
further applications.

2. Results. We shall now give the asymptotic behavior of the estimates ob-
tained from the use of the algorithm described in Section 1. We shall consider
both one-step estimates and fully iterated ones. One-step estimates are shown
in Corollary 1 to be n1/2-consistent if the initial estimator of 3 is nl/2-consistent.
We then show in Corollaries 2 and 3 that under appropriate conditions, the fully
iterated solution to (1.3) does not depend on the starting values, and the esti-
mate of 8 so obtained will be n1/2-consistent. Our results require eight simple
conditions which we denote by C, in addition to model (1.1). The first seven
conditions are:

(i) (¥;,X),1 < i < n, are independent realizations of (Y,X) where (Y, X)
have all moments finite.

(ii) The density f of X has three bounded derivatives and the density v of
XT3, has four bounded derivatives.

(iii) g has four bounded, continuous derivatives on s, the support of X7 3,.

(iv) V > 0, bounded and has two bounded derivatives on {u: u = g(¢), ¢ € s}.

(v) A™l = E{X — p(XTBo){X — U X T B0)} Tg" (X T )2V {g(X T B)} 1], where
) = E(X | XT3, = v) is positive definite.
(vi) K,L have compact support, bounded derivatives and satisfy

/K(z)dz =1, /ziK(z)dz =0, 1=1,2, and /]z|3K(z)dz < 00,
/L(z)dz =0, /zL(z)dz =-1, /ziL(z)dz =0, 1=2,3,

and /z4L(z)dz < 0o0.
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(vii) The bandwidthh=0(n"7),3 <7< 1.

Our arguments require a large number but not all finite moments. There
is no particularly neat way to specify the precise finite number we need, so
we adopt the simpler approach of assuming that all moments are finite. This
is reasonable because the distribution of Y | X would often be assumed to be
in or close to the exponential family. We then require smoothness conditions
on the underlying functions and conditions on the kernels. Conditions (ii) and
(iii) ensure that on appropriate sets, u(v) = E{X | X783, = v} has three bounded
derivatives. Of course, if X has compact support, the boundedness requirements
are trivially satisfied under the smoothness conditions.

The kernel conditions are chosen for simplicity. It is not necessary for the
kernels to have compact support but his greatly simplifies our arguments.
When estimating g, we can use a standard second-order kernel, so K can be
a symmetric density function. However, when we estimate fy, we need to con-
trol the bias contributed by the estimates of g and g’. In particular, to control
the variability of our estimate of g/, we require n'/2h% — oco. If we use second-
order kernels, controlling the bias of the estimator of 3, requires A2 = o(n = 1/2)
which is incompatible with the previous condition. However, with third-order
kernels, the bias requires A% = o(n~1/2) and the requirements are now com-
patible. This motivates both the use of third-order kernels and the conditions
on h; see Prakasa Rao (1983) for a general definition, and Gasser, Miiller and
Mammitzsch (1985) for examples. If we had to estimate g but not g’, we would
only require 4 = o(n ~ 1/2) which is compatible with the use of second-order ker-
nels. To permit elementary arguments, we assume that K and L have compact
support and bounded derivatives.

A pointwise central limit theorem for g (with a second-order kernel) is proved
by Hirdle and Stoker (1989). The result shows that the optimal rate of the
convergence is attained.

THEOREM 1 [Héardle and Stoker (1989)]. Suppose conditions (i) to (iii) hold,
and that K is a twice-differentiable symmetric density function with h ~ n=1/5,
Then for any u such that v(u) > 0 and (3 such that § — By = Op(n~1/2),

n2/%(g(u, B) — gw) SN ( [Le"(w) + &' (W)~ ]
X / 22K (2)dz, V (g@))y(w) ™! / K@) dz>.

Theorem 1 also holds for an appropriate third-order kernel but the asymp-
totic bias vanishes. This is unsurprising because with 2 ~ n~1/® the variance
dominates the bias. The optimal choice is actually & ~ n~/7 which leads to
the faster rate n%/7. Of course, in this case, the expression for the asymptotic
bias changes, too.



ADAPTING FOR THE MISSING LINK 1679

To facilitate the proof of our major result in Theorem 2, we shall use two fur-
ther modifications before we incorporate g and g’ into the iteratively reweighted
least squares algorithm (1.3). First, to ensure that our estimator of g, is to first
order unaffected by the estimator of g, we center the covariates where they
appear as vectors rather than in inner products in the iteratively reweighted
least squares algorithm. It turns out that we need to center X; about 7i(X;, 3),
where

filx, B) = (nh)~! Z X Kn{(x - X,)"8}.

1
22 5GT5, 5)

We will show in the Appendix that 7i(x, 3) is an estimator of the p-vector u(x7 3,),
where u(v) = E{X | X7B, = v}. Global centering about E(X) leads to additional
complications, and since it is unnecessary we will not use it here.

Next, kernel estimates of g, g’ and u are unstable at points for which the
denominator 7 is small, so we exclude from the estimator of 5y observations for
which ¥ < a, for a | 0 such that A < a. This is a common modification to es-
timators which are functions of kernel regression estimators; see, for example,
Haérdle and Stoker (1989). While this is usually done by incorporating an appro-
priate indicator function into the estimator, the discontinuity in the indicator
function causes technical difficulties. A simpler approach is to use a smooth
version of the indicator function. We use

0, forx <a,
Jo(x) = J{2(x a)/6—1}, fora<x<a+d,
fora+6<x

b

for some small fixed § > 0, where

15(1 5 24 8
= = — —-1<
J(x) = (5x 3% +x+15> for —1<x<1,
but any indicator-like function with two bounded derivatives can be used. The
tuning constant a is required to decrease to 0 more slowly than A, which is
expressed by:

(viii) a = O((log n)~1).

While it is possible to express this in terms of an algebraic rate of convergence,
it is simpler and more convenient to adopt the logarithmic rate.

The modified iteratively reweighted least squares algorithm is then to com-
pute

B=5+2n‘léJ { (X7B,B) }%%

<X - 2%, HHY: - 2(X75.5) },

(2.1
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where
41 X7B,5)°
IZJ (X3, B) ——(ﬁ——

Then, set 8 = E and iterate to convergence. We can either use a few steps of
the algorithm or we can iterate to convergence to decrease the impact of the
initial estimate of 3y. In either case, our interest is in the estimates of both g
and By. Our results show that the estimate of g achieves the optimal rate of
convergence, and the estimate of 3, is n'/2-consistent and adaptive in the sense
that, to first order, its asymptotic distribution does not depend on the fact that

g is estimated rather than known.
Our major result is the following stochastic equicontinuity result from which

we deduce the properties of two estimators of 5.
THEOREM 2. Suppose conditions C hold. Then for all fixed B € (0,00), as

n — oo,

0p(1) = sup
|8 = Bol <n-1/2B

_1/2Z{X N(X”g)}{Y, g(x7s, ﬂ)}
=1 g(x78,8)
(X76,5)}

e e -0

x J {7 (X5, )} or

ro\\_&(B) g
xJu{1(X, ﬂo)}v{g(X.Tﬂo)}+A nV2(8 — fo)

and

n LS X - X, B}X - B, 0}

i=1
e o EEIBD
{7 ﬂ’é)}V{g(XiTﬂ,ﬂ)} “

0p(1) = sup
18— Bol <n~'/?B

The proof of this theorem is contained in the Appendix.

We are now able to prove three important corollaries. These results apply to
the unnormalized estimators; it is important for interpretation to realize that
the magnitude of the estimators is arbitrary but it is not essential to normalize
the estimators to have norm 1. The first describes the behavior of one step of the
modified iteratively reweighted least squares algorithm (2.1). As with all one-
step estimates, we require a good initial estimator of 3. A natural candidate
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initial estimator is that obtained by solving (1.2) with a fixed g, as suggested by
the Li and Duan (1989) results, at least for X elliptically symmetric. Of course,
from a diagnostic point of view, under the hypothesis that the specified g is
the true g, the estimator is n!/2-consistent and diagnostics can be based on the
one-step modification.

COROLLARY 1. Suppose conditions C hold and that there is an initial esti-
mator 3 such that 8 — By = Op(n=1/2). Then

nY2(3 — By) % N(0, A).

The second corollary describes the behavior of a root of the system of
equations

0= Z {x; - ax., p}{¥: -2(x76,6)}
vigx7s.0)}

which corresponds to fully iterating the modified iteratively reweighted least
squares algorithm (2.1). The statement of the corollary reflects the fact that
there may be multiple roots.

(2.2)
xJo{7(X78,6) }

COROLLARY 2. Suppose conditions C hold. Then a solution (3 to the set of
equations (2.2) which satisfies 8 — By = O,(n~1/2) exists in probability. Moreover,

nY2(B - o) > N0, A).
PROOF. Since the right-hand side of (2.2) is continuous in g, the first part

of the result will follow from (6.3.4) of Ortega and Rheinboldt (1973), page 163,
if we can show that in probability

D6 - A" X - X, MY - 8(X75,6) }
i=1

2 (x7'5,0)
v{g(x7s.6)}

for |3 — Bo| = n~1/2B, for some B < co. The argument uses Theorem 2 to approx-
imate the left-hand side of the inequality by

x Ja{a(XiTﬂ, A) } <0

Xf;(ﬂ - ﬂO)T{Xi - N(XiTﬂo) }{Yi _g(XiTﬂo) }Ja{’)’(XiT,BO) };E?;(%ZZ)T))}

—n(B - Bo)TATYB - By).
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The first term is like B times a random variable which is bounded in probability
and the second is like a constant times B? so the desired inequality holds for B
large enough. The details of the argument are given in the proof of Theorem 5.1
of Welsh (1989) so are omitted. The second part of the result follows by applying
Corollary 1 with 8 =6. O

In practice, we need not center the X’s so we solve

oo o Snfo-soan)afoan) ZELA

instead of (2.2). As shown in the Appendix, the conclusion of Theorem 2 should
be replaced by

w12y XY, - 2(X75.5) )

i=1

0p(1) = sup
|8 = Bol <n=1/2B

~(vT g' XiTﬂ7IB
Ja{’Y(Xi B, ﬂ) }‘i;(—}%%?

n1/2 i {IQ + u(XiTﬂO)}{Yi ‘g(XiTﬂO)}

i=1

/ &Tﬂ B
* Ja{v(XiTﬂo)}———V?;(XT ;0))} +A™InY%(B ~ fo).

Arguing as in the proof of Corollary 2, we obtain the following result.

COROLLARY 3. Suppose conditions C hold. Then a solution B to the set of
equations (2.3) which satisfies 3 — [y = OP(n‘l/ 2) exists in probability. Moreover,

nV2(B - fy) % N(0,AB*A),
where

'(X7Bo)”

B = B{X e {{x x0T g( (X76o))

The corollaries show that it is possible to adapt for 8, when g is unknown
in the sense that the asymptotic distributions of our estimators are the same
as when g is known. This is a useful property because it simplifies the use
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of existing software to incorporate the estimated g. The second part of Theo-
rem 2 shows that we can in fact estimate the asymptotic variance and so make
asymptotically valid inferences.

3. Implementation and simulation.

3.1. Implementation. Application of the methodology described here re-
quires software for the scoring algorithm, for fitting a kernel smoother, and
then using the result of the smooth to estimate g. The standard package GLIM
cannot be used for this purpose for two reasons. First, GLIM uses g~! as the
link function, and requires that g be monotone and invertible. As is evident
from (1.3), it is unnecesary to invert g to use the scoring algorithm. Second,
GLIM does not provide a way to do the smoothing.

The system Lisp-Stat with the “glim prototype” [Tierney (1990, 1991)] pro-
vides a very congenial setting for the computations that need to be done here.
Our algorithm works as follows:

(a) Specify a generalized linear model using the glim prototype with the
canonical link, and fit that model to get an estimated vector of regression pa-
rameters (3, including an intercept. N

(b) Estimate the link g by smoothing the two-dimensional plot of 77 = X3
versus the response Y. The intercept can be included in 7, or it can be ignored
since only the direction, not the magnitude, is important. The link function g
and its derivative g’ are estimated from (1.6) and (1.7), respectively, over a grid
covering the range of 7. Lacking optimality results, the bandwidth A is chosen
visually using a slide bar to vary A to obtain an estimate g that matches the
data, and g’ that is fairly smooth.

(c) Reestimate (3 via the scoring algorithm, using the values of g and g’ com-
puted by interpolation over the grid obtained in (b). Points whose estimated lin-
ear predictor are outside the range of g will have g’ = 0, and will be effectively
ignored in the refitting, roughly corresponding to removing points whose fitted
density is too small. In Lisp-Stat the fitting can be done using the “newtonmax”
function, which maximizes a function via the Newton-Raphson procedure. This
functlon can be used for the scoring algorithm by explicitly computing the gradi-
ent andA rather than letting the function compute numerical estimates of the
gradient and Hessian. We do not normalize £ to length 1, although this could
be done after the iteration is finished.

(d) Alternate between (b) and (c) until a stopping criterion is met.

3.2. Example. We shall use the wool data from Box and Cox (1964) to illus-
trate the methodology. This is a three-by-three-by-three experiment with three
quantitative factors, specimen length, amplitude of loading cycle and load, with
the levels of each factor equally spaced. The response is the number of cycles
to failure of a sample of wool. Figure 1 is a plot of {7}, y} for the fit with normal
errors and the identity link, using a first-order model. Also shown on Figure 1 is
the estimated g. The value of the smoothing parameter 4 can be chosen visually
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FiG. 1. Plot of {n,y} for the wool data.

using the slide bar at the left of the plot. One could also view a second graph
that plots {7, g’} as h is varied, or superimpose a scaled version of this curve on
Figure 1. Given g, coefficients can be reestimated. Fitting with the estimated
g reduces the deviance from 5.5 million to 0.9 million. The angle between the
fitted direction from the canonical fit and the fit using g is only about 1°, so
in this example it is clear that little will be gained by further iteration, as the
estimate of g will not change. If we then fit a larger model that includes in-
teractions between the three predictors using g as if it were the true link, the
deviance is reduced by about 40,000, or about 4%, a relatively small reduction.
Using the canonical link, fitting these three interactions reduces the deviance
by about 3.4 million or about 62%, suggesting that the interactions are indeed
very important.

Estimating the link function is not without cost. Since a scale and location
factor can be absorbed into the link, the estimated coefficient vector 3 estimates
a direction in p-dimensional space, but the magnitudes of individual coefficients
in 8 cannot be related directly to rates of change in the predictors. Ratios of co-
efficient estimates, however, are still meaningful so we could take the point of
view of Li and Duan (1989) and examine ratios of estimates. Alternatively, we
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could adopt a graphical solution (in which case the magnitude of B is unim-
portant) or, after estimating g, treat g as fixed and then estimate 3 and its
length. Finally, we can view g simply as a powerful diagnostic for exploring the
empirical validity of fixed links and for suggesting alternative links.

An alternative approach to the wool data problem is to transform y using the
methodology of Box and Cox (1964). This approach will in this example lead
to essentially the same answer as we obtain. The approach suggested here is
more general, however, because it does not require a monotone link function
and does not restrict g to a specific class of functions indexed by a small number
of parameters.

3.3. Simulation. To illustrate the methodology, we did a small simulation.
The built-in Lisp-Stat kernel-smooth function provides only second-order ker-
nels, so we used the second-order quartic kernel in the simulations. One can
only expect that using a third-order kernel would give even better results. To
automate bandwidth selection, we chose A via cross validation, as suggested by
Hirdle (1990), page 159, using the quasi-likelihood implicit in (1.1) to get the
measure of fit. In the simulation, the derivative 8’ was obtained by numerical
differentiation, effectively setting L = K'.

We used an example similar to one used by Hirdle, Hall and Ichimura
(1993). We consider n observations on p predictors Xj,...,X,, such that each
X; is independently distributed according to an exponential distribution with
mean 0.5. For the link function, we take a quadratic, g(n,c,d) = c(1 + (n — d)?).
The conditional distribution of Y | {(Xj, ...,X,) = x} is taken to be normal with
mean g(x7 3, ¢, d) and standard deviation 0.2. The example in Hardle, Hall and
Ichimura is limited to the case p = 2, and sets the predictors to be uniform.
This example was chosen for several reasons. First, by choosing the predictors
to be independent, the correct direction vector is clearly defined. Second, since
the distributions of the x’s is not elliptical, the Li~Duan theorem will not apply
for all 3; however, it does apply for some 3, so we can compare cases in which
fitting the wrong link gives a consistent estimate of 3 to cases in which the esti-
mate is not consistent. In the simulations reported below, we have set p = 8 and
¢ = 1; qualitatively similar results are obtained for smaller dimension p and
for higher signal-to-noise ratio (larger values of ¢). All simulations are based
on 100 replications, each with n = 100 observations. On each replication, two
smmary statistics are reported: the angle between the estimate of 8 and its
true value (thus ignoring the intercept and the scale factor that depends on the
link), and the squared difference between the final fitted values g(x” ) and the
true values of g(x” 8, ¢, d). This latter statistic is designed to give a measure of
agreement between the g and its estimate. These were computed for the initial
fit of the canonical link, for a one-step procedure of estimating the link once
and then reestimating 3 once, for a two-step estimate, for a fully iterated esti-
mate and finally for a fit using the true link function. The number of iterations
required for a convergence criterion to be met rarely exceeded 4. All results
here are summarized by parallel boxplots, with the goodness of fit statistic in
log scale.
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A. Null case: Identity link, p = 8
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3 -
v
~ o 9
L4
¢ <
8 H
ER") s - 9
sv &
Z % \
" o 1}
~ L ‘IN L
o~
° ; : L4 =
Nore 1-step 2-step Full None 1-step 2-step Full

B. c=1;p=8;d=1,direction=(11000000)7

8 4 4 1 v
L]

o "]

% ”
e H
< 2
5% ] TR
H ¥

n v

o~ -

~ 1

° T

Nore 1step 2step Full True None 1step 2step Full  True

C.c=1;p=8;d=.707, direction=(1100000 0)’

K o
) $3=5- L] TETL
| Teddd | -
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Fic. 2. A. Null case: Identity link,p=8. B.c=1;p =8;d = 1, direction=(11000000)T. C.c=1;
p =8;d =.1707, direction = (110000 00)T.
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D. Direction=(1-1000000):c=1:d=0.5p=8
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F1G. 2. D. Direction =(1-1000000)T; ¢ = 1;d = 0.5; p = 8. E. Direction =(1-1000000)T;¢c = 1;
d=0;p=8.

A. Null case. To calibrate the results, we first fit using an identity link,
with p = 8 and ¢ = 1. The results are given in the first row of Figure 2, the first
column for angles, and the second for the goodness of fit statistic. As expected,
all the angles are very small, typically in the range 5° to 9°. The initial fit of the
canonical link, given the label “None” in the figure, does somewhat better, giving
a median angle of about 6°, compared to about 7° for the iterated estimates.
The lack of fit statistic is about twice the size for the iterated estimates as it is
for the canonical fit, showing the cost of estimating a link when the null link is
in fact true.

B. Direction = ((11000000)7; ¢=1; d=1; p=8. For this particular
direction, the Li-Duan theorem does hold, since E(X|X73 = v) = (v/2
v/2000000)7, which is linear in v, but the choice of centering constant makes
estimating the angle quite difficult. The results are summarized in Figure 2B.
In the angles boxplots, the three dashed lines correspond to the median and



1688 S. WEISBERG AND A. H. WELSH

quartiles of the angle between 8 and a randomly chosen direction. While the
estimators are quite variable, the iterated estimates, with medians in the range
17° to 37°, generally offer a clear improvement over the initial estimate based
on fitting the canonical link, with median of 53°; the initial estimate is only
slightly preferable to choosing a random estimate of the direction. Fitting with
the correct link has a smaller median angle than the iterated estimates, but is
more variable. The iterated estimates also give a substantial reduction in the
lack of fit statistics (the dashed line corresponds to a mean of the lack of fit
statistic of .04, the nominal error in the data).

C. Direction =(11000000)T;¢c =1;d =.707; p = 8. This example is very
similar to case B, except that the centering constant d is smaller, making the
fitting much less challenging for the initial estimate. This is clearly shown in
the boxplots. The initial estimate has a median angle of 23°, while the iterated
estimates have medians of about 10°, and fitting with the correct link has
median angle of about 7°. There is little to be gained here by increasing beyond
one iteration, and not much loss for estimating the link.

D. Direction =(1-1000000)T;¢c=1;d =0.5;p =8. This is a case where
the Li—Duan theorem does not apply, as E(X | XT3, = v) is easily shown to be
nonlinear in v, with the first component increasing with v and the second com-
ponent decreasing with v. The summary of the simulation is given as Figure 2d.
In spite of the failure of the Li-Duan theorem, the initial estimate does substan-
tially better than random, with a median angle of about 31°. This is the case
where the iterated estimates do remarkably well: The median angle decreases
to about 7°, while it is about 5° for the fit using the true link. Little improve-
ment on the angle is gained after the first iteration; however, reestimation of
the link a second time decreases the lack of fit statistics by a factor of about 2.

E. Direction = (1-1000000)7;¢c = 1;d = 0; p = 8. As with case D, the
Li-Duan theorem does not apply, but now the link function centers the linear
predictor at its mean. Since the distribution of the linear predictor is symmetric
and the link is symmetric about 0, a result in Cook, Hawkins and Weisberg
(1992) suggests that no consistent estimate of the direction is possible, and
we can expect all the methods to do very poorly. This is reflected in Figure 2E,
where the uniterated estimate behaves like choosing a direction at random, and
the iterated estimates do somewhat worse than random. Fitting with the link
known generally also does poorly, although it will occasionally be reasonably
accurate, and is certainly better than choosing a direction at random.

In summary, the simulations indicate that in most cases little will be lost by
estimating a link after fitting a canonical link. This method seems to improve
estimates in most circumstances, with the angles and the link function reason-
ably well determined. One somewhat surprising result is the general success of
the one-step estimates, even in challenging conditions. A good procedure might
be to fit the canonical link, estimate the link nonparametrically, reestimate
the direction given the link and then reestimate the link given the direction,
corresponding to 1.5 iterations.
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4. Discussion. In models with a discrete response, the use of smoothers
to get a better picture of the data has been proposed by a number of authors.
For example, for binary regression Copas (1983) has suggested that a plot of a
single predictor x versus the kernel smooth of y on x may be much more infor-
mative than the plot of x versus y. Fowlkes (1987) defines residuals based on
comparing a parametric fit to a smoothed fit, and suggests that these may be
useful in examining diagnostics for the need to transform predictors, and inter-
actions, and the like. Azzalini, Bowman and Héardle (1989) provide a method
for testing the adequacy of a proposed parametric link by comparing it to non-
parametric smoothed links; le Cressie and van Houwelingen (1991) provide an
alternative goodness of fit procedure based on smoothing residuals rather than
the link function.

More development of the computational method is required for routine use of
this methodology. The algorithm proposed uses a version of Fisher scoring,
which has only linear convergence in generalized linear models with noncanon-
ical links [Smyth (1987)]. In some examples, convergence in the scoring step
has been very slow. Improvements may be possible by considering the use of
a computational algorithm that has quadratic convergence, such as Newton—
Raphson.

We have chosen to avoid restriction to monotone links in the interests of
enhanced flexibility. First, there is no particular reason in a model like (1.1)
to assume that the link is monotone. Second, when our method is used diag-
nostically, it is useful to allow nonmonotone g because nonmonotonicity may
highlight serious deficiencies in the data or model. Finally, nonmonotone links
do occur in practice as in the example published by Azzalini, Bowman and
Hardle (1989).

Using the estimation method described here, one can use a nonparametric
smoothed link both as a basis of inference and as a basis for diagnostics, without
the requirement of a p-dimensional smoother. For example, one could use the
test procedure proposed by Azzalini, Bowman and Hérdle (1989) but use the
fitting procedure proposed here. The methodology given by Fowlkes (1987) can
also be used. However, further work in this area is likely to be required to make
full use of the methods described in this paper.

APPENDIX

Proof of Theorem 2. Our arguments are informed by those of Hérdle,
Hall and Ichimura (1993) which in turn are closely related to those used in
projection pursuit regression by Hall (1989) and Chen (1991). To simplify the
notation, let B = {8 € RP: |3 — | < n~Y2B} and X = {x € RP: v(xT3y) > a}.
For 3c Bandx € X, setg(u,3)=E(Y | XT3 =u) = E{g(XTB) | XT8 = u},

Alx,B) =g(x78,8) —g(x"B,8) —&(xTBo, Bo) +&(x"Bo),
D(x) = g(x" o, Bo) — g (=" Bo)
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and
8(x, B) = g ("8, B) — g (=" o),
so that we can write
2(x78,8) = g(x"Bo) + Alx, B) + D(x) + 6(x, B).
Also, let
wix, /) = Ju{7(76,5) }&' (< 8,0) V{2 ("5, 8
~Jo{(<" o) b (7 50) V{e (" o) |

a

and
4 =X; — u(X"Bo)-
Then, for 3 € B, write

—I/ZZ{X ,u(X,,ﬂ)}{Y g XTﬂ ,5 }J{ XTﬂ :6)}

i=1

<& (X76,0V{a(x75.6))

- '1/2ZQ{Y —2(X7Bo) }J{ (X 6o) }g (X7 Bo)
X V{g(XiTﬂo)}_ +A~1n12(B - Bo) = i T,
m=1

where

T, =n"12 Z Qi{Yi - g(XTBo) }w(Xi, B),

T,=— -1/229 6(X,,ﬂ)J{ (XiTﬂ,ﬂ)}§’(&Tﬂ,ﬂ)V{§(XiTﬂyﬂ)}_l

+A7ln 1/2(ﬂ Bo),
T3 = — n_1/2 Z Q;D(Xz)w(}(ly :6)7

i=1

T = —n“l/QZQ A, . {3(X75,0) & (X7 8.0V {E(X76.5)}
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-1/2 - T (T T -1
Ts = —n "2y QDXL { (X7 80) }&' (X o) V{e(XTB0) }
i=1

Ty = —n2 Y {705, 0) - (X7 50) }{¥s — £ (X780) Yo {1 (X70) )
i=1

1

g (X7 00V {g(X760)}

Tr=—n'/? z": {ﬁ(Xi, B) — u(XTBo) }{Yi - g(X7 o) }w(Xi, ),

A 1/22{ A, ) — (X7 0) } MK, )0 {3(X7 5, 8) }
&(xm.0v{Exrs.0)}

=n 1/22{ A, B) - (X7 o) } DX T {7 (X7 6,6) }
g(x7p.p)V{ExT8.0)})

0=n 1/22{ A, ) — (X7, o) (X, )

x 1 {3(x75.6) Y& (X7 8.0 V{E(x76.6)}

The first part of the theorem will follow once we prove that SUp|s_ g, <n-1/28 | Tm|
£, 0,1 < m < 10; the proof of the second part is straightforward and is omitted.

The results required to complete the proof of Theorem 2 are based on ex-
pressions and bounds for A(x, 3), D(x, 3), w(x, 3) and fi(x, 3) — u(xT 3y) for 8 € B
and x € X which are obtained by combining results for 7(x7 3, 8), g(xT 3, ) and
g'(xT 3, 8). The key technical steps in obtaining the bounds are (1) the estab-
lishment of pointwise mean square error bounds by evaluating means and
variances and (2) the use of Rosenthal’s inequality [Hall and Heyde (1980),
page 23] to establish that the bounds hold uniformly on 8 € B and x € X. This
approach increases the pointwise bound by n¢ for any ¢ > 0. The argument is
detailed in Hardle, Hall and Ichimura (1993). While we often apply the argu-
ment to sums of independent random variables, we require the full generality
of Rosenthal’s inequality when we represent T, Ts and T as martingales.

We begin with four lemmas which are proved using standard moment calcu-
lations and Rosenthal’s inequality.

LEMMA 1. Forany € > 0,

sup B(x, Bp) = Op(nh® + n_1/2+€h1/2)

sup sup |B(x, 3) — B(x, fy)| = Op (n—1/2+€h)
BEBxeX
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and
sup sup [C(x, B)| = O, (néh® + n=1/2+Ep1/2)
BEBxEX
where
B(x, ) = (nh)-lz{ (X76) - g(x"8)} Kn{(x - X))"8)
Jj=1
and

C(x,m_mh)-lz{ g(X76) — n(x" o) 8" B0) Kn{(x — X,)7 5.

Jj=1

LEMMA 2. Forany € > 0,

3 (T8, 8) — v(xTBo)

sup sup
BEBxeEX

— ()Y K (G~ X)7B) — EK (Gx - x)75)]

j=1
~ W [Ki (& - X)) - Kn (6 = X Bo) || = 0 (n°h%)
and
sup sup [7(xT8,8) —v(x TBo)| = Op (n*h3 +n Y2+ Epm1/2)
BEBxEX
Note from Lemma 2 that
sup sup 7 (x73, B)—l = O(logn),
BEBxeX
whenever

sup sup v (x7Bo) ~! = O(logn).
BeEBxeX

LEMMA 3. Forany & > 0,

P(x, B) — v(x"Bo)g’ (xT Bo) = (xT Bo) & (" Bo)

sup sup
BeEBxEX

— (nh?)7 Z (X7 60) L{(x — X" 8/R} — B (XT o) L{(x - X)75/h}]

—h~2Eg (X" o) [L{(x -X)"8/h} — L{(x —X)Tﬂo/h}] ’

=0p (nghs)



ADAPTING FOR THE MISSING LINK 1693

and
sup sup [Pz, 0) — (" 0)g’ (<7 o) ~ 7 (<" Bo)g (" )|
= 0y (nfh3 + =2+ Ep=3/2),
where

P(x, ) =n""h™" ) g(X[ o) Ln{(x - X" 8}.

j=1
LEMMA 4. Forany € > 0,

sup sup |QCx, ) —v'(x"6o) —n'R72Y [Lh ((x — X)TB) — ELy ((x — X)Tﬂ)]

BEBxeX

j=1
— h™2E|Ly (i - X)76) — Ly (Gx - X)"6o) || = 0p (nth?)
and
sup sup |Qx, B) — v (7 Bo)| = Op (n*h® + n=Y/2+Ep=3/2),
BEBxeX
where

Qx,8) =n""h™2 Y Ly{x - X;)7}.

j=1
Lemmas 1 and 2 enable us to describe the behavior of A and D, and
hence g.

LEMMA 5.
sup sup |A(x, ﬂ)| =0p(n"12).
BxeX

ProOF. Since for any x,w € X we have
g(w'po) —g(x"8,8) =g(w”B) —g(x"B) + (8 — )T
x { n(" Bo)g’ (=" 6o) — wg' (w7 o) } + O (n" ogn),
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it follows that for any x € X,

Alx, 8) = (nh)~! Z {YJ —g(}{jTﬂO) } [Kh{(x _){J)Tﬂ}

j=1

~ En{Cc— X" B0} |7+ Bo, ) "

- (k)Y {Y; - g(X760) b {(x - X715}
Jj=1

x {38, 8) ~ A" o, 5o) } {370, 6)7 ("o, )}
+ B, {5, 8) - 3" 6o, 60) } {370, B3 6o, o)}
~ {B, ) - Bz, 0)}7 (" o, o)

— (8= Bo)"Clx, BA(xT B, 8) ™ + 0y (n~12).
Now, apply Lemmas 1 and 2 and the fact that for each fixed 3 € B and x ¢ X,

2

sup supE[(nh)‘1 Z {YJ —g(XjTﬁo)} [Kh{(x -X)"8} - Kp{(x —Xj)Tﬁo}]

BEBxeEX

Jj=1
=O(n£‘2h—1)
and
n 2
E|(nh)1 Y — a(XT8) VK, f(x — XT
Elel%flella)c [n) FZI{ J g( j ﬂo)} h{(x ) g}
=O(n€—1h—1). D
LEMMA 6.

sup
x€X

D)~ (nh)™* Y~ {Y; - g(X7 o) Ko {(x — X760 }+(" o) ‘1’

j=1
= 0p(n™1/%)

and, for any £ > 0,

sup [D(x)| = Op (n~Y/2+¢h=12(logn)).
x€X
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The next lemma follows immediately from Lemmas 5 and 6.

LEMMA 7.

BEBxEX

sup sup |2(x7 5, 8) —g(x" o) — ()Y { - &(X750) }
j=1

x Kp{Gx — X)T 8o Yv(XT o) ™ = 6(x, B)| = 0p (n"1/2)

and, for any £ > 0,

sup sup [2(x"5, ) — g(x7fo)| = Op (n™}/*(logn)? + n~H2*ER7H),
BeEBxeX

We need a similar result for g'(xT 3, ) — g'(xT 8,) to complete the description
of w(x, B3). The required results are given in Lemmas 8 and 9.

LEMMA 8.
sup sup |g'(x7 8, 8) — g’ (xTBo)
BEBxeX
(k) ™Y (Y- 8 (X7 0) Y (5 X ) (7h)
k=1

+{8("5,8) — 8" o) 7' (" 5o) Y (=" o)
— {P@, B — 7 (x"Bo)g' (" Bo) — 7 (<" Bo)g (=" Bo) }v(x" o)
+v(xTBo)g’ (x7 Bo) {’Y (=78,8) — (xTﬂo)}’Y(xTﬁo)_2

+8(x"00) { Qx, B) 7/ (") }v(xTﬁo)_li = 0, (n"112)

and, for any £ > 0,

sup sup [g'(x7B,8) — &' (x"Bo)|
BEBxEX

=0, (n€h3(1ogn) +n~Y2(logn)® + n-1/2+€h-3/2(1ogn)).

PrROOF. Apply Lemmas 2, 3, 4 and 7 to g'(xT8, 8) — g'xT3,). O
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LEMMA 9.

sup sup
BEBxEX

w(, )+ Ju{(x" o) &' (" bo)
«{2(75.6) - £("80) V' {g(0) )V {aT0) }
~ {1 (60) } & (78.8) & (7o) }V {7 0) )
~ {578,8) - v(x"80) }Ii{7(=" 1) &' (+" o)
v{g(="50) }

-1

=0, (n"1/?)
and, for any £ > 0,

sup sup |w(x, B)| = Op (néh3 + n~Y2+Ep=3/2),
BeEBxeX

Proor. Apply Lemmas 2,6 and 8. O
The last two preliminary lemmas describe the behavior of fi.

LEMMA 10. Forany £ > 0,

sup sup |(nh)~ IZXKh (e = X)TB) — p(xTBo)v(x" o)
BEBxeX j=1
~ Ry [ XK ((x - X)) — EXK (2 = X)) |
j=1

— hEX Ky (& — X)7) — K (Gx - X)"60)]| = O(nh?)

and

sup sup
BEBxEX

= 0, (nth® +n~1/2+Ep=1/2),

(nh)~ 1ZXKh ((c = X)TB) — p(xT Bo)v(xT Bo)

Jj=1
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LEMMA 11.

sup sup
BeEBxeX

A(x"B,6) — u(x"po)

+@) 1Y (XK (G- X)78) — EXK, (& - X)) |

Jj=1

+h ™ EX Ky (0 — X)TB) — Ki (& — X)7 o) | (<" o) ™

— 1(xTBo) {(nh)‘1 zn: [Kh (x - X)"B)

j=1

— EK;, (s — X)78) |y (" o) "
~ u(& B0)hE K (6 — X)TB) — Ko (e — X7 )]

SENE T
and, for any £ > 0,

sup sup |A(x"B,8) — n(x"Bo)| = Op ((n€h3 + n’l/2+€h‘1/2)(logn)2>.
BEBxeX

ProoF. The result follows immediately from Lemmas 2 and 10. O

We are now able to complete the proof of Theorem 2. We have

sup T3] =0,(1) and sup [T4| =0,(1)
BeB BeB

by Lemmas 6 and 10 and 5 and 9, respectively. Next, note that the derivatives
of J,, are nonzero only on (a,a + ) so that with probability which can be made
arbitrarily close to 1, w(x, ) is nonzero only on the set x € X. Since 6(x, 3)
= {x — u&xTB)}T(B — Bo)g’(xT Bp) + O(n~logn) uniformly on X x B, we have

-1

sup Tz| = sup |n™/% ) d(X, ) {3(x78.5) )& (x76,8)V{8(x75,5)}
- Y 0l (X7 0) o (X7 0) "V {8(XT o)}
i=1

x n'2(3 - Bo)

<Bn7'Y " |2:07g (X[ 6o)| sup sup [wx, B)| +0p(1)
ic1 BEBxeX
= Op(l)

by Lemma 9.
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Next, write

Ty = n=3/2p-1 X":Q,J { XTﬁO)}g'(XiTﬁo)V(g(XiTﬂo)>—l

{a(x ﬂo,ﬂo) oy (XT8)

{ (X7 6o) } K (X — X))7 Bo)

+n~1/2 { (XTﬂo)}(nh) IZQK" (Xi - X;)" o)

Jj=

x Jo{V(X750) }&' (X7 o) / { ((XiTﬂo))’Y(XiTﬁo)}+0p(1)

= Sl +S2 +Op(1),
say. Then
s o725 (3750 57 0,08,

50 |S1] = 0,(1). Also, let (Z, W) be independent of but with the same distribution
as (Y,X). Then for any fixed ¢, let

u(y,x,z,w) = (z —g(wTﬂ0)>h'1tT{x - ,u(xTﬂo) }Kh ((x = w)TBo)
< T {1(6780) b () V{7 o) } (7 0) "

Since Eu(y,x,Z,W) + Eu(Z,W,y,x) = 0 because E(Z|W = w) = gw” () and
EW | W75, = w” Bo) = w7 o), we can write

n
SZ = n_3/2 Z {u(Yh)(i’ YJ’X]) + U(YG‘,XJ’, Yini)} + n_3/2 Z u(Yi7)(ia YiaXi)7
i<j Jj=1
where ¥; . {u(Y;,X;,Y};, X)) + u(Y};,X;,Y;, X))} is a martingale with respect to
Fn=0{(Y1,X1),...,(¥,,X,)}. Hence

2
E{n_3/2 Z {u(yiyxhyjaxj)' + u(yj)xjayiaxi)} }
i<j
= {n"3n(n - 1)/2}E{u(y;, x:, ;%)) + u(yj,xj,yi,xi)}z
and it follows that 75 = 0,(1).
To show that supg ¢ 5 |T1| = 05(1), use Lemmas 2, 3, 4, 7, 8 and 9 to approxi-
mate w(x, 3) and then apply arguments similar to those used in the treatment

of Ts. Finally, we can show that supg ¢ 5 |Tim| = 0p(1) for m = 6,7,8,9 and 10 by
simple modifications of these arguments.
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