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PROJECTED TESTS FOR ORDER RESTRICTED ALTERNATIVES

By ARTHUR COHEN,! J. H. B. KEMPERMANZ AND H. B. SACKROWITZ!

Rutgers University

Consider the model where X;;, i = 1,2,...,k, j = 1,2,...,n, are inde-
pendent random variables distributed according to a one-parameter expo-
nential family, with natural parameter 6;. We test Hy: 6; = - - - = 6}, versus
H;:0e€€—{6:0 € Hy},where 0 =(61,...,6;) and Cis a cone determined
by A6 > 0, where the rows of A are contrasts with two nonzero elements. We
offer a method of generating “good” tests for Hj versus H;. The method is to
take a “good” test for H, versus Hy: not Hy, and apply the test to projected
sample points, where the projection is onto €. “Good” tests for H, versus
H, are tests that are Schur convex. “Good” tests for Hy versus H; are tests
which are monotone with respect to a cone order. We demonstrate that if the
test function for H, versus Hj is a constant size Schur convex test, then the
resulting projected test is monotone.

1. Introduction and summary. Consider the model where X;;,i = 1,2,
...,k, j=1,2,...,n, are independent random variables distributed according
to a one-parameter exponential family, with natural parameter 6;; that is, the
density of X;; is

(1.1) inj (x,-j | 09,') = exp [—M(ei) +xij6’i] h(xu)

The dominating measure for each Xj; is Lebesgue measure on (—oo, co) for the
continuous case, and counting measure for the case where the X;; are integer
valued. Let S; = ¥7_ X;; and 8’ = (Sy,...,S;). Clearly S is a sufficient statistic
for the model and each S; is exponential family with natural parameter 6;. The
joint density of S is

(1.2) fs(s|0) = exp[-M*(0) + /6] h*(s),

where 0’ = (61,6,,...,60:).

We consider the null hypothesis Hy: 6; = 6; = --- = 6, and alternatives
H;:0 € C—{6:0 € Hy}, where C = {0: A > 0} and A is a r x k matrix
whose rows are contrasts. The set C is a polyhedral cone. Specific matrices A
describe the simple order alternative {6; > 65 > --- > 6}, the simple tree order
{6; > 6,,i=1,2,...,k — 1} and umbrella alternatives, for example, {6; <--- <
0j > 61> - > 6,}. We will also refer to another alternative, Hy: not Hy.
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We offer a method of deriving “good” tests for H, versus H; when the rows of
A are pairwise contrasts such that no row is a nonnegative linear combination
of the (r — 1) remaining rows. This includes the cases of simple order, tree order
and umbrella order. Our method of deriving “good” tests entails consideration
of a family of tests for Hy versus Hy. Tests of constant size o which are Schur
convex represent a complete class of tests among the class of constant size «
permutation invariant tests. That is, any constant size o permutation invariant
test which is not Schur convex is inadmissible. Furthermore, if A(x;;) in (1.1) is
log-concave, then the Schur convex tests are unbiased for testing Hy versus H,
[see Cohen and Sackrowitz (1987)]. If ¢(s) is a constant size Schur convex test,
we suggest

(1.3) ©*(s) = p(Ps|C)

as a test for Hy versus H;, where Ps|C is the projection of s onto the cone C.
We demonstrate that if € is such that the rows of A have exactly two nonzero
elements, then the projected test is monotone with respect to the cone order
induced by C*, the dual of C.

In many cases the projected test is unbiased and admissible for testing H)
versus H;. The idea of using a projected test first appears in Cohen, Perlman
and Sackrowitz (1991) for the simple order case. The problem of testing H,
versus H; has received considerable attention in the literature. The book by
Robertson, Wright and Dykstra (hereafter, RWD) (1988) discusses this problem
extensively and offers many references. Most often the likelihood ratio test is
studied although other test procedures are studied, for example, in Conaway,
Pillers, Robertson and Sconing (1991) and Mukerjee, Robertson and Wright
(1987). Lee (1987) studies the multinomial distribution when considering H)
versus H,. He also proposes test procedures that relate to statistics that are
relevant for testing H, versus H,.

In addition to having the desirable monotonicity property, the projected
tests recommended here are often easy to compute and perform very well in
simulation studies.

In deriving the result for projected tests we develop a lemma and a converse
to the lemma that has independent interest. Roughly the lemma asserts that
if C is such that the rows of A are all needed (i.e., no row is a positive linear
combination of other rows) and each row has exactly two nonzero elements,
then points ordered according to the cone C*, say, u < v, project into € in such
a way that Pu | C is majorized by Pv | C. (Definitions will be given in Section 2.)
We also prove the converse, namely, that if projections are majorized as above,
then C is such that each of its rows has exactly two nonzero elements. This
converse then enhances our results since it demonstrates that projected tests
can be shown by these methods to have the desirable properties only under the
assumption we make about C.

In the next section we give preliminaries. In Section 3 we discuss projected
tests.
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2. Preliminaries. In this section we give some definitions and some
known results concerned with polyhedral cones.

Letal,i=1,2,...,r, denote the rows of A. Then the cone € = {6 ¢ R*: ajf >
0,i=1,...,r}. Next let I" denote the space spanned by a,, ..., a, and define

r
r, = {OeRk:0=Z)\iaiwhere/\i20, i=1,2,...,k—1}.
i=1

The dual of € is defined to be €* = {v € R*: '0 > 0 for all 6 € C}. It is known
that C* =T, [see Van Tiel (1984)]. Described in other words, a; are the genera-
tors of the dual of C.

A cone X induces a cone ordering (<) on a set A C R* as follows:
Forue Aandv e A,

(2.1 u<vlX] iffv-ueXk.

In other words, in the case of a polyhedral cone, u < v[X] if v —u = ¥}_,b;2;,
where b; > 0 and z; are the generators of X.
From here on, unless stated otherwise, A = R¥.

DEFINITION 2.1. A function f on R* is said to be monotone with respect to
the cone ordering (<) if, whenever u < v[X],

(2.2) fla) < f(v).

DErFINITION 2.2. In R*, u < v (v majorizes u) if 2{; 1Uo < 2{; vand = 1,
2,...,k—1,and Ef= 146 = Ef’= 1VG), Where uay > uig) > -+ > ugy,) are the ordered
components of u [see Marshall and Olkin (1979)].

DEFINITION 2.3. A function f is said to be Schur convex if, whenever u < v,

(2.3) f(v) > f(a).

DEFINITION 2.4. Let B be a closed convex set in R%. The unique closest point
of B to a point u € R* is said to be the projection of u onto B and is denoted by
Pu|B.

3. Projected tests. To test Hy versus H; we are recommending the pro-
jected tests defined in (1.3). We prove that such tests are monotone with respect
to the cone ordering induced by C*. To start we have the following definition.

DEFINITION 3.1. For 0 = (64,...,6;) and for any permutation of the coordi-
nates we define a simple order cone as {6: §;, < 6,, <--- <6, }. Note that there
are k! possible simple order cones.
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It may be helpful to the reader to realize that when we write the rows of A
are contrasts with two nonzero elements, then without loss of generality this
means that each row has one element +1, one element —1 and all other elements
are 0.

Next we prove the following lemma.

LEMMA 38.2. Assume that the rows of A have exactly two nonzero elements.
Assume C is nondegenerate. Then € is a closed convex cone which is the union of
simple order cones.

Proor. The conditions on the rows of A imply that C = N;_,H;, where
H; = {6: a;0 > 0}. Since each H; is convex, C is convex. Furthermore, since a;
is a pairwise contrast each half-space H; is a union of simple order cones which
do not overlap, except on their boundaries. Then € is a union of those simple
cones that lie in all of the half-spaces. O

Since C is a convex union of simple cones, express € = Ut A;, where A; is
some simple order cone. Note that C* = N | A/. We need a series of lemmas in
order to prove the main result of this section. Toward this end let W be a
polyhedral cone with generators wy,ws, ..., w,. For every set of integers 1 <
i1 <ip <---<iyg < p, where g > 1, define

q
B.1)  W(Gy,...,ip) = {WG W:w = Zcijwij,cij >0,j= 1,2,...,q}.

Jj=1

Also let W(¢) = {0}. Then W = {0} UW(1) U --- U'W(1,2,...,p). The notation
(-,-) denotes inner product.

LEMMA 3.3. Let vy and vy be such that their projections vi = Pv;|W ¢
Wiy, ..., ig) for j = 1,2 and some set iy, . . .,ig. Then, for all w € 'W,

(3.2) (Vvi-vivi-w)>0, i=1,2;=12

Proor. Firstleti= 1. By RWD [(1988), Theorem 8.2.2, page 375],
(3.3) (vi—vi,vi—-w)>0 forallwe W.
Define w(+e) = vi £ e(v; — v%). Since v¥ and v} are in Wy, . . ., ig) and the c; s

in (3.1) are strictly positive, there exists ¢ > 0 sufficiently small that w(+¢) €
Wiy, ... ,ig) € W. Thus from (3.3) it follows that

0 < (vi —V},vi — w(te)) = <V1 - vi, Fe(vs — v{)>,
which implies

(3.4) (vi—vi,vs—vi)=0.
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Next note that, by (3.4) and (3.3),
(vi— Vi, V5 —w) = (v1—V}],vi —vi+Vv]—w) > 0.
This proves the lemma for i = 1. For i = 2, the proof is the same. O

LEMMA 3.4. Ifv;and vy aresuchthat,forj = 1,2,v; =Pv;|W e W(iy,...,i)
for some set (iy,...,ig), then y Vi + (1 —y)vy = P(yvi+(1 —7)ve) |[W,0< vy < L

Proor. For any w € W, consider

<(’le +(1—yIvg) — (Vi + @ = v3), (7w + (L —y)v3) — w>
= <’Y(V1 —v}) + (L= (va —v}), 7 (Vi —w) + (1 — (v} — w)> >0

by Lemma 3.3. The result now follows from RWD [(1988), Theorem 8.2.2,
page 375]. O

Next we apply Lemma 3.4 to € = U™ | A,.

LEMMA 3.5. Assume that the rows of A have exactly two nonzero elements.
Fix sy and sy. There exist N < coand aset 0 < v; < v < --- <y < 1such that

P(’ysl +(1 - 7)82) | C= P(’YS]_ +(1- ’)’)Sz) |Aij7
for all v; < v < ;41 and some A

PRrROOF. Assume the statement is false. Then there must exist a sequence
0 < 1 < P2 <---<1and a simple order cone A;. such that

(3.5) P(Bis1+(1—B)sy) | € € A iff jis odd.

Since A;- is a polyhedral cone it can be partitioned into subsets W(iy, . .., i,) in
a manner similar to (3.1). Since there are only a finite number of such subsets,
there must exist at least two odd integers j* and j** such that P(g;s; + (1 —
Bj)s2)| C is in the same subset for both j = j* and j = j**. By Lemma 3.4,

/6_]'** ;ﬂ * ﬂ_ﬂj*
36) P 1- C= g g P |C+ b
(3.6) (Bs1+(1 - Bsg)| B — B ° €+ B — B

where s* = 3j.51 + (1 — (+)sg and s** = Bjuxs1 + (1 — (B )sy, is also in the same
subset for all 5« < § < ;«.. Thisis a contradiction for the 3 i where j* < j < j**
and jis even. O

Ps* e,

LEMMA 3.6. Assume that the rows of A have exactly two nonzero elements.
Ifs" > §'[C"], then Ps"|C = Ps'|C.
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Proor. Marshall and Olkin [(1979), page 426] note that, on D = {u: u; >
.-+ > u;}, majorization is a cone ordering and the generators of the cone in-
ducing the ordering are (1,-1,0,...,0),(0,1,-1,0,...,0),...,(0,...,0,1,-1).
In fact this cone is

J k
M:{x: in20,j=1,...,k—1,in=O}.
i=1

i=1

A Schur convex function is interpreted as a monotone function with respect to
majorization. Now note that the cone order induced by a simple cone A; is the
same as the cone order induced by the majorization cone on A;.

Next suppose s” > s'[€*]. This implies we may write s” = s’ + A\a, where A > 0
and \a € C*. However, C* = NA; and so \a lies in every A/, j = 1,2,...,m. By
the remark above concerning the cone ordering on A;, a € A} implies s” - §'.
Now if Ps”|C and Ps’|C both lie in the same simple cone A;, the result of
the lemma follows from Robertson and Wright [(1982), Corollary 2.3]. (There
ISO* on A; and majorization are equivalent.) If Ps” | € and Ps’ | C are not in the
same simple cone, we need to use Lemma 3.5, which asserts that there is a line
segment connecting s’ to s’ + \;a, say, such that the projections P(s + Aa) | € are
into the same simple cone (say, A;) for all \,0 < X\ < A;. All such points preserve
the majorization order by virtue of the argument above, that is, P(s’ + \;a) | C >
P(s’ + Aa)| € for 0 < X\ < ;. Furthermore, for A > A, P(s’ + Aa)| C passes into
another simple cone, say, As. By continuity of the projection operator [see RWD
(1988), Theorem 8.2.5, page 376], the projection P(s’ + A\;a) | C must lie on the
boundary of A; N Ay. Next take the segment of the line s’ + \a that projects into
Ag and use a similar argument to note that the majorization ordering preserves
monotonicity among points along the segment as ) increases. Since Lemma 3.5
states there are a finite number of such line segments, proceeding stepwise
yields the conclusion of the lemma. O

A converse to the lemma, which enhances the results of the paper, will now
be stated.
Let 0H; and 9C denote the boundary of H; and C, respectively.

LEMMA 3.7. Assume 0H; N OC contains a nonempty set U; which is open in
the relative topology of 0H;,i = 1,2,...,k — 1. If s" > s’ implies Ps"|C » Ps'|C,
then each row of A has exactly two nonzero elements.

The proof is omitted.

Before stating the main result of this section some clarification of the notion
of our.projected tests should prove helpful. The size a Schur convex test (s) can
be performed conditionally given T = ¢, and because of the Neyman structure
of the test the conditional size is also «. This is also true for the projected
tests of (1.3) p*(s) for testing H, versus H;. In other words, critical values are
determined for each fixed T' = ¢ in actually carrying out a test. Further, note
that if the test ¢ has size « for testing Hy versus Hy, the projected test ¢* will
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not have size o for testing Hy versus H;. However, this is not a problem in
achieving size « for the projected tests since conditional critical values yielding
size « are appropriate and obtainable.

THEOREM 3.8. Assume that each row of A has exactly two nonzero elements.
Let ¢(s) be a Schur convex test function of constant size. Then the projected test
of size o is monotone with respect to the cone ordering induced by C*.

Proor. Lets” > s'[C*]. From Lemma 3.6 we have
(3.7 Ps"|C - Ps'|C.

Now consider the projected test of size «, ¢*(s) = (Ps| C), where ¢ is a Schur
convex function. We have from (1.3) and (3.7) that

(3.8) ©*(s") = p(Ps'|C) < p(Ps"|€) = ¢*(s").
Thus ¢* is monotone with respect to the cone ordering induced by €*. O

Some discussion regarding the implementation of projected tests is in order.
Since the test is performed conditionally on T' = ¢, simulation can be used to
determine a conditional p-value. For the observed value of T' = ¢, the conditional
distribution of S|7T under Hj is used to generate samples via Monte Carlo
methods. For each sample the projected statistic is calculated and the percent-
age of times the statistic exceeds the observed value of the statistic yields the
p-value of the observed statistic.

It would also be possible to use Monte Carlo methods to compute some
conditional power function values for some points in H;.

We conclude this section with some remarks on specific alternatives. When €
is the simple order cone, the projected tests are monotone and are also unbiased
[see Cohen, Perlman and Sackrowitz (1991)]. When C is the simple tree cone,
unbiasedness again follows. To see this we need to refer to the result of Cohen
and Sackrowitz [(1990), Theorem 3.1]. That theorem claims that the projected
test ©*(s) is unbiased of size « if it is of size ¢, if it is monotone with respect
to the cone ordering induced by C* and if it is Schur convex in sy,...,s;_1, for
fixed ¢ and sp, where s, represents the statistic corresponding to the control
population. In the proof of Theorem 3.8 we indicated that ¢* is monotone with
respect to C*. Hence to prove unbiasedness requires showing the Schur convex
property for fixed ¢ and s,. We claim that this last property follows using the
properties of projection onto the simple tree cone and properties of majorization.
We omit the details of a proof.

We note that the umbrella alternative or unimodal restriction alternative
represents another cone that can be treated with the results of this paper [see
RWD (1988), page 85].

In many special cases admissibility of the projected tests can be shown. This
is especially true in the discrete cases and often for tests in the normal case by
using a theorem of Stein (1956).
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For the cone representing a convex alternative [one row would be (1, -2, 1,0,
..., 0)] or a cone representing the star shape ordering [one row would be (1,1, -2,
0,...,0)], the results of this paper cannot be used and in fact some projected
tests are not monotone.
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