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INFORMATION AND ASYMPTOTIC EFFICIENCY IN SOME
GENERALIZED PROPORTIONAL HAZARDS MODELS
FOR COUNTING PROCESSES!

By I-SHOU CHANG AND CHAO A. HSIUNG

National Central University and Academia Sinica

Proportional hazards models with stochastic baseline hazards and
estimators of the relative risk coefficient in these models were proposed
by Prentice, Williams and Peterson and by Chang and Hsiung in medical
and industrial contexts. The form of the estimating functions recommended
varies according to the form of the unknown stochastic baseline hazards.
This paper examines the same estimation problem in the context of large-
sample theory. It is shown that the proposed estimators are regular, asymp-
totically normal and asmptotically efficient. Asymptotic information and
representation theorems in the sense of Begun, Hall, Huang and Wellner
are also provided for these models.

1. Introduction and motivations.

1.1. Generalized proportional hazards models. The proportional hazards
model of survival analysis and its analysis by the method of partial likelihood
originate in the work of Cox (1972, 1975). Since its introduction, it has been at
the center of many important statistical developments. In particular, Andersen
and Gill (1982) formulated Cox’s regression model for counting processes and
studied multivariate failure time data using martingale methods.

To be precise, Andersen and Gill (1982) considered K-variate counting
process N1(#) = (N11(2),...,Nig(®)) for which the intensity of Ny4(¢), relative
to a filtration of N;(¢), has the form

(1.1) A() = Ao(®)Y 14 (t)exp[0Z (D)),

where A\jp(-) > 0 is a deterministic baseline hazard rate function, Y3;(-) > 0
and Z;,(-) are bounded predictable processes and § € © C R is the relative risk
regression coefficient.

While the counting process formulation (1.1) of Andersen and Gill (1982) sig-
nificantly enlarged the domain of application of proportional hazards models
and the related concepts of Cox (1972, 1975), Prentice, Williams and Peterson
(1981) indicated that, in medical research and in industry, there are propor-
tional hazards models for multivariate failure time data which do not fall in
the realm of (1.1). The situation is that the baseline hazard rate \;o may be a

Received October 1990; revised September 1993.

1Research partially supported by National Science Council of the Republic of China.

AMS 1991 subject classifications. Primary 62M99; secondary 62J99, 62E99.

Key words and phrases. Asymptotic information, effective score, martingale, semiparametric
model.

1275

G\]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ% 2
The Annals of Statistics. MIKOJIS

. ®
Wwww.stor.org
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random process depending on the past history of the counting process, and the
hazard rates for different values of 6 are still proportional.

A simple example with random baseline hazard rate in the notation of (1.1)
is described by setting

(1.2) A10(8) = Zhi(t - Tli)l(Tu,Tu‘u](t)’

i=0

where T4; = inf{¢ > 0| Eiﬁ 1N () =i}, and A;(-) > 0is a deterministic function.
An important special case of (1.2) is

(1.3) A10(®) = Z hil(Tn, Ty 1](t)’
i=0

with h; being constants.

Just as in Andersen and Gill (1982), the statistical problem we are interested
in for these and some other generalized proportional hazards models is to esti-
mate the relative risk regression coefficient 6 based on Ny, ...,N,; and related
observables, treating h; as nuisance prameters. Here Ni,...,N; are indepen-
dent and indentically distributed K-variate counting processes with  being the
number of study subjects and K the number of different failure-type classes for
each subject, which implies that they have common parameters 6 and A;.

Chang and Hsiung (1991a) and Prentice, Williams and Peterson (1981) pro-
posed estimators for this problem. The form of the estimating functions they
proposed varies according to the size of the infinite-dimensional nuisance pa-
rameter space, the number of replicates observed and the univariateness of the
counting processes. In this paper, we will focus on some large-sample properties
of these estimators and establish their asymptotic efficiency.

At this point, we would like to remark that models (1.2) and (1.3) represent
an enlargement of the nuisance parameter space in (1.1). One desirability of
this kind of enlargement from the theoretical perspective was explained in
Chang and Hsiung (1991b), where an E-ancillarity projection property of Cox’s
partial score function was established. We note that an analogous enlargement
of parameter space in the multiplicative intensity model for counting processes
was discussed in Millar (1989), which leads to the development of a general
local asymptotic minimax theory.

In the rest of this subsection, we will indicate the relevance of (1.2) in
applications by two examples. In an industrial context, we consider a machine
with K components. Let Ny;(¢) denote the number of breakdowns of the kth
component of the machine up to time ¢. Then (1.2) describes the situation that
components of the machine share a common baseline hazard rate which de-
pends only on the total number of breakdowns of the machine and the time
from last breakdown.

In a medical context, a two-sample special case of (1.2) studied by Gail,
Santner and Brown (1980) is described as follows. Assume K =1 and Z1;(¢) =0
or 1 for every ¢ > 0. Let N;;(t) denote the number of certain tumor occurrences



GENERALIZED PROPORTIONAL HAZARDS 1277

of the jth patient up to time ¢ in an experiment with J patients in total. Then
(1.2) means that patients having had the same number of tumor occurrences
are in a stratum assuming a common baseline hazard rate function for next
occurrence. As usual, the true value of 6 is a description of the treatment effect.

For more examples, we refer the readers to Prentice, Williams and Peterson
[(1981), Section 2] and the references therein.

1.2. Main results. Our purpose in this paper is to examine these gener-
alized proportional hazards models from the perspective of large-sample the-
ory. Our study of large-sample theory starts with the information calculations,
based on which the effective score functions can be obtained. In fact, the effec-
tive score functions are the limit of the estimating functions proposed by Chang
and Hsiung (1991a) and Prentice, Williams and Peterson (1981). We then es-
tablish asymptotic normality and regularity of the resulting estimators. This
together with information calculations and convolution theorems establishes
the asymptotic efficiency of these estimators in their appropriate models.

In this paper, we will consider four types of generalized proportional hazards
models. Model 1 is the well-known Cox model. Model 2 relates to (1.3), and Model
3 is (1.2). Model 4 includes both Models 2 and 3 as special cases.

We will see that the estimating functions proposed for these four models
are all different. In particular, the proposed estimating function in Model 4
is identical with its “effective score function,” and this is not the case in any
other model.

It seems that the underlying idea in our approach, including the derivation of
(optimal) estimating function, information calculations and the proof that the
resulting estimators are regular, is to exhibit certain structures of orthogonal
martingales, namely, martingales independent of the nuisance parameter and
its orthogonal complements. The idea is carried out by considering martingales
relative to the natural calendar time filtration in Models 1, 2 and 4. However,
we need to consider martingales relative to different filtrations to make this
idea rigorous in Model 3.

This paper is organized as follows. Section 2 fixes the notation and describes
generalized proportional hazards models. Section 3 studies the information cal-
culations and explains how to obtain the effective score functions or maximum
partial likelihood (MPL) equations. Section 4 presents the asymptotic normal-
ity of these resulting estimators. Section 5 gives local asymptotic normality
and convolution theorems and proves that MPL equations suggested in Section
3 lead to regular and, hence, asymptotically efficient estimators. Martingales,
stochastic integrals and related concepts used freely in this paper can be found,
for example, in Brémaud (1981), Gill (1980) and Elliott (1982).

2. Notation and the models. This section gives the notation and model
assumptions which are used throughout the paper.

Let Ny,...,N,,... be a sequence of independent and identically distributed
K-variate counting processes. Let F; ; be the self-excited filtration of N; namely,
Fj,¢ is the o-field generated by {N;x(s)|0 < s < ¢,k = 1,...,K }. Assume that,
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relative to J; ;, the counting process N;(t) = (Nj1(¢),...,Njx(¢)) has intensity
/\j(t) = (/\jl(t), RN /\jK(t)) of the form

2.1) Aja(8) = X jo@)Y jx(t)exp[0Z(2)],

where ) jo(-) > 0,Yj(-) > 0 and Zj,(-) are bounded predictable processes defined
for t € [0,00), and § € © € R is the relative risk regression coefficient. We
assume that © is a bounded set. Let M, (¢) = N (¢) — f(f Ajr(u)du denote the
basic martingales. The four models to be considered in this paper are described
as follows.

MobEL 1 (Cox’s model). Assume () = h(-) is a deterministic function for
everyj=1,2....

MODEL 2. Assume that

(2.2) /\jo(t) = Zhi(t)l(Tjinji+l)](t)’
i=0

where hg, hy, ... are deterministic functions and T'j; = inf{t > 0| Z)fﬂNjk(t) =
i}. Let b = (ho,hq,...). Equation (2.2) is slightly more general than (1.3). In
this case the shape of the baseline hazard function depends on the number of
preceding failures for the study subject. In addition, the baseline intensity A;(-)
for stratum ; depends only on ¢, the time from the beginning of study.

MoDEL 3. Assume that

(2.3) Xjo® =D kit - Ti)Lr

Jiy
i=0

Tjis 1>1(t)’

where hg, hq,... are nonnegative deterministic functions. Let A = (hg, hq,...).
For stratum i, h;(t — T;) depends on ¢ — T'j;, the time from the study subjects’
immediately preceding failure.

MODEL 4. Assume that

(24) /\JO(t) = Zhl( Tj17 LR} Tji"Xj].’ cee 7X:ji7 t)]-(T

i Tji + 1](t)7
i=0
where Xj; = k if Nj(T';;))—Np(T';) = 1 and h; is a nonnegative deterministic func-
tion. Let A = (hg, h1,...). In this case the shape of the baseline hazard function

depends on the whole failure time history, including the number of preceding
failures.

It is clear that Model 1 is a special case of Model 2, and both Model 2 and
Model 3 are special cases of Model 4. For Model 4, we need to assume K > 1.
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In all these four models, the statistical problem is to estimate 6y € ©, the
true parameter value, based on the data

(2.5) {N;@®),Y;(£),Zj#)|0 <t < ty, 1 <j <},

treating h as a nuisance parameter. Here Y; = (Yj1....,Yjx),Z; = (Zj1,...,Zx)
and ¢, is a finite positive constant, denoting the terminating time.

The following notation helps to describe the nuisance parameter space.

Let

Q; = {(tl,...,t,’)|0<t1 < - <ti},
H; = {h;|hi: Q x {1,...,K}} x [0,00) — [a,d] is a measurable function},

where 0 <a < b < 0.
The nuisance parameter space for Model 4is H = H; x Hy x - - - . We note that
H is a complete metric space with metric d defined by

d(h, g) = d((ho,hl,hm (80,81, - -))

2.6
(2.6) = sup ||h; — &l|,
i
where ||h; — g;|| is the supremum of |h; — g;| on its domain.
The nuisance parameter spaces for Models 1, 2 and 3 are regarded as subsets
of H and are denoted, respectively, by HV, H® and H®; H itselfis also denoted
by H@®.

3. Information calculations and effective score functions. The con-
cept of asymptotic information in semiparametric models was introduced in
Begun, Hall, Huang and Wellner (1983). The main thesis of their paper is that
asymptotic lower bounds for estimation of § with nuisance parameter are de-
termined by the geometry of the scores. Their methods involve (i) the notion of
a “Hellinger-differentiable (root-) density” to obtain appropriate scores and (ii)
calculation of the “effective score” for . Among many interesting ideas and ex-
amples, they discussed Cox’s regression model for survival data and calculated
its information to illustrate their methods. Later, a more powerful method for
information calculations was developed and applied again to Cox’s model for
survival data [Ritov and Wellner (1988)].

In this section we will study, adapting the framework outlined by Begun,
Hall, Huang and Wellner (1983), the information concept in generalized pro-
portional hazards models for counting processes, from which the “effective score
functions” can be obtained.

To ease the presentation, we begin the discussion with the more general
Model 4.

MoDEL 4. Let " denote the probability measure specified by § € ©, h €
H. Assume that H contains 1, which is the element whose ith component is the
constant function 1 definedon @; x {1,...,K} x [0, 00). Assume 0 € ©. It follows
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from the Radon-Nikodym derivative theorem for point processes [cf. Brémaud
(1981), pages 166, 187] that

(3.1

where L;, satisfies

La(t,0, k) = log Lyt 6, k)
t t
= / log)\jo(u)dek(u)+/ 6Zj,(u) dNp(u)
0 0

t
+/0 (1 -—)\jo(u)exp[6zjk(u)])ij(u)du

(3.2)
(¢S] ¢ t
= Z/ loghi(u)deki(u)+/o 0Z;(u) dNjp(u)
i=0Y0
0 at
+ Z/ (1 - hi(u)exp[Gij(u)])l(TﬁyTjM](u)Y}k(u)du,
i=0’0
where

Njp(u) = 1¢r

s Tjk+1](u)lvjk(u)
and h;(u) is an abbreviation of A,(T'jy,..., T}, Xj1, . .., Xji, ).

We note that (3.1) is the Radon—Nikodym derivative of POM relative to POV
on (2,5/) where §/ = ® }’= ,F; 1 Let M(Q, ;) denote the space of G/ measurable
functions on Q. Let Ly(9, 9;’ , P 1) be the space of square-integrable elements
in M(Q, §;). It is clear that L}/*(¢,6,h) € Ly(Q, 57, P V).

Let 60, 61y, - - - in ©, and let A, k), . .. in H. Assume that

(3 3) Jlimoo |\/c7((9(J) - 9(0)) - 5| = 0,

. Jim IV (b — hoy) = B]| =0, -

where 6 € Rand 8 € H. Here H is defined in the same way as H except that
la,b] is replaced by R and we require that elements in H have finite norm
d(h,0); HV, H® and H® are defined similarly. Sometimes we will use E(-) to

denote Eg,, ne)(-), the expectation taken at the true parameter (6(), k), to
simplify the notation.

PROPOSITION 3.1. Let Jy > 1 be a fixed integer. On (Q, 9;’ o, PO-Dy g5 J goes
to infinity, V/J (L},ﬁ 2(¢, 0y, hiay) — L},ﬁ 2(¢, 8.0y, h(0))) converges almost surely and in
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Lo to
1
QLZZ (t, 00, ho)
oY ,3 (u)
{ Z Z/ [5Z1k(u) + Z ” : 1(7',1 T,HI](u)] dJVIJk(u)}
j=1k=1

which will be denoted by o,(t,6, 3).

The proof for Proposition 3.1 is omitted here, because it is tedious and
straightforward. The details can be found in Chang and Hsiung (1991c). We
note that Proposition 3.1 holds when K > 1.

Note that

lowr, &, 8, DII3
2

e [ Biw)
(3.5) Tl h)){zzi/o [ jk(u)+26h(o @ <T'“T'”"(u)}

2
X d]lljk(u)} ,

where || |2 denotes the Ly-norm. Let

ZZ / [ ,k(u)+z hﬂ’(u) 1(T,,,T,,+1](u)}djwjk(u)

J=1k=1

be denoted by o, (¢, 5).
With (8.5) and the corresponding results for other models, we have the fol-
lowing definition.

DEFINITION 3.1.
. 4 =~ m
Im = mf{5§||a1(to,6, B3 eR,B e H >}

= inf{ E(gg, ho» (G1(to, /)" | 5 € H™}

is called the asymptotic information for estimation of 6o in Model m, m =
1,2,3,4.

The quantity I is important in the representation theorem for regular esti-
mators. In the following we will use a martingale approach and an appropriate
orthogonality argument to calculate I{™ for m = 1,2, 3, 4.

Let

K
(3.6) S90,8) = Yiu(t)exp[0Z()) 23 (),
k=1
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where g = 0, 1, 2. Consider the estimating function

@ (1)( w)
3.7) GPO,t) = ZZ / ( e(w) — s<°> e ))dek(u).

Jj=1lk=1

The following theorem establishes a relation between the asymptotic informa-
tion I,(k4) and E(gm), h(o))(Gf;l)(e(o), to))2 .

THEOREM 3.1. In Model 4,

1 2
(3.8) L2 = 3B, 10 (G5 001, 0)) ",
foreveryd =1,2,...,

Proor. Using the fact that

and

K ¢ S(.l)(a(o) u) o ﬂ(u)
S+ ‘ @) | dM(
Z/o Sj(.°)(9(0),u) — ho,i®) Ly zyen u} #(@)

are orthogonal martingales [cf. Chang and Hsiung (1991a), (2.17)], where 3;(u)
and h(o),i; (u) are abbreviations Of,Bi(le, ceey Tji;Ale; . y){ji) u)and h(o)’i(le, ey
T;i, X1, ..., X, u), respectively, we have, for 3 € H®,

2
(al(to,ﬁ) {Z/ [Zlk(u)"' Z h(ﬂl)(L:) )1(T1,,T1,+1](u)] dMlk(u)}

2
" Y (80, )
©9) { >, / [Zlk(u)— S<10> (Gons )}dMlk(u)
K to S(l) 9(0), ,Bl(u) 2
+{kz:1/° [S(O) (00, 1) Z h(o),,(u) (Tl,,Tlm](u)] dMy,(u)

Since predictable processes relative to the self-excited filtration of a counting
process admit representations of the form (2.4) [cf. Brémaud (1981), page 309],
we know

SP (6,0, < gr
(10)( o) &) _ hﬂl (_lz))l(TlnTli-yl](u)’
S (60, ) o ho,iu

for some §* = (83, 8,...) € H?. Again B (w) is an abbreviation for /(T}y, ...,
Tji,Xp1,...,Xj,u). This together with (3.9) shows that the minimum of
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E(gw),h«,))(?)z'l(r,‘o,,6’))2 is attained by choosing §;(u) = -6 (u),i = 0,1,2,.... Hence

I is equal to the first term in (3.9), which is in fact Eg,,, 1,)(G"(6(0), 20))%. A

straightforward calculation using again the orthogonality of certain martin-
gales shows that (3.8) holds for J > 1. This completes the proof. O

The proof of Theorem 3.1 indicates that the “effective score” in Model 4

is precisely Gf}‘)(e, t), the estimating function proposed in Chang and Hsiung

(1991a). This is mainly due to the fact that the enlargement of the nuisance

parameter space entails the existence of g* € H® for the representation of
SV (b0, ) /S (80), u). We note also that if K = 1, then G{P(4,¢) = 0. This is the
reason we need K > 1 in Model 4.

MoDEL 1 (Cox’s model). Let
1 J K
(3.10) S¥@,1) = 7. Z Z #(2)exp [0Z(®)] 25 ()
where ¢ =0, 1,2, and let
K
(3.11) s$90,)=E Y Yu()exp[0Zu(®)] Z{,@®).

k=1

With (3.10), we can express the Cox MPL equation as

S(l) 6,
(3.12) G, t)—zz / ( () — S(O)E u;)dek(u).

Jj=1lk=1
The following theorem gives the relation between the asymptotic informa-
tion Iil) and E(g(o), h(o))(GfIl)(e(o), to))z.
THEOREM 3.2. In Cox’s model,

2
b0
(3.13) I(l E(G«»,hw)) (Z/ (Zlk(u) W&%%)dMlk(u)> )

(3.14) = lim —E (G(D(e £ )>2
’ J oo o By, ko) \ 9 \Y(0),%0) ) -

Proor. Let 8 HY and k() € H?. Using the fact that

Z/ ( () — S(O)EZEZ: ;)dek



1284 I-S. CHANG AND C. A. HSIUNG

SP (0w, u) B
dM,
Z/ (S(O) (6c0), ) ¥ hotw) |

are orthogonal martingales, we have

2
Bu)
(Z / (zlk( s )>dM1k(u)>
2
(8.15) >E i/to Z (u)_w dMy,(w)
' U\ T 8900, ) *

= ZE(GP (00t0))

Taking limit in each of the three expressions in (3.15), we get

2
(8.16) lnf E(al(to,ﬂ) (Z/ (Zlk(u)— w)EZEZ), ;>dMlk(u)>

This completes the proof. O

and

Next we have similar results for Model 2, the proof of which can be found in
Chang and Hsiung (1991c¢).

MODEL 2. Let
1 J K
(3.17) S0,8) = j Z Z Lir, 1, ) OV 002+ OZ (1),

where ¢ = 0,1, 2. Let
(3.18) si2(0,t) = ES)(0,1).

Consider the estimating function

@ [ S(l) (0 u)
619 GP6,H-3"3" / Ziw) =3 eIy @) | dNG).
Jj=1lk=1 Sl J(a )

Then we have the following theorem.

THEOREM 3.3. In Model 2,

2
K to 0
(3.20) Iﬂ?) = Eq), hoy (Z/O (Zlk(u) Z (0) (0), l(Tu,Tun](u)) dMlk(u))
k=1

tOt

.1 2
(3.21) = Jll»moo jE(G‘(O), oy (G?) (0(0), to)) .
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One consequence of Theorems 3.2 and 3.3 is that in Models 1 and 2 the
“effective scores” are

J K (1
sH(0,u)

J= =

and

J K t &) 351)(0,11)
Yo /0 (zjk(w -y mmﬂw(u)) dMj(w),

Jj=1k=1 i=0 "1

respectively, which suggests the use of G(})(G, t) and Gf,Z)(G, t) as estimating
functions.

MoDEL 3. Therelevant martingale structures in Model 3 are different from
those in Models 1, 2 and 4. We will exhibit some martingales relative to filtra-
tions other than the self-excited one. By examining carefully the definition of
asymptotic information given in Definition 3.1, we are led to explore the follow-
ing filtrations and martingales.

Let

t
(3.22) Mjk(t) = Njk(t A\ to) - /0 )\jo(s)l(o’ to](s)ij(s) exp [GZJk(S)] ds.

Since M j;(¢)is an F; ;-martingale, we know M (T'j; +¢)is an 3} 7, ,-martingale.
This together with the fact that Tj;,1 — Tj; is an 7, +-stopping time shows
that

(3.23) M) =M (T +t AN(Tjie1 — Tji)) — Mp(T5)

is also an 3, T; ++-martingale.
Let

Njpi(®)=Nj ((Tji +tATjie1—Ti)) A to) — Njp(Tj; Nto).

Observe that

Tﬁ+t/\(Tﬁ+1—Tﬁ) '
M () = N ji®) — / 20(8) 10,11 (8)Y jx(s)exp [0Z ju(s)] ds
T,
Tﬁ +t/\(Tj,‘+1 - Tji)
FUURIES VICE / his — T} 10, 1) (6)Y ju(s)exp [6Z ju(s)]ds

Ji

t
= jki(t)—/o hi@lo,1;,, - 7n@) Lo, ) (T + u)

x Yp(Ti + u)exp [6Z 3(T; + u)|du.
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Let
ki, ) = hi) 1o, 1, , - T, W10, ) (Tji + 1)
X ij(Tji + u)exp [Gij(Tji + u)] .

Since the integrand in (3.24) is a predictable process relative to F; r, 4+, we
know that, foreachi, {N;,(¢);j=1,...,J,k=1,...,K}isaJK-variate counting
process with proportional hazards relative to the filtration

9:(iJ),t = U{?‘,Tﬁ+t|j= 17-~-aJ}a

and the common baseline function is 4;. This is a Cox proportional hazard
model. Therefore, if we were to use only information contained in ;) , , we
would certainly use the estimating function

J K ¢ QD)
3.25) Gio,H=>>" / <zjk(T,i+u) M)deki(u),
0

j=1k=1 gﬁ?f)w’u)
where
_ 1 J K
596, u) = i DD 10,1 - @0, 1) (Ti + 1)
Jj=1lk=1

x Y(T i + u)exp[0Z (T ; + u)]Z;?k(Tﬁ +u),
with ¢ =0,1,2. Let
59(6,u) = BS99, ),

forg=0,1,2.
Since fori#j, G }(9(0), to) and G7(6(o), to) are uncorrelated (cf. Lemma 3.1), we
are encouraged to combine these estimating functions and define

(3.26) GP0,t0) =Y G5(6,2),
i1=0

which hopefully may provide approximation to the asymptotic information I3
In fact, (3.26) was also proposed by Prentice, Williams and Petersen (1981) in
estimation of  and they expressed interest in developing asymptotic estimation
theory based on (3.26).

LEMMA 3.1. For each fixed J, {X!_, G0, t0) |1 = 0,1,...} is @ martingale
relative to the filtration 3|\

PROOF. It is obvious that Gi(f(),to) is F(}, -measurable. Besides, using
the fact that G¥(6(q), ?) is an F{,, ,-martingale [cf. (3.25)], we know

E(G5(80),t0) | F( ), 0) = G3(6(0), 0) = 0.
This completes the proof. O
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It follows from Lemma 3.1 and the quadratic variation formula for martin-

gales that

1 1
E ( Z G, to)> ZE (G5(6), to)
i=0 iz0
I J
SZZZC E(Tji1—Tj) Ato
0jolko1

SC JK - ty,

(3.27)

for some constant C, for every I.

THEOREM 3.4. In Model 3,
5 (00, 4) i
(3.28) I¥®= ZE(Z/ (Z1k(T1; +u)— (9(0)’ )>dM1ki(U))
i=0 ), U

(3.29) = Jhmoo e}]-,E (Gf?)(o(o), to))z.

ProoF. Using Lemma 3.1, (3.27) and the fact that the martingales

ZZ / <Jk(T,, +u) - ;(;’)Ee“”’ )>dM,~ki(u)

Je1k=1 B0y, )

J @
S; J 0(0)7 Bi(uw)
_S_ E L dMy,;
/ <S(0) 0(0)’ h(O),i(u)) jk (u)

Jj=

and

are orthogonal, we have
1 2
FE (fo’ (6 t0)>

= } iE(Gj(B(Q), to))2

! 2
1 oo J K to gv(l (9(0) u)
_1lsg / (T + ) — 208 ) g ()
(3.30) J z% (J - Z 0 ( e\ L ji + U S( )(9(0)’ ) ki U
2

~
n
(=}

k=1

o] to 9 )
g Tyt - 5200

Z 2 /0 ( w(Ty +u) s‘°>(0(0), 2) 1ki(w)

1 (¢S] J K to Bz(u) dM 2
< :IZE ZZ/O (ij(Tji"'u)_m) ki) |
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Taking the limit in (3.30), we get

. 1 2
Jhm jE (Gg) (0(0), to))

2
(55 to 0 ’
(3.31) =§% (Z / (Zlk(an) ~‘°)EOEZZ, ;)dMlki(u))
2
Bi(uw)
— (Z/ (Zlk(TnHt) Fon i@ )>dMlki(u)> .

The proof is complete. O

I/\

4. Asymptotic normality. Let 5}”’) be the solution of Gf}")(-, tg) = 0; é}m)
is called the maximum partial likelihood estimator (MPLE) of the relative risk
coefficient for Model m. The purpose of this section is to establish the asymptotic
normality of 6 8™ in Model m.

There are two subsections in this section. Section 4.1, treats Models 1, 2
and 4; Section 4.2 treats Model 3. Since the asymptotic normahty of 0(1) was
established by Andersen and Gill (1982) and the asymptotic normality of g,
for m = 2, 4, can be established in a similar, although more complicated manner,
we will omit the proofs and give only the statements with important formulas
for later use. The detailed proofs can be found in Chang and Hsiung (1991c).
The case for 0}3) involves deeper analysis of the martingale structures. We will
supply some details for it.

4.1. Asymptotic normality in Models 1, 2 and 4.

MoDEL 1 (Cox’s model). Andersen and Gill (1982) discussed this case in a
more general setting. We will present it in a form suitable for variance compar-
ison.

Observe that the quadratic variation process

— ! (1) 2
(4.1) < 1 Gf,l>(90,.)> =/ h(u)<sf’2)(0°’u)_w—>du,
t 0

A Sf;))(oo, u)
which converges in probability to
¢ (1) 2
_ 2) _ (3 (007 u))
(4.2) Vi) = /o h(u) (s (6o, u) 00, u) du,

where S¥(9,t) and s(9, £) are defined in (3.10) and (3.11), respectively.

PROPOSITION 4.1. The process (1/ VI )Gf,l)(eo, t) converges weakly on DI[0, to]
to a continuous Gaussian martingale with variation process V1(t) given in (4.2).
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THEOREM 4.1. If Vi(tg) > 0, then v J(0; v — 6o) is asymptotically normal
with mean 0 and variance (Vy(ty))~1.

MODEL 2. Let S{(4,t) and s2(6,#) be defined as in (3.17) and (3.18), re-

spectively. Then on © x [0, %], Sg’f,(o, t) converges to sﬁ")(o, t) uniformly with
probability 1.
When 6 = 6y, we know

(4.3) G(z)(oo,t)-ZZ/ Jk( )— (ag(eo,u)l(Tﬂ-,Tﬁu](u) dlujk(u):
j=1k=1 S (0, w)

and the quadratic variation process

= - [ (1)
(4.4) < 1 fo)(eo,.)> =3 / h,-(u)(sgf)(go’u)_ (880, 1))* )du’
¢ i=0 0

\/27 Sf?])(HOa u)

which converges in probability to

o) t (351)(00, u))2
(45) Vg(t) = z2=(:)/0 h,(u) (SEZ)(G(),U) - —s%-)— du

PROPOSITION 4.2.  The process (1/+/JJ )G(Z)(Oo, t) converges weakly on DI0, t,]
to a continuous Gaussian martingale with variation process Vy(t) given in (4.5).

THEOREM 4.2. If Va(to) > 0, then VJ(@P — 6y) is asymptotically normal
with mean 0 and variance (Vy(ty))~L.

i

MoODEL 4. Let SJ(.")(O, t) be defined as in (3.6). We know that the quadratic
1
(4.6) ( —=Gy(6o,")

variation process
( (1)(0 u))

which converges in probability to

¢ ' (S(l)(0o, u))2
(47) V4(t) = ‘/0 E)\lo(u) (ng)(OO,U) - w du

t

PROPOSITION 4.3. The process (1/v/J )G(4)(90,t) converges weakly to a con-
tinuous Gaussian martingale with variation process Vy(¢) given in (4.7).

THEOREM 4.3. If V,(ty) > 0, then \/3(554) — 6o) is asymptotically normal
with mean 0 and variance (V(ty))~1.
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4.2. Asymptotic consistency and normality for Model 3.

4.2.1. Asymptotic consistency. Let

J K t ~
560,0= 33" [ (024 + )~ 1og (180, ) AN (w),

Jj=1k=1

X50,8) = }( 5(0,8) — C5(00), 1))

J K ¢ =0
355 [ (- o o -ton S Yt
0

0
j=1k=1 SEJ)(G(O),U)

where S’ﬁ?} is given in (3.25).
To get the asymptotic consistency of 67?) , it suffices to show that the maximum

of £, Xi(-, o) converges to 6oy in probability. For this, we will first establish
three lemmas.
Let

: 1 L& ( SO6,u)
Al (0, t)== / 0 — 0( ) Zk(T P u) — log =i ,u~k~(9(0), u)du
Y ;kzl 0 o) Zn(T SOe,w)

‘ SO 1 g('?])(o’ u) SO hiwd
= o (‘9 - 9(0)) iJ(o(O)a u) — log m iJ(0(0)$ u) |h(w)du,
ig\0(0)
where log(0/0) = 0. .
It is easily seen that, for ¢t > 0, X4(6,¢) — A%(6,¢) is an F(;, ,-martingale. As a
consequence, we can calculate its quadratic variation process as follows:

1 LE S’EO)(H, u) 2
(4.8) = ﬁ Z Z/O ((0 - 0(0))ij(Tji +u)— ].Og :_L___))

0
je1k=1 589 60y, u
X wiki(f0), w)du,

which converges to 0 in probability as J goes to infinity. . ‘
Another important consequence of the fact that X }(9,£) — A4(6,¢) is an F(;, -
martingale is the following martingale structure.

LEMMA 4.1. For fixed J, {X!_ (Xi0,t0) —A4(0,¢0)) |1 = 0,1,...} is @ martin-
gale relative to the filtration F(} .

We will omit the proof for Lemma 4.1 because it can be shown in the same
manner as Lemma 3.1.



GENERALIZED PROPORTIONAL HAZARDS 1291

It follows from Lemma 4.1 and (4.8) that
I 2
E < (X5(6,t0) — A8, to)))

E(X}(0,20) — A0, t))°

'MN °

-
1]
(=]

I J K S(o) 0
(4.9) Z Z ZE/ ( 0 0(0) Jk(le +u)— log :—(-L—‘)—>

i=0j SO0 0y, )

X wiki(B0y, w)du

1 I
j‘ Z Ji+l — jl Nt
1

for some constant C, for every I.
Relation (4.9) implies that

-C - ty.

%Ir—‘

o 2
(4.10) E( D (X8, o) — Al to))) <

i=0
This shows that the following lemma holds.

LEMMA 4.2. As J goes to infinity, $° ((X4(0,t0) — A9, t,)) converges to 0 in
probability.

Since
Z | A%(6,0)|
1 J o K to
jZZZ/ 0 0(0) Jk(TJ,+u)
j=1i=0k=1 0
(4.11) 596, u)

—log——-— i (60), w)du

J [e)
<33 Tii =T nte

Jj=1 i=0
SC'tO’

we know from the law of large numbers that the following lemma holds.
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LEMMA 4.3. As J goes to infinity, 22, AL(8,t0) converges to A(6,ty) in
probability, where A(6,t,) = £2, A (6, to),

i " ey 5.60,0)
A (0, tO) = / (0 - 0(0))si (0(0), u) — lOg'AT;—— (0(0), ) hi(u)du
0 1 (0(0)’ u)

and 52(8,u) = ES9(6,u).

It follows from Lemma 4.2, Lemma 4.3, the concaveness of £, X, to) and
of A(.,t9) and the convex analys1s argument used in Andersen a.nd Gill (1982)
that we have the following consistency result. In fact, A(- ,t0) is a concave func-
tion and has a unique maximum at 6 = 6, if V3(¢y) > 0; 9(3) maximizes the
random concave function ¥°, X J( ,t0), which converges to A( ,to) in probabil-
ity; therefore we have Theorem 44.

THEOREM 4.4. The MPLE 5}3) converges to 6 in probability if Vi(ty) >
0, where

X rho 3 2
@12 =) [ hi<u><’5§2)(0<0),u)— (50, w) ) .
i=0"0

gi(O) ( 0(0) , u)

4.2.2. Asymptotic normality. Asymptotic normality of 5}3) is to be estab-
lished in the usual manner by making use of the asymptotic consistency of 0}3)

and the asymptotic normality of (1/v))G$>(8(g), o), which requires some addi-
tional martingale structres and tightness argument, similar to those used in
Section 4.2.1.

THEOREM 4.5. The process (1/v/J )Gf,s)(é?(o), to) is asymptotically normal with
mean 0 and variance Vs(ty) given in (4.12).

Proor. SinceG }(9(0), -)is amartingale, we can use martingale central limit

theorem to show that (1/vJ)G(6(), to) is asymptotically normal with mean 0
and variance

i to - (50, w)"
(4.13) A (t0)=/0 hi(u) (s,-(Z)(H(O),u) - W du.

On the other hand, we know from (3.27) that, for every I,

1
{—ﬁ(Gg((’(O),to),---,G}(o(o»to))‘ J= 1,2,---}
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is a tight sequence of R’*!-valued random vectors. This together with the pre-
vious asymptotical normality of (1/vJ)G 260, to) and the orthogonality

EG}(60), t0) G (001, t0) = 0
for i # j, shows that

1
\/_j (Gg(e(o),to), e ,G}(e(o), to))

is asymptotically normal with mean 0 and a diagonal covariance matrix whose
(Z,i)th entry is (4.13).

Therefore, (1/VJI)X!_, Gi(6(), to) is asymptotically normal with mean 0 and
variance X! _, Vi(t).

Consider

1
P[TjG‘(I3) (9(0), to) < x]

(4.14) 1

7 > Gi(60»to)

i=I+1

.l

where the second term can be made small by (3.27) and the choice of a large
I, and this large I will make the first term close to the desired quantity. This
shows that (4.14) has its limit supremum equal to P(X < x), where X is normal
with mean 0 and variance V3(¢;). A similar argument gives the corresponding
result for the limit infimum of (4.14). This completes the proof. O

<P[\/_ZG 0(0),to <x+€:l +P[

With Theorems 4.4 and 4.5, we get the following theorem.

THEOREM 4.6. /J (5}3) —b,0)) is asymptotically normal with mean 0 and vari-
ance Vi(ty)™!.

5. Asymptotic efficiency. In this section, we will show that the MPLE
0('") is asymptotically efficient in Model m, for m = 1,2, 3,4. We will establish

the convolution theorems in these models and prove that 0(’") are regular esti-
mators, which together Wlth the information calculations in Sectlon 3 gives the
asymptotic efficiency of 0 (m)

The proof of the convolutlon theorems follows the well-known characteristic
function approach, which requires the local asymptotic normality (LAN) of log-
likelihood ratios [cf. Begun, Hall, Huang and Wellner (1983)]. We will present
LAN and the convolution theorems without giving the proof. We refer the read-
ers to Chang and Hsiung (1991c) for details. Since the regularity of 6; 8™ requires
a more refined form of LAN, we will present a detailed proof for 1t in the case
of Model 2.
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With necessary changes for () and S, the following theorem for LAN holds
for all the models. Let

2
G oXo)= EZ / <6zlk<u)+zhﬁ‘("())1<T,E,T,i+,](u)> A de.

Let L; =logL;. Then we have the following.
THEOREM 5.1 (LAN).  Under P%oh0) gqs J goes to infinity,

Ly (t, 600y, b)) — La(t, 00y heoy) + 30%@)

converges weakly on D(0,t¢] to a continuous Gaussian martingale with mean 0
and variance process o%(t), where 6 ;) and h(y satisfy (3.3).

Let 6, be an estimator for 0(0) based on (2.5). We say 6;isa regular estimator
at (6(0), h(o)) if, for every sequence {(6), h(s)} of parameters satisfying (3.3), the
distribution of vJ(6; — 6,), under (8.), h(.)), converges weakly to a distribu-
tion which depends on (6(g), k(p)), but not on the particular sequence {(6.), 2(J)}-

THEOREM 5.2. Let 65 be a regular estimator of 6y in the model m, m =
1,2,3,4. Then, the distribution of \/j(é] — 6(gy), under (6¢gy,h(J)), converges
weakly to a distribution which is the convolution of N(0,(I{™)~1) with a distri-
bution W, where W depends only on (8(), hy) and I{™ is given in Definition 3.1.

THEOREM 5.3. The solution 5}"‘) of Gf}")( -, to) = 0 is a regular estimator of
By in Model m, m =1,2,3,4.

Because of I™ = V,,(ty), for m = 1,2,3,4, and Theorems 5.2 and 5.3, we
have the following corollary.

COROLLARY 5.1. The estimator é}"’) is asymptotically efficient in Model m
in the sense that it has the least asymptotic variance among regular estimators,
wherem =1,2,3,4.

We note that, when m = 1, Theorem 5.2 was established by Begun, Hall,
Huang and Wellner (1983) for 11fet1me data. The fact that 6(1) is regular seems
not to be mentioned there. We will prove only the case m = 2 for the other cases
are similar.

PRrOOF OF THEOREM 5.3 (Model 2). Let (6), ~(s)) be a sequence of parame-
ters satisfying (3.3). We shall show that the distribution of v/J (5}"‘) —6J)), under
(g, b)), converges weakly to N(0, (V,,(¢0))~1) which depends on (69, 2(q)), but
not on the particular sequence {(6(), h¢J)}.
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Let _
G (0(0)’}7'(0)7‘5 B, )

8D (6, ) Bi(u)
_ZZ/ (Sf?f) (6c0y, ) 5h(o>,i(u) Lz, 2 () AM(w).

Jj=1k=1

We note that GJ(Q(O), h(o), 6,8, -)is a square-integrable martingale and is orthog-
onal to G )(8(0), -)- This together with some relevant boundedness condition
shows that by martingale central limit theorem [cf. Andersen and Gill (1982)],
the random vector

1 1~
(_\/ij) (601 20), —\/jGJ(%), ho, 6, B, to))

converges weakly to a Gaussian vector (Z, 2), where Z and Z are two inde-
pendent mean-zero random variables with variances Vy(¢) and V(z), respec-
tively, with

X7 - o 6 ) i ’
52) V@)= Z( (O)EBEZ; ; + 5;50 )(‘f()u)) heo,i@s® (60), w)du.
i=0 U '

Let ~
Ly(to) = Ly(to, 000y hir)) — Lu(to, b0y, ho))-

It follows from straightforward calculation that

_ D (B0,
L) = ——ZZ / ( (1) — S—@‘%Hlaﬂ,ﬂu](u))dﬂ’-’jk(u)

J (1
Sis(bou) | Biw)
ZZ/ (Si?f) (6nu) * 5h0,:@) L 2y ) M ()

=1k=1
(5.3) , )
oo ﬁ u
Z/ k), {@)SE (60, u)du — —Z/ h(;) o) S (60, u)du
—62 / Biw)SY (6(), u)du + Ry ()
6 =
=2 g ,t) + —=G(60), b0y, 6, B, t
A 7 (60, t) Wai G.1 (800, o), 6, B )
2
2 S%(60,u))
5.4 heoy,i@) | S (6, ——-—( i d
(5.4) Z / ,i@) | 875 (60, ) Sﬁ?} (o) u

2 © ot (g 60), ) 2
_6__2/ ( lJ( (0) u) + ﬂl(u) ) h(o)yi(u)SE?}(O(o),u)du+RJ(t),

23 SO 80y, u) k), i)

where sup, < ; <, |[R(¢)| converges to 0 in probability.
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We note also that
(5.5) \/3(5(2) 0 _ 1 G(2) B, £ 190 G(Z) 9* -t
. J (o)) ___\/7 J ( (0)» 0) NNl ( J,to) )

where 63 is on the line segment between 9}2) and 6.

The characteristic function of v/ (9}2) — 0(g)), under (0, h(J)), can be writ-
ten as

E(9<J):h(J))exP [iu\/j@}z) - e(J))]
(5.6) =E@),h.,)eXP [il“/j (857 - b)) — iV (60) — 9<o>)]
= E(G(o»h(m)exp [iu\/j(é}z) - ‘9(0)) - iu\/j(O(J) - 9(0)) + EJ("'O)] .

It follows from (5.2), (5.4) and weak convergence of fo) and é,] that £;(¢)
converges weakly to 6Z + 6Z — (62 /2)V,(ty) — (62/2)V (¢,), where Z and Z are given

above. Since E,, 1) exp[EJ(to)] =1, {exp[EJ(to)] |J = 1,2,...} is uniformly
integrable [cf. Billingsley (1968), Theorem 5.4]. This together with (5.5) implies
that (5.6) converges to

2 _ 2
Eexp [iu (Va(to)) 7 _ius+6Z - %—Vz(to) +67 — %V(to)]

. -1 . 62 ~ 62
= Eexp (zu(Vz(to)) + 5)2 — iub — 2= Va(to)| E exp|6Z — 5 V(to)

(5.7) =Eexp|——2_4i 5+ﬁV(t)-i 5—5—2V(t)
' ~ P TV T T g TR T T g Y

2 _ 2 _
X exp [%—V(to) - %V(to)]

- ex [_L}
P 2Vt |
This completes the proof. O

6. Concluding remarks.

1. This paper studies the estimation problem with the self-excited filtration
of the counting processes. In fact, according to a recent work of Greenwood
and Welfelmeyer (1993), the main results of this paper seem to hold true
also when more general filtrations are used so that the covariates can be
extraneous to the counting processes. The main idea for this extension is
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that we require (3.2) to be the only statistically “relevant” part of the log-
likelihood process with respect to the filtration considered.

2. In order to avoid technical complications, we imposed many stringent regu-
larity conditions. For example, the boundedness assumption about Y;, Zj, to,
© and the nuisance parameter simplifies the argument in many places. We
worked basically with Ly-theory. Many of the results here can be general-
ized directly to include a larger class of baseline hazard rates so that the
martingales involved are locally square-integrable martingales. Obviously,
the results of this paper can also be extended to the case for which © is in
Rd, d>1.

3. In this paper, we study asymptotics as the number of replicates of the model,
J, gets large. There are other possibilities. We may, following Greenwood and
Wefelmeyer (1991), study the asymptotics as ¢ gets large for fixed J and K
or we may consider the case when K is large. These and other related issues
will be treated in a future study.

4. We note that, by satisfying the data according to the number of previous
occurrences, we obtain many “smaller” proportional hazards models in both
Model 2 and Model 3. Estimating functions considered for these two mod-
els are sums of estimating functions for the “smaller” proportional hazards
models. In Model 2, this is done using natural calendar time filtration; in
Model 3, we find it successful when a different filtration is used. Identifying
this useful filtration is an important part of the work. It would be interesting
if these two models can be given a unified formal treatment.
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