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ESTIMATING A MONOTONE DENSITY FROM
CENSORED OBSERVATIONS

BY YoupPING HUANG AND CUN-HUI ZHANG!
Columbia University and Rutgers University

We study the nonparametric maximum likelihood estimator (NPMLE)
for a concave distribution function F and its decreasing density f based on
right-censored data. Without the concavity constraint, the NPMLE of F is
the product-limit estimator proposed by Kaplan and Meier. If there is no
censoring, the NPMLE of f, derived by Grenander, is the left derivative
of the least concave majorant of the empirical distribution function, and its
local and global behavior was investigated, respectively, by Prakasa Rao and
Groeneboom. In this paper, we present a necessary and sufficient condition,
a self-consistency equation and an analytic solution for the NPMLE, and we
extend Prakasa Rao’s result to the censored model.

1. Introduction. Suppose (X,Y),(X;,Y1),...,(X,,Y,) are independent
identically distributed (iid) random vectors, where X is a lifetime with a concave
cumulative distribution function (cdf) F on (0, 00), and Y is a censoring variable
independent of X with a possibly discontinuous cdf G. The observed data are
T; = min{X;,Y;} and §; = I{X; < Y;},i = 1,...,n. Let f be the left derivative
of F. We are interested in the nonparametric maximum likelihood estimator
(NPMLE) of f, and its asymptotic distribution.

This problem may arise in nonparametric estimation in renewal processes.
We imagine that a renewal process began indefinitely far in the past. The item
currently in service is inspected for a period of time Y or until it fails, whichever
occurs first. Then, in the absence of censoring, the observed lifetime X of the
item under inspection has the limiting distribution of residual lifetime in an
ordinary renewal process, which has a monotone density f(x) = g Y1 = Fy(x)),
where Fj is the cdf of interarrival times and g its mean. Therefore, finding
the NPMLE of f, and eventually F,, based on iid observations under random
censorship is a case of the problem under study.

If the concavity constraint is removed, the NPMLE of F is the well-known
product-limit estimator proposed by Kaplan and Meier (1958). If there is no
censoring, the NPMLE of F is the least concave majorant (LCM) of the em-
pirical distribution function, derived by Grenander (1956). For various asymp-
totic properties of the product-limit estimator, see Breslow and Crowley (1974)
and Gill (1983); for local and global asymptotics of the Grenander estimator,
see Prakasa Rao (1969) and Groeneboom (1985), respectively. We shall extend
Prakasa Rao’s result to the censored model.
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The problem has been studied numerically; see, for example, Laslett (1982),
Vardi (1989) and Groeneboom and Wellner (1992) for recursive algorithms. We
shall present a necessary and sufficient condition, a self-consistency equation
and an analytic solution for the NPMLE. Our computer simulations show that
the NPMLE of F performs better than the LCM of the product-limit estimator
for a moderate sample size (n = 50), but their derivatives have no significant
difference, when both X and Y are unit exponential random variables.

Throughout this paper, we use [ ab to represent [, ,;, and “~” over any cdf to
denote the corresponding survival function.

2. Main results. Let us write observed values of T, 1 < i < n, in strictly
ascending order:

D=ty <ty <+ <ty
Define Hy,,H;, and H, to be the respective empirical versions of
Ht)=P{T <t, §=Jj}, J=0,1, H(t) = Hy(¢) + Hy(8).

Although ties may occur to censored observations due to discontinuities of G, we
assume that the observations have no ties to simplify our notation. Only slight
modifications are needed to accomodate the general situation. The NPMLE of
f is the left-continuous decreasing nonnegative function maximizing the log-
likelihood

2.1) 1= 6logft)+ Y (1-8)log(l—F(.)

i=1 i=1

and satisfying [;° f(t)dt < 1, where F(¢) = fé f(s)ds.

Notice that any concave function for which a section is replaced by a linear
function is still concave. If F is replaced by a linear function in [¢; _ 1, ¢;], then
by the left-continuity of £, f(¢;) increases while other items on the right-hand
side of (2.1) are unchanged, so that / increases. Furthermore, if §; = 0 and F is
replaced by alinear functionin [¢; _1,%; 1], then! also increases, since only three
items may change: F(t;) and f(t; 1), both increasing, and f(¢;), which decreases
but has no effect on /. Therefore, we only need to maximize [/ over all f of the
form of decreasing step function with jumps at uncensored ¢;.

Let VI(f) denote the differentiation operator acting on ! with respect to

f=(f(),..., f(ty) as a vector in n-dimensional space, and let 1, = (1,...,1,
0,...,0) be an n-dimensional vector having 1’s as its first £ components and
0’s as its last n — & components, for 2 = 1,...,n. The following theorem gives a

characterization of the NPMLE.

THEOREM 1. A left-continuous nonnegative decreasing function f with
fooo f@)dt < 1 is the NPMLE if and only if both of the following inequalities
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are satisfied,

(2.2) (VI(E), £) >0,

@3) <v1(f), £ %1k> >0 fork=1,...n.

In addition, the equality in (2.3) holds if f is the NPMLE and df(t,) < O.

REMARK. We can use the following formulas to calculate (2.2) and (2.3),

* dH,(t)
o 1-F@)’

2.4) %(Vl(f), f)=1-

1 1
;<Vl(f), £ Elk>

_ 1 % dH 1, () Bty —t _
_1—tk(A W—‘() de@n(t)> fork—l,...,n.

(2.5)

For any function v on an interval J, define the following: Mv = M, v is the
LCM of v on J; Dv = D;v is the left derivative of Mv.

Efron (1967) proved that the product-limit estimator F} satisfies F* =
Q.F, where

t1-0@)
Q.0(t)=H,(t) — A 1-306) dHo,(s),

and he named the property self-consistency. We shall show an analogy in the
following corollary.

COROLLARY 1. Let F, and f, be the NPMLE’s of F and its density
f, respectively. Set

1 - F®
0 l_Fn(s)

Then F,(t) > K,(t) for all t > 0, where equality holds if df,(t;) < 0, or,
equivalently, F,, = MQ,F, and f,, = DQ,F,.

(2.6) Kn(t) = @uFn(t) = Hu(t) - dHon(s).

In particular, when there is no censoring, the self-consistency equation F,
= M@Q,F, reduces to F,, = MH,,, which is the case of the Grenander estimator.

ExXAMPLE 1. Suppose only one censored time #; < 1 and one uncensored
time £, = 1 are observed. Then F,(t) = at in [0,%;] for some 0 < @ < 1. The
likelihood equals (1 — at;)a, which reaches its maximum at a = min{(2¢,)"?, 1}.
Therefore, we have F,(t2) < 1if ¢; > 0.5. In this case, it is also clear that the
NPMLE F, is smaller than min{¢, 1}, the LCM of the product-limit estimator.
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Like the product-limit estimator, F,(¢,) < 1 if the maximum observation ¢,
is censored. However, this may occur in our case even for uncensored %,, as
indicated in Example 1. It is obvious that F), is determined up to the maximum
observation ¢,, censored or uncensored. When F,(¢,) < 1 and 6, = 0, F,,(¢) has
to be equal to F,(¢,) for ¢ > t,; otherwise it would have increased the likelihood
to replace F), by a straight line in [¢, _ 1, ¢, + c] for some large c. However, when
F,(t,) < 1and 6, = 1, F,,(¢) may be defined arbitrarily for ¢ > #,, as long as it
is kept concave. When F,(co0) < 1 happens, F,, is not a proper cdf. Such an F,
may be looked at as if it has a positive mass at oco.

We write jumps of £, in [0, ¢,] in strictly ascending order,

(0=s)<)s1 <83 <+ < Sp,.
They are among uncensored observations. In order to calculate F, analyti-

cally, we shall introduce a function ¢(-;k,¢;) for £ = 1,...,m and uncensored #;
> 81 as

oy [ dHe®)
oluik,t) = (& s"“‘)<l /o E(t))

L - [f = DdHu®

Sk—1 sk—lf‘;(sk—l)_(t_sk—l)u,

which depends on F, only through its values on (0, s;, _ 1]. It can be found that ¢
is a concave function of u with at least one root in (0, F,(sp _ 1)(t; —s,— 1)~ 1]. Let
u(k,t;) be the smallest root. Then we have the following theorem on calculating
f» and F,.

THEOREM 2. The NPMLE f, is a left-continuous step function in [0,¢,] which
jumps at uncensored sy, k = 1,...,m. The values of sy and f,,(sy) can be calculated
in the order of ascending s;, by

sp = max{t;: u(k,t;) =u*k), t; > sp_1, 6 = 1}, fu(sp) = ulk,sy),

where u*(k) = max{u(k,t;): t; > sy —1, 6; = 1} and sy, is the maximum uncensored
observation. If F,,(s;,m,) < 1 and s,, = tp,, f»(t) is unspecified for t > sp,; otherwise,
@) =0fort > s,.

For any function +(¢) and vector (¢;, . . . , £z), we shall use the following notation
to denote the k-dimensional vector:

YOlior, o = (WD, .., YE)).

Prakasa Rao (1969) and Groeneboom (1985) derived the asymptotic distribution
of the density of the Grenander estimator. We present an analogous result in
the following theorem.
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THEOREM 3. Suppose f'(x) < 0, G(x) < 1 and G(x + t) — G(x) = o(t'/2) as
t — 0, at some x > 0. Define

_( 2nG(z) \"? s _(If PG\
’Yn(t) = (m) (fn (x+tn ) —f(x)) and a(x) = (W)

Then, for every vector (t1,...,t), Yn()|t=t,,...,t, converges to Dn(t)|s=ax)e,,.. La(®)
in distribution as n — oo, where n(t) = W) — t2 and {W(), —c0 < t < o0} is a
two-sided standard Brownlan motion with W(0) = 0.

Since 9, (8)|¢=1,,...,5, — Y(B)|t=t,,...,s, for all vectors (¢1, ... ,¢;) implies ¥, — ¢ in
LP[—c¢,c] = {¢: |[p@®P dt < oo}
—c

for monotone functions 1,, Theorem 3 immediately implies the following corol-
lary.

COROLLARY 2. Under the conditions of Theorem 3, v,(t) —p Dn(a(x)t) in ,’
LP[—c,clasn — oo, forall c > 0.

Theorem 1 and Corollary 1 will be proved in Section 3. The proof of Theorem
2 is quite technical, and it can be found in Huang (1994). Some brief discussion
of the function ¢ is given at the end of Section 3. In Section 4, we show that
the LCM of the product-limit estimator is always greater than or equal to the
NPMLE of F, and we discuss some preliminary results concerning uniform
consistency of F,, and f;,. Section 5 is devoted to the proof of Theorem 3. Finally,
in Section 6, we compare the NPMLE of F with the LCM of the product-limit
estimator by computer simulations.

3. A necessary and sufficient condition. We replace f,, and F,, by? and

F, respectively, in this section since n is fixed.
The following proof employs a method similar to that in Proposition 1.1 of
Groeneboom and Wellner [(1992), page 39].

PRrROOF OF THEOREM 1. We shall use f; and F; for f(¢;) and F(¢;) respectively.
Then f = (f 1y-- 7f n N

(NVecessity.) Suppose f is the NPMLE. Notice that, fork = 1,...,n, (1 - o)f
+e-t, 11, corresponds to the density of a concave distribution, poss1bly subdis-
tribution, if £ > 0 is small, or if |¢| is small and df(¢;) < O (f > fr+1).- Therefore,
we have

0> lim (A -ef+e-t;'1,) —I(F)

e — 0+ 1>

) Z aZ(f) (_?i i< k}> <vz(f) f- "'lk>

173
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where equality holds if df(¢;) < 0. In addition, since (1 — of corresponds to the
density of a concave subdistribution for small ¢ > 0,

. (1 -of) —Ub al) .
0> lim . Zl = ZL(—f) = —(VIE), T).

(Sufficiency.) Suppose (2.2) and (2.3) hold for some . Define frn+1 = 0. Then
f=%7_1(fi = fe+1)1r and

n tn
S tafi — fian) = / F@)dt = 1 - a(f),
k=1 0

where a(f) > 0. It follows from the concavity of /(f) that
U6 - 1f) < (Vi) £ - £)

= S" (i — foe VI, 1, — t4F) — a®)(VIE), ) < 0. O

k=1
=

Equation (2.4) can be derived by

hl-(Vl(f),f) == Z (— - 2(1 5)

i=1

1 1. 1-6 &
=;§6,—;;1_Fz t_l)
_ o) 00 F(t)
- /0 a1, - [ 1= s dHon®
L [ dHo®
- o 1-F@)’

and (2.5) can be obtained from (2.4) and the following:

1 1 k 6; - ti— 12—
~(VID, 1) = - (?Z -2 A-8)% —F,-1>

i=1 Jj=i

j/\k

__]LXk:.(S_i_'_ Z(t —t_1)
—n. f n i—1

t dH,,(2) P AT

PROOF OF COROLLARY 1. We shall show by induction the following equiva-
lent inequality:

t; - )
(3.1) (1— / dH°ﬁ(s))(1—F(t,~)) < [ dHns) fori=0,...,n.
o 1-F(s) t




1262 Y. HUANG AND C.-H. ZHANG

If i = 0, then the equality in (3.1) holds trivially. Let s, _; = ¢; < ¢; < s;. Then
it follows from (2.5) that

0 < Z(VI®), 5 — 1) — (VI 5T~ 1,)

Sk—1 dHon(S) 4 dH1 (t)
3.2) =(t; —sp_ (1—— ——:—)—/ —
( (6 = su-1) /o 1-F6)) Jai 7O
ti t;—1t
—/ —— dH,(t).
Sk —~1 1 —F(t)

Multiplying both sides of (3.2) by f(ti), which is unchanged for s, _ 1 < ¢; < sz,
and then moving the last two terms to the left-hand side, we obtain

t;

G R+ _ T
dH () + / F&) - FO g0
1 Sp—1

(3.3) - -1 1-F@®

(o= [ 24)

where equality holds if ¢; = s;. Now,

t;
(1 Faey) (1 - dH"i(S))
0 1-—F(s)

= ((1-Fer-v) - (Fe) - Fsi 1)) (1 B /0 dHo,,(s)>

1-F(s)
t; — T(+.
- / 1= F%) ol )

so1 1 — F(2)
1% t; t;
< dH,(t) — / dH,(t) — / dH,,(t) [by induction and (3.3)]
Sp—1 Sk—1 Sk~1
= dH,(@).

t;
This implies F> Q,f‘, and the proof is complete. O

It is easy to see that (3.2) depends on F only through its values on (0,¢;].
The definition of p(u;k,t;) is nothing but replacing f(t) byufors,_1 <t <ty
in (3.2). We can obtain immediately that <p(?(t,«); k,t;)) > 0fors,_q <t; < sp,
where equality holds if ¢; = s,. The motivation of the algorithm in Theorem 2 is
that after f is determined on (0, s, _ 1] we pretend that the next jump of f occurs
at ¢;, and we calculate root u(k,#;) of ©(-; k, t;) for all £; > s, _1 with §; = 1, so
that ?(sk) is among those roots. Hence the question is to locate the position of
sp. It turns out that u(k,¢;) < ?(sk) for ¢; < s, and u(k,t;) < }?(sk) for t; > s;. See
Huang (1994) for details of the proof.
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4. Uniform consistency. In this section, we compare the NPMLE F, with
the product-limit estimate F}; and prove some preliminary results concerning
uniform consistency of F,, and f,,.

ProposITION 1. MF}(t) > F,(t) forall t > 0.

REMARK. In general, we have MF}:(¢) # F,(¢); see Example 1 in Section 2 or
the simulation results in Section 6.

PRroOOF OF PrROPOSITION 1. Efron (1967) proved that

tFx(t)

4.1 F,)=H,@t)— | =
(4.1) (2) @® o i)

dHOn(S).

Let G denote the product-limit estimator of G. Noticing H,@¢) = F_';:(t)a;‘:(t)
[Shorack and Wellner (1986), page 295], we have, for F:(¢) < 1,

! dHOn(S)

2 Fr()dG () = dHy, ), G @)= [ 22onls)
(4 ) n,(t) n(t) 0 (t) n(t) o F;’;(s)

Note that (4.2) holds for all ¢ since dHy, (t) = 0 when F}(¢) = 1. Subtracting (2.6)
from (4.1) yields

. _[MFR®  F®
Fi(t) - Ky(0) = /0 (F:(s> ﬁ(s))dHOn(s).

Setting A, = F — F,, and y, = F, — K,,, we have, noticing (4.2),

Fo.(®)

(4.3) An(8) + pn(8) = —/ )/\ 2(8)dGy(s) + A\, (2) G(2).

0 I'p\s

If F,(¢) < 1, then

pn(®) _ @G @) . * An(s)
F,(®) F, () o Frls)

/\ (s)
Fn(s),

dG(s) = / Tis
which implies

Ant) / un(S) p® t in(s) gt
E(t) Gi(s—) F (s) F—n(t)_G—;’E(t) 0 Fa(s) Gi(s)

If F,, has a vertex at ¢, then u,(t) = 0, and \,(¢) > 0 since y, > 0. On the other
hand, if F,,(¢) = 1, then F:(¢) = 1. Thus MF; > F,. O

LEMMA 1. Suppose F(T) < 1 and G(T) < 1. Then sup, <, <7 |[Fn(¢) — F(?)|
= 0,(n"1/2).
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Proor. Using the same notation as above and, in addition, v, = MF} — F},
we can derive from (4.3) that

1 *F, (t)
Mt) = —=— —pn n *
@) e (t)( pn(t) — F ® An(8)dGi(s ))

A . 1
G*(t) F (S) n(s)dG (s )S G (T) ” n”T;

where || - ||7 denotes the supremum norm over [0, T']. Thus, we obtain

GL(D)|[Fy; = Fullp < |MF; — Frl,
< |MF; - Fllp+ |75 - Fll,
< ||F; ~F|, +||F; - F|, [Marshall 1970)],

where 7, = min{t > T: DF;(t+) < DF}(t)}. Hence, the required result is a
consequence of the weak convergence of the product-limit estimators F and
G;; see Breslow and Crowley (1974). O

LEMMA 2. Suppose H(T) < 1. (i) If F is differentiable at x € (0,T), then
fn(x) = f(x) + 0p(1). (i) If f'(¢) exists forall t € (0,T)and 0 < a < b < T, then
SUPs<t<b @) - f@)] = Op(n‘1/4)‘

PrOOF. Restating Lemma 1, we know that, for any ¢ > 0, there exist A and
n; such that, for alln > n,,

(4.4) P{ sup |Fo(t) — F(t)|<An-1/2}>1
0<t<T

(i) For any 6 > 0, there exists an ny such that, for all n > n,,
|4nV/4 [F(x £ n7Y/4) - Fa)] - f@)| < 6.
For n > max{n;,ny}, we have, from the concavity of F,, and (4.4),

P{fu(x) — f(x) < § + 2An~1/*}

Fo(x—n~Y4) —Fu(x) F(x-n"Y%) - F(x)
2 P{ “-1/4 < —n-1/4

+ 2An'1/4}
= P{F,(x —n"V*) — F,(x) > F(x - n"4) - F(x) - 24n712} >1 ¢

Similarly, we have P{f,(x) — f(x) > —6 —2An~1/4} > 1 —¢. Together, they imply

P{|fu(x) —f(x)] < 6+2An"Y4} > 1 2¢.
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(ii) There exist constants B and ns such that

’:tnl/4 [F(x :i:n“l/4) —F(x)] —f(x)’ < n“1/4B, Va<x<b, n>ns.

Letting 6 = n~'/“B, we have, as in part (i), P{|f,(x) — f(x)] < (24 + B)n~1/4,
Vxela,bl} >1—-2e O

5. Asymptotic distribution of NPMLE. We shall prove Theorem 3 here.
Throughout this section, x is fixed. We need two lemmas, whose proofs will be
given in the Appendix. An alternative method for the proof of Lemma 4 can be
found in Groeneboom (1985) and Groeneboom and Wellner (1992).

LEmMA 3. If f/(x) < 0 and G(x) < 1, then there exists an € > 0 such that
H(x +2¢) < 1and

nlinéo P{fn(t) = D[O,x+25]Kn(t), Vie [O’x + 51} =1

LEMMA 4. Suppose n,(t) = u,(t) + W,(v,(t)) + a,(2), where W, is a two-sided
Brownian motion with W,(0) = 0, u, is a concave function with u,(0) = 0 and
u,(t) <0, v, is a function with v,(0) = 0 and o, is a process. Let v be a conti-
nuous function and let u be a concave function such that u'(t) is continuous at

t1, .., tp If

(5.1) u,(t) - u(t) and v,(t) — v(t) uniformly on compact sets,
(5.2) sup |a,(®)| — 0 in probability Vc¢ >0,
lt|<c
. u(t) 1
(5.3) I:Tilgop @D < p forsomep< 3
C M (t)
(5.4) lim limsupP{ sup —-1>e3;=0 Ve>0,
€= pn_400 el >c u,,(t)
then
(5.5) Dn”(t)’nzl ,,,,, b HDD(u(t) + W(v(t))) ’z:tl,...zk’

where W is a two-sided Brownian motion with W(0) = 0.

ProoOF OF THEOREM 3. Lemma 3 enables us to restrict ¢ in [0, x + 2¢], and
we will do so without stating it explicitly.

We divide the proof into three steps: first define 7, (¢) of the form as in Lemma
4; then verify the conditions; and, finally, calculate both sides of (5.5).
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Step 1. [Define 7,(¢).] Subtracting
F(@t)
F#)=H@t)— | =—dH,
®) = H@) /0 T Ho®

from both sides of (2.6) gives

Eu®) — F@) = (Hot) ~ HQ) — / Fn (t) MdHo(s)
F,
= (Ha(t) - H®) - / TZ) d(Hon(s) — Hos))
o
-[ (ﬁ(” _i”)F( )dG(s).
o \F,(s) F(s)

Integrating by parts with the first integration on the right-hand side and some
algebra with the second yield

K,(@t) = F@) + (H1,(t) — Hi(®)) + (Fa(t) — F®)) G@) + (@),
where (,(t) = (o, (#) — (1,(¢) and

¢ N
Con(t) = / (HOn(s_) - HO(S—)) dsF——Fn_Z)),

F,
(1) = /0 2 Et; (Fals) — F(s)) dG(s).

(s
Define

(5.6) &1 =Ky(x+1) — Ky(x) — (Folx +1) — F(2)) G(x) — tf(x)G(x).

Then,

&(t) = [F(x+1t) — F(x) — tf(x)]a(x)
+ [Hln(x + t) — Hl,,(x) — Hl(x + t) +H1(x)]
+ [Fa(x+1) — Fx +1)] [G(x + 1) — G(x)] + [Calx + 1) — (al(20)].

By Komlés, Major and Tusnady (1975),
Hy,(#) — Hy(t) = n™Y2B, (H1(®)) + Op(n~'logn),

where B,, is a Brownian bridge and O, is uniform in ¢.
Define

(5.7 M(t) = n2/3¢, (tn=1/3).
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Then 7,(¢) = u, (@) + W,(v,(#) + o, (¢), where, with a standard normal random
variable Z independent of B,

u,(®) = n2/3 F(x + tn—1/3) _F(x) - tn_1/3f(x)]6(x),
W,(s) = n/® -Bn (371_1/3 + Hy(x)) — By (Hy(x)) + sn_l/3Z],

vp(2) = nl/3 -Hl(x + tn‘1/3) —Hl(x)],

ap(t) = n2/3 -F,, (x+ tn_1/3) - F(x+ tn‘1/3)] [G(x + tn‘1/3) - G(x)]
+0p ("2 logn) — n¥/® [Hy(x +n V%) — Hy(x)|Z
+n?/3 [C,, (x+tn=1/3) - C,,(x)].

Clearly, W, is a two-sided Brownian motion with W,(0) = 0 and 7, has the
required form.

Step 2. Verify the conditions of Lemma 4. It is easy to see that (5.1) and
(5.3) hold with u(¢) = %tzf’(x)ﬁ(x) and v(?) = tf(x)G(x). Before verifying other
conditions, we shall show

(5.8) an(®) = 0p(1) + 0, (£Y2) + O, (tn~ V),

where o, and O, are independent of ¢. By lemma 1, the differentiability of F
and H, at x, and the Hélder continuity of G at x, we have

() = 0p(1) + 0, (¢/2) + O, (tn=2/6) + n?/3 [(,, (x+tn~1/3) — C,,(x)] .

Since |Fu(x + tn=Y3) — Fu(x)| < Op(n=Y2) + |F(x + tn-1/3) — F(x)| = Op(n=12)
+ O(tn—1/3), we have

n2/3 [Cln (x+tn=1/3) - Cln(x)}

* Fu(x+tn=1/3) —F,(x)
_ 23 n(x+in () —
n ( /0 s (Fals) — F(s)) dGls)

x+tn~1/3 F—'—,,(x +tn—1/3)
. / e (P9 - F) dG(s))

= 23 [(o,, (n1/2) + O(tn=/%)) 0, (n1/%) + 0, (n_l/z)o(tl/zn_l/e)}

=0, (n_l/3) + 0, (tn‘l/e) +0p (tl/z).

Similarly, we can get n?/3[¢p,(x + tn=3) — (o(x)] = Op(n~1/3) + Op(tn=1/9).
Hence, (5.8) is verified. Because (5.8) implies (5.2) directly, the only condition
which has not been checked is (5.4). It follows from (5.8) that

’——“ant(t)' > E} = O)

lim limsup P{ sup
€7 n—oo tl>e
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for all € > 0. Since

sup vn(2) < sup Hi(x+s)— Hy(x) o),
gl>c t S#0 s

using the strong law of large numbers for the Brownian motion, we have

n n t
lim limsup P{ sup —W—(g(—))‘ > s} =0,

€7 n—voo It>e ¢

for all € > 0. Therefore, (5.4) is satisfied, since

t }< 1 su min (|s|n=1/3,s%¢c~1)
Un®| = Glx) s g0 [Fx +5) — F(x) — sf ()]
=0(n 3 +c7Y).

sup
t>c

Step 3. [Apply Lemma 4.] It is easy to see that, for any real numbers
0 € [0,1], a, b and function 1,

M@y —6My+a+bt)=(1 - 0OMyp +a + bt

and
D(yp — M+ a + bt) = (1 — 9)Dy + b.

So, it follows from (5.6) and (5.7) that
Drn(®) =D (n2/3 [+ tn72) — F (x4 n=9) Gl) — e VOF ()G 4 -- ])
= n2/7G() DKy (3 + tn /%) — n=V3f(x)]
= 3G [fo (3 + tn7V°) - f()].

On the other hand, let s = az and W'(s) = b= 'W(b2%s), where a = a(x) as in the
statement of the theorem and b = b(x) = (2f2%|f'|"'G)Y/3. Then W’ is also a
Brownian motion and .

D(u®)+ W(u@)) = D(27Y'G + WefG)
= D(W(b%(®) - bs*®)

, d

= bD(W')-s?) - 2

= (27YI1F1C") P D(W'(s) - s2).



MONOTONE DENSITIES AND CENSORING

1269

TABLE 1
Mean of Variance of @ Meanof Varianceof Meanof Variance of
B B b@ ) p(o0) (o0
n n n n n n
Fy 0.112 0.00437 0.092 0.00216 0.118 0.00259
MF; 0.123 0.00432 0.102 0.00240 0.134 0.00333
fn 0.240 0.00583 0.341 0.09968
DMF}; 0.242 0.00496 0.346 0.09907
=) .
— TrueF /” i
---------- NPMLE of F

Estimation of CDF
0.6 0.8

0.4

0.2

0.0

---- PLE of F and its LCM

Fic. 1. NPMLE of F and LCM of PLE.

2.0
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Since _
RYIG() (2 + tn1/%) — f(2)] Dy

(2-1f11G") @)
the required result follows from (5.5). O

'Yn(t) =

6. Numerical results. We have performed a computer simulation to com-
pare the NPMLE F, with MF}, the LCM of the product-limit estimator (PLE),
and their derivatives. The simulation was based on 2000 random samples each
of size n = 50. The lifetime and censoring variables are both exponentially
distributed with mean 1. Performance of an estimate @, of ® is measured by
b = (f3" |8,(t) — @@ de)V, for j = 1,2, and b = supy ., <, |Ba®) — B(2)),
where s, is the largest uncensored observation for each sample. The results
are listed in Table 1. We can observe that F,, is indeed better than MF}, while
f» and DMF;; show no significant difference.

— True f
s4 NPMLE of f
---- Estimate from PLE
0 _|
2
(7}
c
[
)
s
c
o
T
£ <o
R
w
0 _|
o
o _|
o

0.0 0.5 1.0 1.5 2.0

t

Fic. 2. NPMLE of f and estimate from PLE.
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The mean and variance of 5° for density estimates are left blank in Table 1
because of the instability and inconsistency of both estimators of f(z) at ¢ = 0+.
Woodroofe and Sun (1993) provided consistent estimators of f(0+) in the ab-
sence of censoring, which can also be used to obtain consistent estimates in the
right-censoring case as H;(#) = f(£){1 — G(¢)} is decreasing and H}(0+) = f(0+).

Figure 1is the graph of F,, and MF} along with the true cdf of X, and Figure 2
is the graph of their derivatives along with the true density of X. It is one
instance in the simulation. A spiking problem at 0+ with estimates of density
can be seen in Figure 2.

APPENDIX

Proor oF LEMMA 3. There exists an € > 0 such that F(¢) is not a straight
line in [x + &, x + 2¢] and H(x + 2¢) < 1. Since

inf  sup lat +b — F(t)| = ¢g > 0,

GOx+e<t<x+2e
we have, from Lemma 1,

P{D[O,x+26]Kn(t) # fn(t), Jte [O,x+e]}

< P{fo(t) has no jump in [x + &, x + 2¢] }

< P{ sup |Fp(t) — F@)| > co} —0 asn — oo. O

x+e<t<x+2e

ProoF oF LEMMA 4. It follows from the arguments of Prakasa Rao [(1969),
Lemma 4.2] that (5.5) is a consequence of the following three relations:

(Al) lim llmlan{D[ —c, c]nn(t)lt tiyenny —DT]n(t)lt tiye :tk} = 1

C— 00 n—

A2 lim P{D_oq@+ W), , =Du+Wo)|,, .}=1
Di¢,qm@®le=ts,....s 2D Dic,a(u + W))|,_, .

(A.3)
as n — oo for all ¢ > t*,

where * = maxi<i<ek |tj' + 1.
First we prove (A.1). Define a linear function

M u(2c) . tu(ZC)
4 2
Let o1 = p/2 + 3/4. Then 0 < o, < 1. It follows from (5.3) that, for large c,

I.@) =

l()_i(c_) u(z"‘) ()( 1><01u(c)<0 and
z(z)-“—(c—) Bu2e) w2,

4
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so that by (5.1) there exists an n. such that, for n > n,,
l.(c) < o1un(e) and 1.(2¢) > oqu,(2c),

which imply [.(¢) > o1u,(¢) for all ¢ > 2¢ by the concavity of u,. It follows from
(5.4) that

(A.4) lim hmlan{nn(t) <l (), Vt>2c} =1

C— 00 n—00

Since
__p, 1 v p, 1
o9 = 2+4 2c_) 2+4>0 as ¢ — oo,
we can get from (5.3) that
. o ule)  uc)  t*u(2c)
tlgtf: I.®) =10 = - "1 + e > 02|u(2c)| for large c,

so that inf; s+ [,(#) — oo as ¢ — oco. It follows from (5.4), (5.1) and (5.2) that
P{n,() > L,(2), 3t < ¢*}

< P{ sup 7,() > O} +P{ sup 7)) > mfl (t)}

t< —c’ —c' <t<t*
M (2)
<PJ sup |—=—-1/>1,+P sup () > 1nf L)
t<—c |Un(?) —o <t tr

—0 asn — oo, ¢ — oo, then ¢’ — oo.

(A.5)

In addition, we have 7,(c) = u,(c)(1 +0,(1)) = u(c)(1 +0,(1)) and oyulc) > l.(c)
for large ¢, which imply
(A.6) lim liminf P{n,,(c) >l(e)} =1

C— 00 n— 00

Together (A.4), (A.5) and (A.6) lead to P{Dn,(¢) has a vertex in (¢*,2¢)} — 1 as
n — oo and then ¢ — oo. For the same reason, we can derive P{D7,(¢) has a
vertex in (—2¢, —¢*)} — 1. Hence, (A.1) is proved.

Relation (A.2) is a special case of (A.1) since

u®+WMm_‘

P{ l:uzpc e 11 >e}
L u(t) + W, (v(®))
-6,1313,01’{0;:}110, S Rt >€}

. . 7 () }
= lim lim P su -1 >
¢’ —oon— oo { c< |t|li o’ un(t)

N (2)
0, () - 1‘ > e}.

n—oo | e

< lim sup P{ sup
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We now turn to prove (A.3). In view of (5.1) and (5.2), 7, can be written as
u@®)+ W, (v(®))+ 5,(¢) with 8,(¢) — 0 in probability uniformly on all compact sets,
so that it suffices to show that, for any fixed ¢ > ¢*,

(A7) Dy, (u+Wal0)+6a),y, . =DDic,a(w+W)|,_, , asn— oo

k

Let D[—c, c] be the metric space of left-continuous functions with right limits
on [—c,c] equipped with the uniform metric || - |, and C[~c, c] the subset of all

continuous functions in D[—c, c]. Define a subset C[—c, c] of C[—c, c] by
Cl—c,c] = {¥ € Cl—c,c]: Di_¢,q¥(t) is continuous at t = t1,...,2}.

Since D_., % is determined by the values of 1 on the set of all rational numbers,
the mapping ¥ — D_; %|¢=1,,...,+, 1S measurable with respect to the projection

o-field. In adition, C [—c,c] is measurable with respect to the projection o-field.
If {%n} is any sequence of functions in D[—c,c] converging to a function

in Cl—c,c], then M|_, ¥ — M|_. g% uniformly on [—c,c]. Let D~ and D*
denote, respectively, the left and right derivatives of the LCM. Then, D[, ;9 (?)

— Di_, g% if Di_cq9 is continuous at ¢, since [see Barlow, Bartholomew,
Bremner and Brunk (1972), page 228]

o q¥® < lminf D, @) < liminf DT, n(®
< li;n_) sup D, g¥n@®) <D, 4@
and Di_, 49(¢) = D, c]‘f(t)' Thus, the convergence of i, to ¢ in D[—c,c] and
the membership of ¢ in C[—c¢, c] imply
Di_c, qn®le=ty,....t, = Di—c,a¥@®lt=¢,,....1, asn — oo.
If Dn = D(u + W(v)) is not continuous at #;, then

£) — n(t: — (¢
inf n(t) — n(;) > su n(t) n(t,)'
i<t t—4 £>1 t—1;

The continuity of v’ at # impiies

A8  limint D) =WEE) oo WEO) = WE)
t=t= t =t t— tj+ t—1

It follows from the law of the iterated logarithm for Brownian motion W(u(¢)+s)
as s — 0 that the left-hand side of (A.8) is less than or equal to 0 almost surely,
while the right-hand side is larger than or equal to 0 almost surely, so that
relation (A.8) holds with probability 0. Hence P{u + W(v) € C[—c,c]} =1, and
(A.7) follows from the continuous mapping theorem [cf., e.g., Pollard (1984)]. O
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